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Fourier transforms: Definition

f: function (1D) which we are transforming

x: real-space coordinate

i: √-1

k: spatial frequency

F(k): Fourier coefficient at frequency k
– complex, of the form a + bi



Fourier transforms: Definition

Euler's Formula: 



Fourier transforms: Definition

ba +i
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b

Amplitude, A: 

Phase, Ф:
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Fourier transforms: plot of cosine of x

x

f(x)



Fourier transforms: plot of step function

The higher the spatial 
frequencies (i.e., higher 
resolution) that are 
included, the more faithful 
the representation of the 
original function will be.

http://cnx.org



Fourier transforms: plot of sawtooth function

http://mathworld.wolfram.com



How do we calculate the Fourier coefficients?



Fourier transforms: Definition

ba +i
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Amplitude, A: 
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Why aren't we calculating the cosine terms?



Fourier transforms: Sawtooth function



Fourier transforms: plot of a Gaussian

Xx

f(x) F(X)



Outline

Image analysis II
 Fourier transforms revisited

 Digitization

 Alignment

 Multivariate data analysis



Digitization in 2D



Digitization in 1D: Sampling



Digitization: Is our sampling good enough?

Here, our sampling is good enough.



Digitization in 1D: Bad sampling



What's the best resolution we can get 
from a given sampling rate?

A 4-pixel “image”

1 2 3 4

In other words, what is the most rapid oscillation we can detect?



What's the best resolution we can get 
from a given sampling rate?

In other words, what is the most rapid oscillation we can detect?

ANSWER: Alternating light and dark pixels.

A 4-pixel “image”



The period of this finest oscillation is 2 pixels.
The spatial frequency of this oscillation is 0.5 px-1.
The finest detectable oscillation is what is known as “Nyquist frequency.”
The edge of the Fourier transform corresponds to Nyquist frequency.



The period of this finest oscillation is 2 pixels.
The spatial frequency of this oscillation is 0.5 px-1.
The finest detectable oscillation is what is known as “Nyquist frequency.”
The edge of the Fourier transform corresponds to Nyquist frequency.

origin

spatial frequencyspatial frequency

Nyquist frequency

Nyquist frequency



What do we mean by pixel size?

http://www.en.wikipedia.org

Typical magnification: 50,000X 
Typical detector element: 15μm 
(pixel size on the camera scale)

Pixel size on the specimen scale: 
15 x 10-6 m/px / 50000 = 
3.0 x 10-10 m/px = 3.0 Å/px

In other words, 
the best resolution we 
can achieve (or, the 
finest oscillation we 
can detect) at 3.0 Å/px 
is 6.0 Å.

It will be worse due to interpolation, 
so to be safe, a pixel should be 3X 
smaller than your target resolution.



Interpolation



Shifts

1 2 3 4
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Suppose we shift the image in x & y.

The new pixels will be weighted averages of the old pixels.



original Δx=Δy=0.05px Δx=Δy=0.10px Δx=Δy=0.15px Δx=Δy=0.20px

Δx=Δy=0.25px Δx=Δy=0.30px Δx=Δy=0.35px Δx=Δy=0.40px Δx=Δy=0.45px

Effect of shifts



Two more properties of Fourier transforms: Noise

 The Fourier transform of noise is noise

 “White” noise is evenly distributed in Fourier space

• “White” means that each pixel is independent

White noise Power spectrum

origin

Nyquist frequency

spatial frequencyspatial frequency



Effects of interpolation are resolution-dependent

Image Power spectrum Profile

O
riginal

S
hifted by (0.5,0.5) px



Rotation
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Suppose we rotate the image.

The new pixels will be weighted averages of the old pixels.
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Rotation
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Suppose we rotate the image.

The new pixels will be weighted averages of the old pixels.
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Image Power spectrum Power spectrum profile

O
riginal

S
hifted by (0.5,0.5) pxR

otated by 45º



The degradation of the images means that we 
should minimize the number of interpolations.
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(P)review of 3D reconstruction: 
The parameters required

Two translational:
 Δx
 Δy

Three orientational 
(Euler angles):

 phi (about z axis)
 theta (about y)
 psi (about new z)

http://www.wadsworth.org

These are determined in 2D.



How do find the relative translations 
between two images?



Cross-correlation coefficient:

Translational alignment

Image f Image g
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Cross-correlation coefficient

Cross-correlation coefficient:

If the alignment is perfect, the correlation value will be 1.

