

Central European Institute of Technology BRNO | CZECH REPUBLIC

Electron optics

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

February 23, 2015

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Correction/clarification from last week

Correction/clarification

First Siemens microscope, 1939

http://ernst.ruska.de

First <u>commercial</u> EM, 1937 Metropolitan-Vickers EM1 (EM2 shown)

http://emu.msim.org.uk

The first commercial electron microscope was actually by the **British company Metropolitan-Vickers** in 1937. However, the magnification was worse than for the light microscope, so the Siemens is considered "first."

Metropolitan Vickers eventually became AEI, which built a 1.2 million volt EM-7.

http://www.wadsworth.org

Contrast transfer function

Typical amplitude contrast is estimated a 0.08-0.12 (minus noise)

Instead of amplitude contrast, we'll use phase contrast.

Phase contrast in light microscopy

Bright-field image

Phase-contrast image

http://www.microbehunter.com

In EM, even with defocus, the contrast is poor.

E. coli 70S ribosomes, field width ~1440Å.

Signal-to-noise ratio for cryoEM typically given to be between 0.07 and 0.10.

Relationship between imaging and diffraction

http://www.microscopy.ethz.ch

Optical path

At focus, all we would see is amplitude contrast.

Optical path with defocus

What is the path difference between the scattered and unscattered beams?

Path difference as a function of Δf

Some typical values

A more precise formulation of the CTF can be found in Erickson & Klug A (1970). Philosophical Transactions of the Royal Society B. 261:105.

Proper form the CTF

 $-\sin\left(\frac{\pi}{2}C_{s}k^{4}+\pi\Delta f\lambda k^{2}\right)$

where:

- C_s: spherical aberration
- k: spatial frequency (resolution)

What do we mean by spatial frequency?

From Wikipedia

<u>F</u>ile <u>E</u>dit <u>A</u>nalysis

<u>F</u>ile <u>E</u>dit <u>A</u>nalysis

<u>File Edit Analysis</u>

How does the CTF affect an image?

original

BCEITEC

combined

original

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

