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Current events: 
Convolutions



Molecule = f(x)

lattice = l(x) Set a molecule down at every 
lattice point.

Notation: f(x)*l(x)
From David DeRosier

Convolution of a molecule with a lattice 
generates a crystal.



lattice = l(x)
(http://www.photos-public-domain.com)

Set a molecule down at every 
lattice point.

http://www.symbolicmessengers.com

Molecule = f(x)
http://en.wikipedia.org

Convolution of a molecule with a lattice 
generates a crystal.

Notation: f(x)*l(x)



Cross-correlation vs. convolution

Complex conjugate:
If a Fourier coefficient F(X) has the form: a + bi
The complex conjugate F*(X) has the form: a - bi

Cross-correlation: F*(X) G(X)

Convolution: F(X) G(X)



original



2D power spectrum
G(X)

CTF

1D profile



f(x)

F(X) F(X) G(X)

f(x) g(x)

G(X)

g(x)



Point spread function

g(x) zoomed

An ideal point spread function would be an infinitely-sharp point.



Defocus groups



Defocus groups



Step function revisited



Fourier transforms: plot of step function

The higher the spatial 
frequencies (i.e., higher 
resolution) that are 
included, the more faithful 
the representation of the 
original function will be.

http://cnx.org



The power spectrum is the a real 
(as opposed to complex) 
map of the amplitudes of the Fourier transform

Image f(x) Image g(x)

F.T. F*(X)
(complex conjugate)

F.T. G(X)

x =

CCF

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

(8,-6)

It's more difficult to plot a 2D F.T. showing both amplitude and phase.



Fourier transform of a 2D crystal

h k Amp Phase

0 0 500 0

1 -1 40 45

1 0 50 5

1 1 30 5

2 -2 2 54

2 -1 4 57

2 0 5 45

2 1 3 65

2 2 1 87

P
ow

er spectrum



QUESTION:
Why did I not list the Fourier data where h 
was negative?

h k Amp Phase

0 0 500 0

1 -1 40 45

1 0 50 5

1 1 30 5

2 -2 2 54

2 -1 4 57

2 0 5 45

2 1 3 65

2 2 1 87



If the complex part of f(x) is zero, then

F(-X) = F*(X)
where * indicates the complex conjugate.

USE: Thus, centrosymmetrically related reflections have the 
same amplitude but opposite phases (Friedel’s law).  

When calculating a transform of an image, one only has to 
calculate half of it.  The other half is related by Friedel’s law.

Friedel's Law

From David DeRosier



A
m

plitude
P

hase
2D Fourier transform of a helix



More orientational alignment



Orientation alignment

Image 1 Image 2

We take a series of rings from each image, unravel them, 
and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.



Orientation alignment

Image 1 Image 2

radius 1
radius 2
radius 3
radius 4

radius 1
radius 2
radius 3
radius 4

0 360 0 360



N
oise added

Reference image



0 3600 360

Polar representation

Orientation alignment

Image 1 Image 2

radius 1
radius 2
radius 3
radius 4



radius 1
radius 2
radius 3
radius 4

0 360 0 360

Orientation alignment



radius 1
radius 2
radius 3
radius 4

0 360 0 360

Orientation alignment: After rotation



Another strategy for translation and 
orientation alignment



Set of all new shifts of up to 2 pixels
Set of all shifts of up to 1 pixel

Translational and orientation alignment 
are interdependent

Shifts of (0, +/-1, +/-2) pixels results in 25 orientation searches.



The power spectrum is translationally invariant. 
If we shift the object in real space, 
the power spectrum is unchanged.



Cross-correlation function (CCF)

Image f(x) Image g(x)

F.T. F*(X)
(complex conjugate)

F.T. G(X)

x =

CCF

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

(8,-6)



Cross-correlation function (CCF)

Image f(x) Image g(x)

F.T. F*(X)
(complex conjugate)

F.T. G(X)

x = Series of 
1D CCFs

Problems:
1. The power spectrum of a roughly round object is roughly round.
2. The amplitudes fall off quickly, so you don't have many rings of useful data.



More interpolation

Bammes... Chiu (2012) J. Struct. Biol.



Shifts

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Suppose we shift the image in x & y.

The new pixels will be weighted averages of the old pixels.



original Δx=Δy=0.05px Δx=Δy=0.10px Δx=Δy=0.15px Δx=Δy=0.20px

Δx=Δy=0.25px Δx=Δy=0.30px Δx=Δy=0.35px Δx=Δy=0.40px Δx=Δy=0.45px

Effect of shifts



1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 43

5 6 87

9 10 1211

13 14 1615



1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 43

5 6 87

9 10 1211

13 14 1615



Questions

1) If the pixel size is 3 Å/px, what is the Nyquist 
frequency?

ANSWER: 1/6Å

2) If we oversample/upscale the image by a factor 
of 1.5X, what is the new pixel size?

ANSWER: 2 Å/px

3) What will be the new Nyquist frequency in the 
oversampled image?

ANSWER: 1/4Å 



White noise Power spectrum

Upscaled

origin

Nyquist
 frequency

spatial frequencyspatial frequency

1/6Å

origin

Old
Nyquist

 frequency

spatial frequencyspatial frequency

1/6Å

New
Nyquist

 frequency

1/4Å



Image Power spectrum Power spectrum profile

O
riginal

S
hifted by (0.5,0.5)

Interpolated
+

S
hifted
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5 6 87

9 10 1211

13 14 1615
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Image Power spectrum Power spectrum profile

O
riginal

R
otated by 45º

Interpolated
+

R
otated



Conclusion:
You can do a little better by oversampling.

