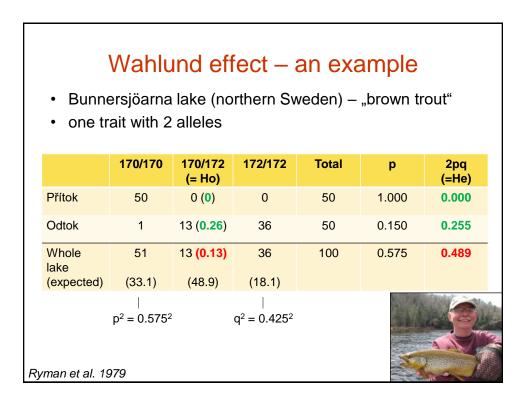
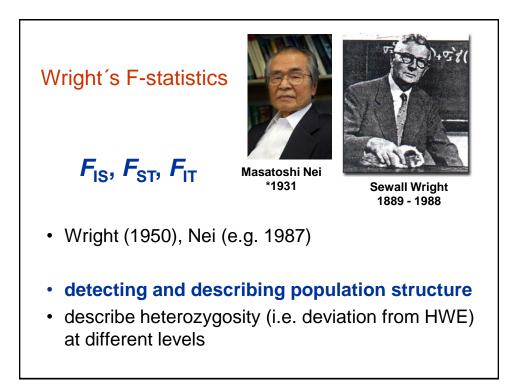
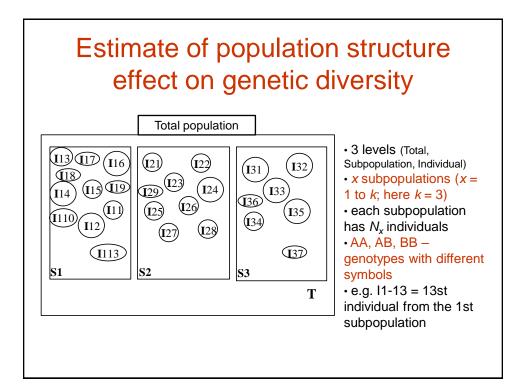
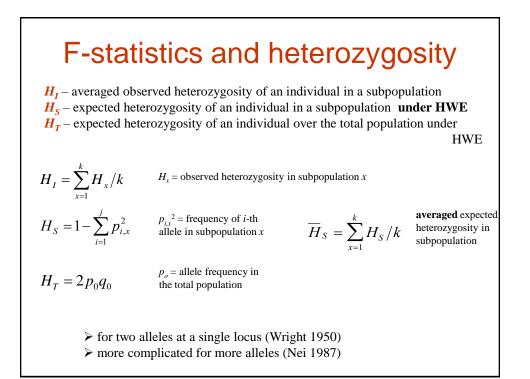
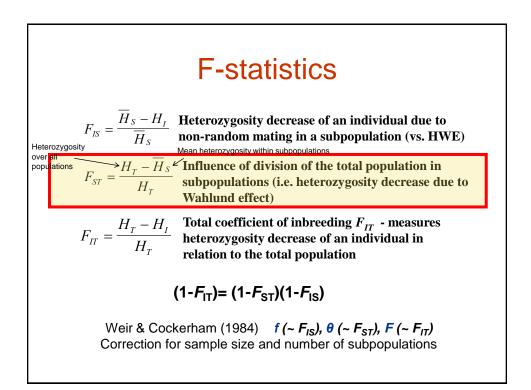

Genetic structure – any pattern in the genetic make-up of individuals within a population

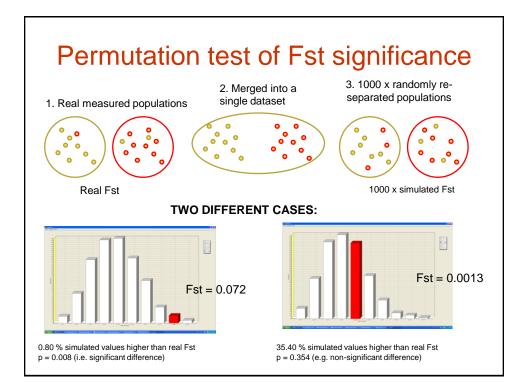

AIMS:

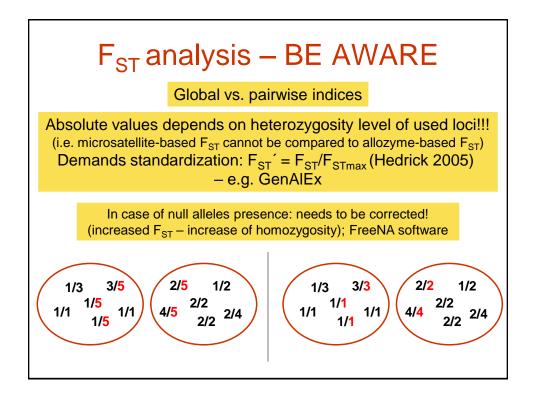

- Detection of **any** genetic structure (subdivision) in a population (in my dataset)
- Are there any differences between "different" (in space and time) populations?
- Quantification of such differences = description of genetic structure in population
- What factors shape (have shaped) these differences? e.g. population history
- Is there any migration/connection between different populations? = detection and quantification of gene flow, what influences gene flow (e.g. spatial heterogeneity)
- What happens during migration/connection of populations? = hybridisation

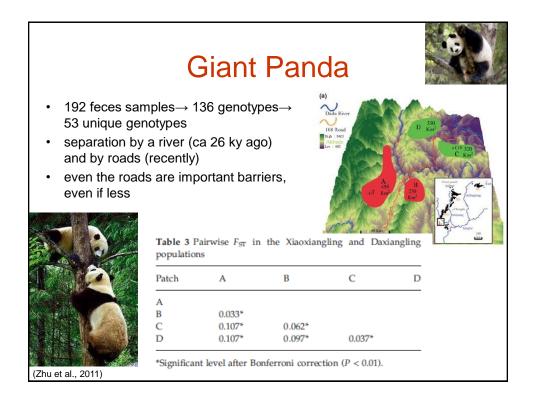


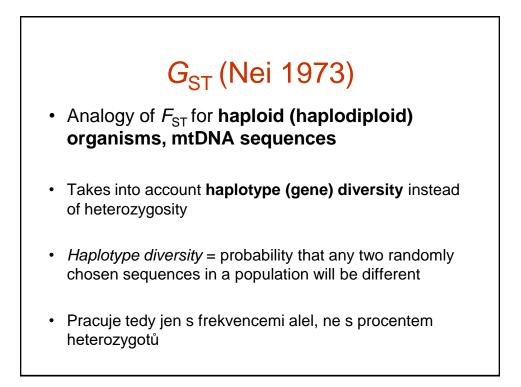


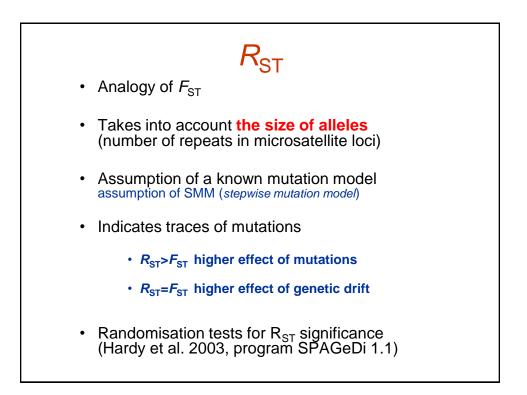


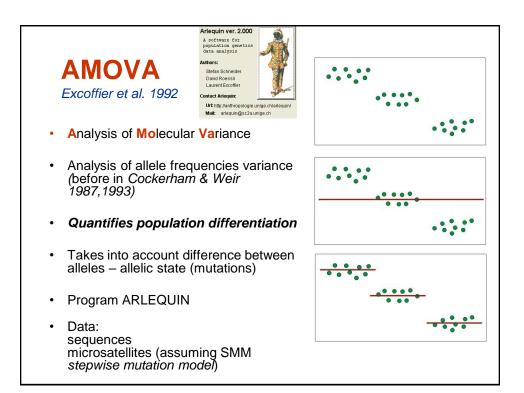


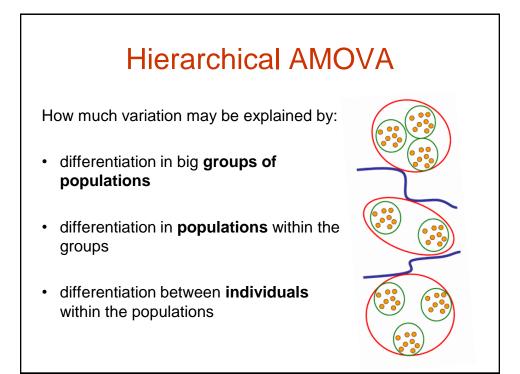


