Central European Institute of Technology
BRNO | CZECH REPUBLIC

Single-particle reconstruction

With an emphasis on Random Conical Tilt in SPIDER

March 9th, 2015

What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

What happens when we don't have enough views?

What happens when we're missing views?

Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

Your sample isn't guaranteed to adopt different orientations, in which case you many need to explicitly tilt the microscope stage.

What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

Required orientation parameters

Two translational:
" Δx
" Δy

Three orientational (Euler angles):
" phi (about z axis)
" theta (about y)
" psi (about new z)

From http://www.wadsworth.org/spider_doc/spider/docs/euler.html

How do we used those orientation parameters?

Now that you know the Euler angles for each image, you can compute a back-projection.

Getting different views:
 Tomography vs. single-particle

Tomography

We have:
" known orientations

- different views

BUT...

What happens when we image the sample?

Baker et al. (1999) Microbiol. Mol. Biol. Rev. 63: 862
We are destroying the sample as we image it.

Consequences of repeated exposure

What information do we need for 3D reconstruction?

1. different orientations
2. known orientations

What information do we need for 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

What happens as we include more particles?

Signal-to-noise ratio increases with $\sqrt{ } n$

But wait...

If we have many identical molecules, and if we can determine the orientations, we can use one exposure per molecule and use these images in the reconstruction.

http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

A more realistic (but still fake) example

From Nicolas Boisset
Synthetic images of worm hemoglobin
Shaikh et al., (2008) Nature Protocols 3: 1941-74.

What information do we need for 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

What information do we need for 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

4. identical particles

Now we need to find the orientations for each particle.

How to determine orientation?

Two scenarios:

1. You have a reference.
2. You don't have a reference.

Reference-based alignment

You will record the direction of projection (the Euler angles), such that if you encounter an experimental image that resembles a reference projection, you will assign that reference projection's Euler angles to the experimental image.

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.
Assumption: reference is similar enough to the sample that it can be used to determine orientation.

The model

The extra features helped determine handedness in noisy reconstructions

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
$p s i=000$

phi $=000$
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$ psi=000

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
psi=000

phi=000
thet $a=045$
psi=000

phi=016
thet $a=075$
psi=000

phi=048
thet $a=045$
psi=000

$\mathrm{phi}=115$
thet $a=075$
psi=000

phi=072
thet $a=045$
psi=000

phi=131
thet $a=090$
psi=000

Reference-based alignment

Stack of projections
Stack of rotational CCF's

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.
Steps:

1. Compare the experimental image to all of the reference projections.
2. Find the reference projection with which the experimental image matches best.
3. Assign the Euler angles of that reference projection to the experimental image.

De novo reconstruction

If we don't have a reference reconstruction, how do we proceed?

1. Common lines
2. Random conical tilt

Brief summary of Fourier transforms

- A Fourier transform is an alternative representation of image or volumetric data.
- A Fourier transformation is a fully reversible mathematical transformation.

Projection theorem (or Central Section Theorem)

A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction.

Common lines (or Angular Reconstitution)

Summary:

" A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction

- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a
 third projection (i.e., central section) will fix the relative orientations of all three.

Common lines (or Angular Reconstitution)

Summary:

" A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction

- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative

From Steve Fuller orientations of all three.

de novo reconstruction

If we don't have a reference reconstruction, how do we proceed?

1. Common lines
2. Random conical tilt

Random-conical tilt:

 Determination of Euler angles

This scenario describes a worst case, when there is exactly one orientation in the 0° image. Since the in-plane angle varies, in the tilted image, we have different views available.

Random-conical tilt: Geometry

Two images are taken: one at 0° and one tilted at an angle of 45°.

Radermacher, M., Wagenknecht, T., Verschoor, A. \& Frank, J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146, 11336 (1987).

See movie rct-part1.avi

See movie rct-part2.avi

One problem though:

We can't tilt the stage all the way to 90 degrees.

Projection theorem

Random-conical tilt: The "missing cone"

Representation of the distribution of views, if we display a plane perpendicular to each projection direction

The missing information, in the shape of a cone, elongates features in the direction of the cone's axis.