Bammes... Chiu (2012) J. Struct. Biol.



Classification



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Multivariate data analysis (MDA)



1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.



MDA: An example

8 classes of faces, 64x64 pixels

With noise added

From http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

Average:



Principal component analysis (PCA)
or Correspondence analysis (CA)

 For a 4096-pixel image, we will have a 4096x4096 covariance 
matrix.

 Row-reduction of the covariance matrix gives us “eigenvectors.”

• The eigenvectors describe correlated variations in the 
data.

• The eigenvectors have 64 elements and can be converted 
back into images, called “eigenimages.” 

• The first eigenvectors will account for the most variation.  
The later eigenvectors may only describe noise.

• Linear combinations of these images will give us 
approximations of the classes that make up the data.

Eigenimages



Reconstituted images

Linear combinations of these images will give us 
approximations of the classes that make up the data.

Average Eigenimage #1 Eigenimage #2 Eigenimage #3

c
0 + c

1
+ c

2
+ c

3 + ...



Another example: worm hemoglobin

Phantom images of worm hemoglobin



PCA of worm hemoglobin
Average:
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1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Classification

How do we categorize/classify the images?



K-means classification



Diday's method of moving centers



Diday's method of moving centers



Diday's method of moving centers



Diday's method of moving centers



Dendrogram



Dendrogram



1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Hierarchical Ascendant Classification



Hierarchical Ascendant Classification

All images are represented. 
The dendrogram will be too heavily branched to interpret without truncation.



Binary-tree viewer



3D Reconstruction



What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

3. many particles 



Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

good
missing
views

sparse
sampling

sparse
sampling

+
missing
views

What happens when we're missing views?

Your sample isn't guaranteed to adopt different orientations,
in which case you many need to explicitly tilt the microscope stage.

(more later...)



Why do we need orientation?

aligned images 1-4 of 4096 total 

unaligned images 1-4 of 4096 total

This is a simple 2D case, but the effects are analogous in 3D.



n=1 n=4 n=16 n=256 n=1024 n=4096

Signal-to-noise ratio increases with √n

What happens as we include more particles?



What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

3. many particles 

I have all of this information.
Now what?



There are two general categories of 3D reconstruction

1. Real space

2. Fourier space



Reconstruction in real space

We are going to reconstruct a 2D object from 1D projections.
The principle is the similar to, but simpler than, reconstructing 
a 3D object from 2D projections.



Projection of our 2D object





Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

good
missing
views

sparse
sampling

sparse
sampling

+
missing
views

What happens when we're missing views?



Simultaneous Iterative Reconstruction Technique



The reconstruction doesn't agree well with the projections.
What can we do?

(one) ANSWER: 
Simultaneous Iterative Reconstruction Technique



Simultaneous Iterative Reconstruction Technique

The idea:
You compute re-projections of your model.

Compare the re-projections to your experimental data.

There will be differences.

You weight the differences by a fudge factor, λ.

You adjust the model by the difference weighted by λ.

Repeat.



Simultaneous Iterative Reconstruction Technique

Here, the differences (which will be down-weighted by λ) 
are the ripples in the background.

If we didn't down-weight by λ, we would over compensate, 
and would amplify noise.

ModelExperimental projection



Reconstruction in Fourier space



Projection theorem
(or Central Section Theorem)

A central section through the 
3D Fourier transform is 

the Fourier transform of the 
projection in that direction.



Projection theorem
(or Central Section Theorem)

The disadvantage is that you have 
To resample your central sections 

from polar coordinates to 
Cartesian space, i.e. interpolate.
There are new methods to better 

Interpolate in Fourier space.



Reference-based alignment
(or projection-matching)



Reference-based alignment

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

You will record the direction of projection (the Euler angles), such that 
if you encounter an experimental image that resembles a reference projection, 
you will assign that reference projection's Euler angles to the experimental image.

Assumption: reference is similar enough to the sample that it can be used to determine orientation.



The model

(The extra features helped determine handedness in noisy reconstructions.)

























Reference-based alignment

Steps:

1.  Compare the experimental image to all of the reference projections.

2.  Find the reference projection with which the experimental image matches best.

3.  Assign the Euler angles of that reference projection to the experimental image.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.



Random conical tilt









Binary-tree viewer



Random-conical tilt:
Filling the missing cone
Filling the missing cone

+ =

+ =
Reconstruction

Distribution 
of orientation

From Nicolas Boisset

If there are multiple preferred orientations, or if there is symmetry 
that fills the missing cone, you can cover all orientations.



Top view



Side view



3D classification



Classification:
Multi-reference alignment vs. 
Maximum likelihood (ML3D)

 Multi-reference alignment:

• Possible conformations 
must be known.

• The combination of 
parameters (shift, rotation, 
class) is chosen from the 
highest correlation value.

 ML3D

• Possible conformations 
are not known.

• The probability of the 
occurrence of the 
parameters (shift, 
rotation, class) is 
maximized.



Seeding ML3D classification

There will be slight differences in the reconstructions. 
We will iteratively maximize the likelihood of a 
particle belonging to a particular class.

images

We split the data set into K classes at random.





There isn't an unambiguous 3D structure if there's only one 
view.

John O'Brien, 1991, The New 
Yorker



What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

3. many particles 

4. identical particles
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