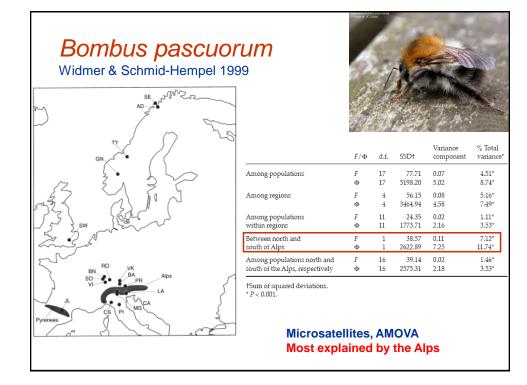

										Mea	n allele A frequend	y in the whole p
	Su	ibpopula	tion 1 (N ₁	=40)	Su	ibpopula	tion 2 (N ₂ :	=20)				1
Locus	AA	AB	BB	р ₁₍₎	AA	AB	BB	$\rho_{2()}$	P ₀₍₎	Note		1
Loc I	10	20	10	0.5	5	10	5	0.5	0.5	HWE		
Loc II	16	8	16	0.5	4	4	12	0.3	0.4	hetero	zygote deficit	
Loc III	12	28	0	0.65	6	12	2	0.6	0.625	hetero	zygote excess	
Loc IV	0	0	40	0.0	20	0	0	1.0	0.5	alterna alleles	tively fixed	
		Obser heterozy		E	xpected I	neterozy	gosity		Wright	's F-statisti	cs	
							$H_{T(b)}$	F _{IS (A}		ST()	E	\wedge
Locus		H _{1 ()}	H _{2 ()}	HIW	Hs	0	1170	' /S ()		ST ())	FITO	
Locus Loc I	ŀ	H₁ _∅ 0.5	H _{2 ()} 0.5	H _{I(j)} 0.5	H _S 0.5	o/	0.5	0.0	_	st() 0.0	0.0	
	F (,	- 0/	. 0/	-	5	- 0/					
Loc I	F ().5	0.5	0.5	0.5	6	0.5	0.0	; C	0.0	0.0	
Loc I).5).2	0.5	0.5	0.5	5 6 75	0.5	0.0	с о.	0.0	0.0	