From Nicolas Boisset

Random-conical tilt: Filling the missing cone

If there are multiple preferred orientations, or if there is symmetry that fills the missing cone, you can cover all orientations.

From Nicolas Boisset

SPIDER

SPIDER

$\underline{\mathbf{S}}$ ystem for
P rocessing
I mage
D ata from
E lectron microscopy and R elated fields

SPID $_{\mathbf{E}}$ R \& $\quad \mathbf{W}_{\mathbf{E}} \mathbf{B}$

Random Info Future of EM Software, MRC Image Stacks Harmful, GPU's and Snake Oil

Documentation

Whats New

Availability
Download
Installation
Getting Started
User Guide
Tutorial

SPIDER (System for Processing Image Data from Electron microscopy and Related fields) is an image processing system for electron microscopy.

- News:
- SPIDER is now an open source project maintained by unpaid volunteers. We invite contribution of code, documentation, and funding.
- Emphasis on:
- 3D reconstruction
- Averaging of single particle macromolecule specimens
- Multivariate statistical classification
- Electron tomography.
- Features:
- Interactive command line interface.
- Hierarchical modular design for scripting.
- Graphical User Interface, Web, for visualizing and interacting with images.
- File format interchangeable with other scientific imaging systems.
- Extensive documentation of operations and techniques.
- Includes source code.
- Includes PubSub for use on clusters.
- Available for Linux, OSX, and Aix. (OSX support will be discontinued in 2014.)
- History:
- Originated by: Joachim Frank. Availab e since 1978.
http://spider.wadsworth.org

Interacting with SPIDER: The classic way

```
spiro nodupes/em2em 96> spider spi
    \__000'_/ l
    SPIDER -- COPYRIGHT
    HEALTH RESEARCH INC., ALBANY, NY.
    VERSION: UNIX 21.13 ISSUED: 12/16/2013
    DATE: 17-SEP-2014 AT 12:44:11
    If SPIDER is useful, please cite:
    Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A.
    SPIDER and WEB: Processing and visualization of images in 3D electron
    microscopy and related fields. J. Struct. Biol. 1996; 116: 190-199.
Results file: results.spi.0
Running: /home/tapu/local/spider/bin/spider_linux_mp_intel64
.OPERATION: WI
WI
.INPUT FILE: testimg
testimg
    testimg
    (R ) 230 230 CREATED 17-SEP-2014 AT 12:44:04 0 HEADER BYTES: 1840
    .OUTPUT FILE: testwin
testwin
.X & Y DIMENSIONS: 128,128
    128
    128
    testwin
    (R ) 128 128 CREATED 17-SEP-2014 AT 12:44:59 N HEADER BYTES: 1024
.TOP LEFT COORDINATES: 52,52
    52 52
.OPERATION:
```


Tilt-pair selection

File Edit Analysis

From Nicolas Boisset
Synthetic images of worm hemoglobin Shaikh et al., (2008) Nature Protocols 3: 1941-74.

Classification of 0° images

\%		घr	wo sem	I	wax								[15]				囫				
	0	0	Δ	\checkmark	6	\checkmark	ε		.	d	¢		\checkmark	\checkmark		\checkmark	a	S	2	$\stackrel{2}{2}$	2
\%	$\stackrel{\rightharpoonup}{c}$	2	\checkmark	0	\checkmark	\checkmark	c		\checkmark	a	c		4	d		4	\checkmark		\&	c	c
\checkmark	e	\bigcirc	\checkmark	\checkmark	ε	$\stackrel{4}{4}$	8		\%	\checkmark	5		$\stackrel{3}{ }$	a		*	$\%$		e	\bigcirc	B
$\stackrel{\square}{8}$	2	2	5	6	s	2	8		e	$\stackrel{\rightharpoonup}{ }$	8		8	8		3	8		2	\checkmark	Δ
3	\wedge	π	σ	$\stackrel{3}{ }$	8	v	5		\%	8	c		2	v							

Worm hemoglobin (phantom data)

Worm hemoglobin (side view)

Thank you for your attention

CCEITEC

Central European Institute of Technology
Masaryk University
Kamenice 753/5
62500 Brno, Czech Republic
www.ceitec.muni.cz | info@ceitec.muni.cz
 Development for Innovation

