
Synthesis and coordination chemistry of P(Te)-X ligands

L. Jeremias

One of the possible pathways to prepare metal tellurides is decomposition of single source precursors, which are often coordination compounds of selected main group and transition metals containing $[R_2P(Te)NP(Te)R_2]^-$ ligands. The oxidation of R_2PXPR_2 compounds ($X=(CH_2)_n$, NH, etc; R= alkyl, aryl) by elemental chalcogen leading to dichalcogeno $R_2P(E)XP(E)R_2$ species (E= O, S and Se) has been well known for a long time, while analogous reactions with elemental tellurium have been described first by our research group in this year.

The successful syntheses of $Ph_2P(Te)(CH_2)_nP(Te)Ph_2$ (n = 2-6) as well as $EtPh_2PTe$ and Et_2PhPTe ligands by direct oxidation of starting phosphorous compounds $(Ph_2P(CH_2)_nPPh_2, EtPh_2P)$ and Et_2PhP , respectively) by elemental tellurium are reported. The reaction conditions, X-ray structures of the compounds, NMR spectra (^{31}P and ^{125}Te) and comparison with lighter chalcogen derivatives will be discussed in detail.

REFERENCES

- 1. Ritch J. S., Afzaal M., Chivers T., O'Brien P.: Chem. Soc. Rev. 36, 1622 (2007).
- 2. Dean P. A. W.: Can. J. Chem. 57, 754 (1979).
- 3. Bhattacharyya P., Novosad J., Phillips J., Slawin A. M. Z., Williams D. J., Woollins J. D.: J. Chem. Soc. Dalton Trans., 1607 (1995).
- 4. Jeremias L., Babiak M., Kubát V., Calhorda M. J., Trávníček Z., Novosad J.: R. Soc. Chem. Adv. 4, 15428 (2014).