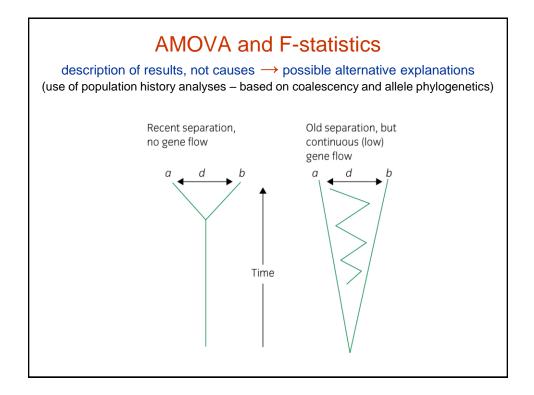


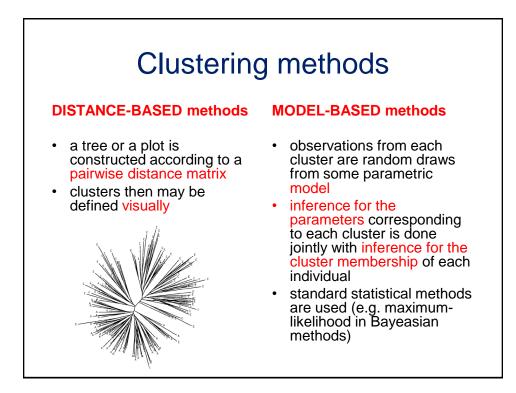


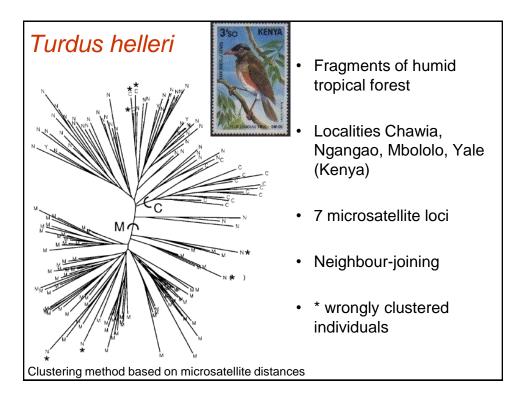

F _{ST} computation – an example										
						2pq (=He)				
Přítok	50	0 (0)	0	50	1.000	0.000				
Odtok	1	13 (0.26)	36	50	0.150	0.255				
Whole lake	51	13 <mark>(0.13)</mark>	36	100	0.575	0.489				
(expected)	(33.1)	(48.9)	(18.1)							
(expected) (33.1) (48.9) (18.1) $F_{ST} = \frac{H_T - \overline{H}_S}{H_T} = \frac{0.489 - 0.128}{0.489} = 0.728$ As a consequence of gene flow barrier: Heterozygosity is about 72.8% lower than would be under HWE										
Ryman et al. 1	979									

