POPULATION GENETICS

POPULATION and problems of definition

- a population is a group of interbreeding indiviuals that exist together in time and space
- to develop the basic concepts of population genetics, we initially consider the ideal population = large, randommating

ALLELE FREQUENCY

- proportion of an allele in comparison to all the others alleles of the same locus (gene) in a population sample
- · basic characteristics for genetic diversity (variation) of a population
- population genetics studies genetic diversity and processes that have created it and influence it – i.e. the dynamics of distribution and frequency of alleles (genotypes → phenotypes), i.e. processes shaping evolution:

increase of gen. diversity: mutation and migration **decrease** of gen. diversity: genetic drift (and natural selection)

Mutation rate – rate at which number of various types of mutations occur in a given position over time

OBSERVATION

Callimorpha dominula

přástevník hluchavkový

OBSERVATION

Callimorpha	Table 3.1. Data from a collection of 1612 scarlet tiger moths.			
	Phenotype	No. of individuals		
prastevník hluchavkový	White spotting	1469		
Scarlet tiger mo	Intermediate	138		
	Little spotting	5		
X		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Relative numbers = frequencies: genotype f.: $P(G_{AA})$, $Q(G_{Aa})$, $R(G_{aa})$ allele (gene) f.: p(A), q(a)

$$P + Q + R = 1$$

$$p + q = 1$$
Genotype
$$A_1A_1$$

$$A_1A_2$$

$$A_2A_2$$
Total
Number
$$n_1$$

$$n_2$$

$$n_3$$

$$N$$
Frequency
$$P = n_1/N$$

$$Q = n_2/N$$

$$R = n_3/N$$

$$p = (2n_1 + n_2)/2N$$

$$q = (n_2 + 2n_3)/2N$$

Hardy-Weinberg Equilibrium (HWE)

Ex. Single locus with 2 alleles

Allele	Allele frequency		
A	р		
а	q		

Genotype	Expected genotype	
	frequency	
AA	p²	
Aa	2pq	
aa	q ²	

p + q = 1p, q - Allele frequencies known from our samples

= Hardy-Weinberg equilibrium

> Observed genotype frequencies (H_o) are known from our samples

> deviation of H_o from HWE conditions \Rightarrow for example χ^2 test

Expected heterozygosity, (H_e) under HWE H_e=1-(p^2+q^2) for 1 locus with the allele frequencies p and q

Assumptions for ideal population in HWE

- random-mating
- negligible effect of mutations and migration ("closed populations")
- infinitely large population (negligible effect of random fluctuations in allele frequencies in time – genetic drift) – in HWE population the allele frequencies are stable = do not change between generations
- Mendelian inheritance of the analysed loci
- neutral loci not under selection
- diploid, sexually reproducing organisms with discrete generations
- loci are independent from each other test for "linkage disequilibrium"

VS. Or 2 loci physically close to each other (decreased probability of recombination - linkage disequilibrium) 2 loci physically dista

2 loci physically distant (probability of recombination not influenced - linkage equilibrium)

0

LINKAGE DISEQUILIBRIUM (LD)

loci in LINKAGE EQUILIBRIUM – segregate independently of each other during meiosis

the most common reason for non-random association among loci (LD) is the **proximity of two loci on a chromosome** (others e.g. small pop. size – gen. drift, immigration, overlapping generations, admixture, etc.)

haplotype diversity $-p(AB) \neq p(A) \times p(B)$

in presence of LD:

we have **fewer** independent loci for our genetic analysis than anticipated

neutral loci (alleles) linked to selected ones will appear non-neutral

presence of LD **needs to be tested** when analysing data from multiple loci

q = 1 - p

Figure 3.4 The combinations of homozygote and heterozygote frequencies that can be found in populations that are in HWE. Note that the frequency of heterozygotes is at its maximum when p = q = 0.5. When the allele frequencies are between 1/3 and 2/3, the genotype with the highest frequency will be the heterozygote.

Example of genetic diversity estimation in a sample of 4 individuals (on 4 loci)

Individual					Average
Ind 1	170/170	223/227	116/116	316/316	
Ind 2	170/172	223/225	112/112	316/316	
Ind 3	172/172	223/225	112/112	316/316	
Ind 4	170/172	223/227	112/112	316/316	
Počet alel	2	3	2	1	2
Но	0,5	1,00	0	0	0,375
р	0,5	p = 0,5	0,75	1,00	
q	0,5	q = 0,25 r = 0,25	0,25	0	
Не	0,5	0,625	0,375	0	0,375

 $H_e = 1 - (p^2 + q^2)$

 $H_e = 1 - (p^2 + q^2 + r^2)$

Proportion of polymorphic loci (polymorphism) = 0,75

Is our population in HWE?