What if the correlation isn't perfect?



Translational alignment

Image f Image g

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4
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9 10 11 12

13 14 15 16

What if the correlation isn't perfect?

ANSWER: You try other shifts (perhaps all).



Cross-correlation function (CCF)

Brute-force translational search is CPU-intensive

BUT

Fourier transforms can help us.

Complex conjugate:
If a Fourier coefficient F(X) has the form: a + bi
The complex conjugate F*(X) has the form: a - bi

F*(X) G(X) = F.T.(CCF)
This gives us a map of all possible shifts.

Real space f(x) g(x)
Some notation:

Fourier space F(X) G(X)



Cross-correlation function (CCF)

Image f(x) Image g(x)

F.T. F*(X)
(complex conjugate)

F.T. G(X)

x =

CCF

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

(8,-6)



That was an easy case.
We only needed to do translational alignment.
What about orientation alignment?



Orientation alignment

Image 1 Image 2

We take a series of rings from each image, unravel them, 
and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.



Orientation alignment

Image 1 Image 2

radius 1
radius 2
radius 3
radius 4

radius 1
radius 2
radius 3
radius 4

0 360 0 360



Which do you perform first?
Translational or orientation alignment?



Translational and orientation alignment 
are interdependent

SuperimposedImage 1 Image 2

SOLUTION: You try a set of reasonable shifts, 
and perform separate orientation alignments for each.



Set of all new shifts of up to 2 pixels
Set of all shifts of up to 1 pixel

Translational and orientation alignment 
are interdependent

Shifts of (0, +/-1, +/-2) pixels results in 25 orientation searches.



Different alignment schemes



Reference-based alignment



There's a problem with reference-based alignment:

Model bias



Model bias

Reference Images of pure noise



Averages of images of pure noise

N = 128 N = 256 N = 512

N = 1024 N = 2048 original



There are reference-free alignment schemes



Reference-free alignment 
(SPIDER command AP SR)

Single image picked randomly as reference

Disadvantage: Alignment depends on the choice of random seed.



Pyramidal/pairwise alignment

Marco... Carrascosa (1996) Ultramicroscopy



You have aligned images, 
but they don't all look the same.
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Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

1

1-pixel image

http://isomorphism.es

#Im
ages

Intensity



Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

1

2-pixel image

2

P
ixel 2

Pixel 1
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Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Now, we have a 16-dimensional problem.
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Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Suppose pixel 6 coincided with pixel 11, 
And pixel 7 coincided with pixel 10.
Then, we're back to two variables, and a 2D problem.



1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.

Covariance of measurements x and y: 
<xy> - <x><y>,

where <x> is the mean of x.

A high covariance is a measure of the correlation between two variables.



MDA: An example

8 classes of faces, 64x64 pixels

With noise added

From http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

Average:



Principal component analysis (PCA)
or Correspondence analysis (CA)

 For a 4096-pixel image, we will have a 4096x4096 covariance 
matrix.

 Row-reduction of the covariance matrix gives us “eigenvectors.”

• The eigenvectors describe correlated variations in the 
data.

• The eigenvectors have 64 elements and can be converted 
back into images, called “eigenimages.” 

• The first eigenvectors will account for the most variation.  
The later eigenvectors may only describe noise.

• Linear combinations of these images will give us 
approximations of the classes that make up the data.

Eigenimages



Reconstituted images

Linear combinations of these images will give us 
approximations of the classes that make up the data.

Average Eigenimage #1 Eigenimage #2 Eigenimage #3

c
0 + c

1
+ c

2
+ c

3 + ...



Another example: worm hemoglobin

Phantom images of worm hemoglobin



PCA of worm hemoglobin
Average:
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Next week:
Classification & 3D Reconstruction





Some simple 1D transforms:
a 1D lattice



Some simple 1D transforms:
a box

http://cnx.org



Some simple 1D transforms:
a Gaussian



Some simple 1D transforms:
a sharp point (Dirac delta function)

http://en.labs.wikimedia.org/wiki/Basic_Physics_of_Nuclear_Medicine/Fourier_Methods



Some simple 2D Fourier 
transforms:
a row of points



Some simple 2D Fourier 
transforms:
a 2D lattice



Some simple 2D Fourier 
transforms:
a sharp disc



Some simple 2D Fourier 
transforms:

a series of lines
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