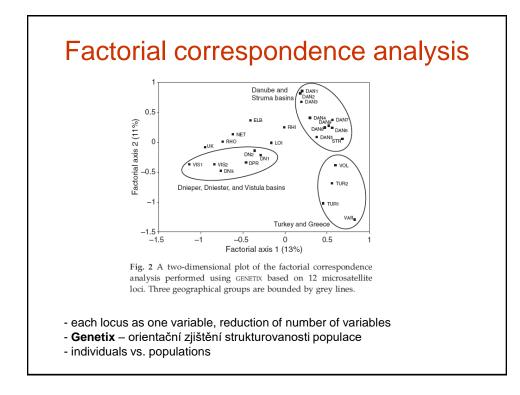


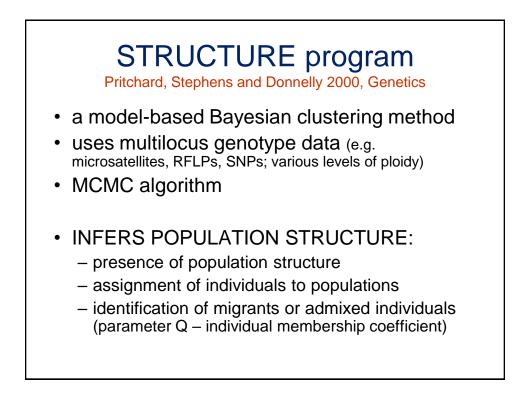


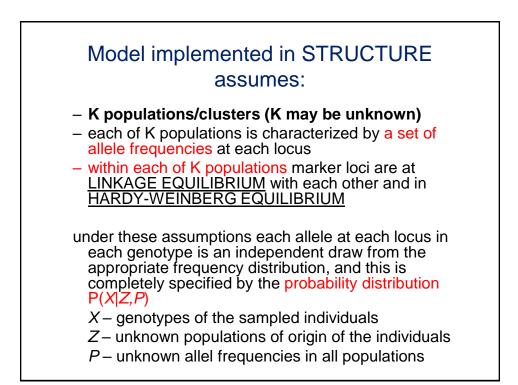


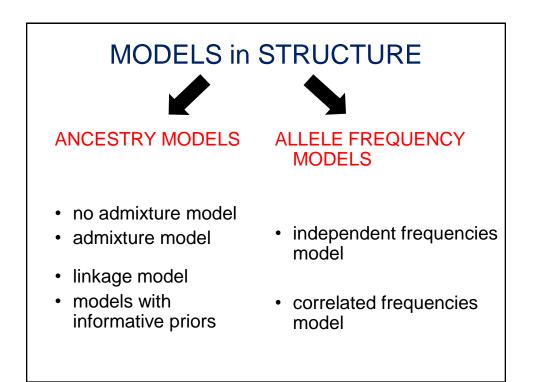


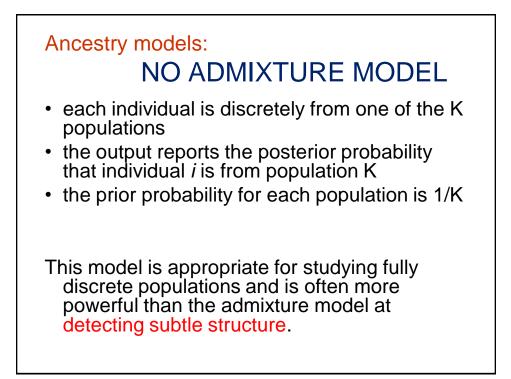












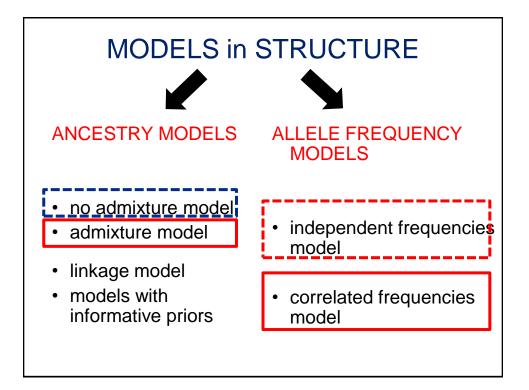
Ancestry models: ADMIXTURE MODEL

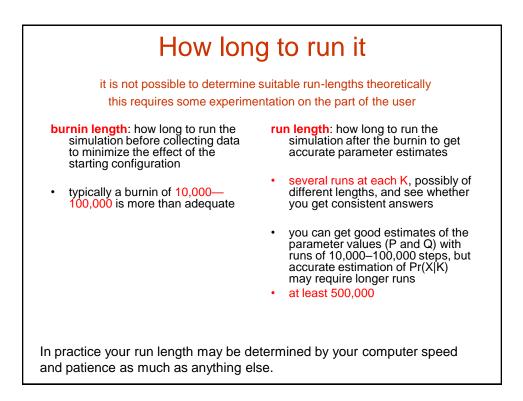
- · individuals may have mixed ancestry
- each individual has inherited some proportion of its genome from each of the K populations = Q
- the output records the posterior mean estimates of these proportions

Recommended as a starting point for most populations.

"It is a reasonably flexible model for dealing with many of the complexities of real populations. Admixture is a common feature of real data, and you probably won't find it if you use the no-admixture model."