Callimorpha dominula

Is our population in HWE?

Table 3.1. Data f	rom a collection of	of 1612 scarlet t	iger moths.		
Phenotype	No. of individuals	Assumed genotype	No. of A alleles	No. of <i>a</i> alleles	d the scarlet tiger moth, Panaxia cies in the scoring of the onigra
White spotting	1469	AA	1469x2=2938	-	DA M. M. CLARKE ² AND DENIS F. OV/EN ⁴ We University of Europeal, Deceas Educations, P.O., Box HT, Europ WF, U.K. Oxford Polytochist, Headington, Oxford OX10BP, U.K.
Intermediate	138	Aa	138	138	
Little spotting	5	aa		5x2=10	in gone frequency and analys storeg selection softingic transmired by Jones (1999). We will be the transmired by Jones (1999). We will be the contribution of the Could Biologies by with a label of the transmired by Jones and the transmired to the transmired by Jones (1999). The transmired by Jones (1999). The transmired by Jones (1999). The transmired by Jones (1999).
9	Kčs	PAN		nable I). This was in marked owner reported at Cabilit, a much bigger for fifty years and characterized b	The samp of functioning the second of the same of the

Deviation from HWE

- HWE test e.g. Genepop software ("exact probability tests") - any case of significant deviations from HWE indicates that some of HWE assumptions were not fulfilled \rightarrow detailed inspection required:
- heterozygote excess •
 - negative assortative mating (i.e. intentional mating of distinct individuals)
 - used loci are advantageous in heterozygote situation (= balancing selection favouring heterozygotes, e.g. MHC genes)
 - mutation
 - migration _

heterozygote deficit •

- inbreeding (all loci are equally affected), assortative mating
- genetic structure in populations
- null alleles (only some loci affected by heterozygote deficit) _

Quantifying genetic diversity

Polymorfism (proportion of polymorphic loci) - P

- polymorphic locus = with at least two alleles with having frequency of more numerous allele being less or equal 0.95 (or 0.99)
- e.g. a population sample with four polymorphic loci out of five \rightarrow P = 0.8

Number of alleles - Na

number of alleles per locus (mean over loci)

Allelic richness - A_r

 number of alleles corrected for sample size (rarefaction method e.g. in FSTAT software)

Observed heterozygosity - Ho

 observed frequency of heterozygote genotypes (mean over loci)

HAPLOID DIVERSITY

- genetic diversity for haploid data
- HAPLOTYPE DIVERSITY (h; Nei et Tajima 1981) Control frequency of different haplotypes

$$H = \frac{N}{N-1}(1-\sum_i x_i^2) \quad \substack{\textbf{x}_i \text{ -haplotype frequency of each haplotype in the sample } \\ \textbf{N} - \textbf{sample size}$$

NUCLEOTIDE DIVERSITY (π; Nei 1987)

- quantifies the mean nucleotide divergence between sequences

- probability that two randomly chosen homologous nucleotides will be identical

$$\pi = \sum_{ij} x_i x_j \pi_{ij}$$

 x_i and x_j – respective frequencies of the *i*th and *i*th sequences π_{ij} – number of nucleotide differences per nucleotide site between the *i*th and *j*th sequences

WHAT INFLUENCES GENETIC DIVERSITY?

- influenced by a multitude of factors
- varies considerably between populations

MOST IMPORTANT DETERMINANTS OF GENETIC DIVERSITY:

- ➤ genetic drift
- ➢ population bottlenecks
- ➤ natural selection
- > methods of reproduction

GENETIC DRIFT

population not infinitely large \rightarrow population not in HWE \rightarrow increase of influence of CHANCE \rightarrow allele frequencies vary between generations

in absence of selection, each allele goes to:

- 1. fixation 2. extinction DECREASE of genetic diversity
 - more quickly in smaller populations

genetic drift – process causing a population's allele frequencies to change from one generation to the next as a result of **CHANCE**

GENETIC DRIFT

very profound effect of genetic drift in small populations – **founder effect**, **bottleneck**

inextricable link between genetic drift and population size – the effective population size

Founder effect

N_e – effective population size

vs. N_c – census population size (may be estimated from N_e – see Luikart *et al.* 2010 *Conserv Genet*)

all else being equal, LARGE pops are MORE LIKELY to survive than small pops

 N_e – reflects the rate at which genetic diversity will be lost following genetic drift (this rate is inversely proportional to a population s N_e)

single-sample estimators of Ne – level of LD due to drift double sample estimators of Ne – temporal changes in allele frequencies due to genetic drift

OVERVIEW

Figure 3.16 An overview of some of the main factors that influence levels of genetic diversity within populations.

Freeland et al. 2011