Allele frequency models: INDEPENDENT FREQUENCIES MODEL


- the allele frequencies in each population are independent draws from a distribution that is specified by a parameter λ
- this prior says that we expect allele frequencies in different populations to be reasonably different from each other

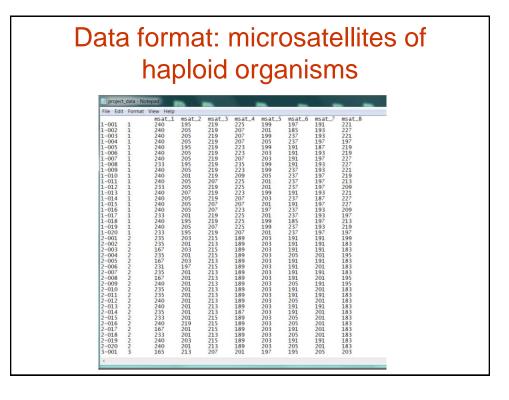

Allele frequency models: CORRELATED FREQUENCIES

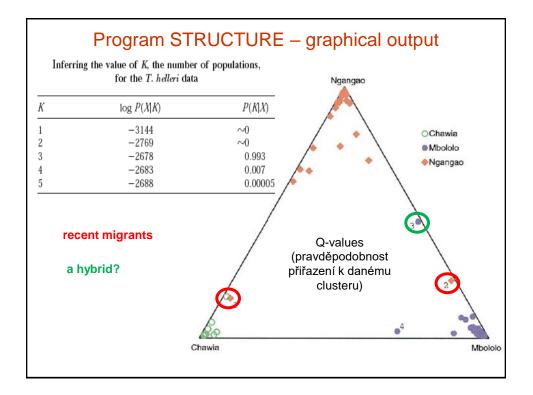
MODEL

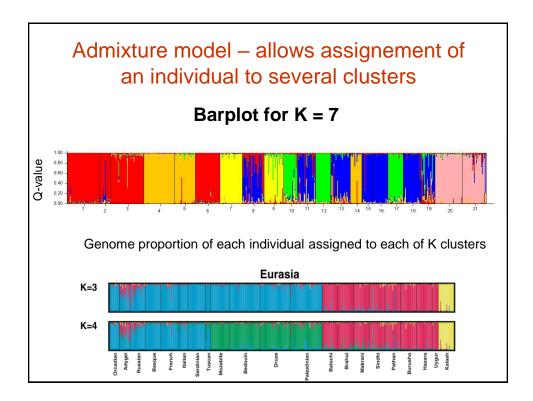
- frequencies in the different populations are likely to be similar (probably due to migration or shared ancestry)
- this prior says that the allele frequencies in different populations may be quite similar between the populations
- better clustering for closely related populations
- but may increase the risk of over-estimating K
- If one population is quite divergent from the others, the correlated model can sometimes achieve better inference if that population is removed.

Falush, Stephens and Pritchard 2003, Genetics

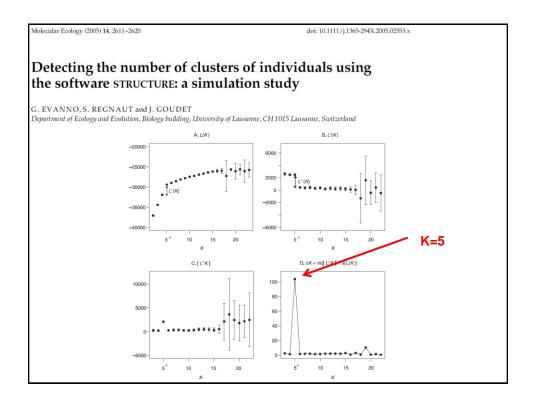
Structure File Project Parameter Set Plotting	View Help										
IE Ø 🔨 🞦 💥 1 @ ₫ Project - simDataSysel8Msats	Broier	t Data								6	
Project Data Project Information	Label	Pop ID	Locus 1	Locus 2	Locus 3	Locus 4	Locus 5	Locus 6	Locus 7	Locus 8	-
Simulation Summary Parameter Sets			Look M	LOCUS M	Locus M	Locus M	Locus M	Locus M	Locus M	Locus M	
parameter Sets	1-001	1	195	198	199	201	191	207	207	183	^
Settings	1-001	1	195	198	199	201	191	207	207	183	1
😑 🎍 Results	1-002	1	195	198	199	201	191	207	207	183	11
 paramset_run_10 (K=2) paramset_run_11 (K=3) 	1-002	1	199	198 198	197 197	201 201	191 191	207 207	207 207	183 183	
 paramset_run_12 (K=3) 	1-003	1	198	198	197	201	191	207	207	183	
 paramset_run_13 (K=3) 	1-004	1	189	198	197	201	191	207	207	183	
 paramset_run_14 (K=3) 	1-004	1	195	198	199	201	191	207	205	183	
 paramset_run_15 (K=3) 	1-005	1	189	198	199	201	191	207	205	183	
 paramset_run_16 (K=4) paramset_run_17 (K=4) 	1-005	1	195	198 198	197 197	201 201	191 191	207 207	207 207	183	
 paramset_run_18 (K=4) 	1-000	1	195	198	197	201	191	207	205	183	
paramset_run_19 (K=4)	1-007	1	195	198	199	201	191	207	207	183	
paramset_run_1 (K=1)	1-007	1	195	198	199	201	191	207	207	183	
 paramset_run_20 (K=4) 	1-008	1	195	198	197	201	191	207	207	183	
 paramset_run_21 (K=5) paramset_run_22 (K=5) 	1-008 1-009	1	195 195	198 198	201 199	201 201	191 191	207 207	205 207	183 183	
 paramet_run_23 (K=5) 	1-009	1	195	196	199	201	191	207	207	183	
 paramset_run_24 (K=5) 	1-010	1	195	198	197	201	191	207	207	183	
 paramset_run_25 (K=5) 	1-010	1	195	198	199	201	191	207	205	185	
paramset_run_2 (K=1)	1-011	1	195	198	201	201	191	207	207	183	
 paramset_run_3 (K=1) paramset_run_4 (K=1) 	1-011 1-012	1	189	198 198	199 197	201 201	191 191	207 207	207 203	183 183	
 paramset_run_4 (K=1) paramset_run_5 (K=1) 	1-012	1	189	198	203	201	191	207	203	183	
 paramset_run_6 (K=2) 	1-012	1	189	198	199	203	191	207	207	181	
 paramset_run_7 (K=2) 	1-013	1	195	198	199	201	191	207	207	183	
 paramset_run_8 (K=2) 	1-014	1	189	198	199	201	191	207	207	183	
		1	195	198	199	201	191	207	207	183	
paramset_run_9 (K=2)	1-014 1-015	1	195	198	201	201	191	207	207	183	


Data format: genotypes of an individual in TWO rows


		loc_a	loc_b	loc_c	loc_d	loc_e		
George	1	-9	145	66	0	92		
George	1	-9	-9	64	0	94		
Paula	1	106	142	68	1	92		
Paula	1	106	148	64	0	94		
Matthew	2	110	145	-9	0	92		
Matthew	2	110	148	66	1	-9		
Bob	2	108	142	64	1	94		
Bob	2	-9	142	-9	0	94		
Anja	1	112	142	-9	1	-9		
Anja	1	114	142	66	1	94		
Peter	1	-9	145	66	0	-9		
Peter	1	110	145	-9	1	-9		
Carsten	2	108	145	62	0	-9		
Carsten	2	110	145	64	1	92		
leeds to be specified:								
number of individuals, p	oloidv	of the da	ata. nu	mber o	of loci. n	nissina	value svr	nl
integer)			,					


(integer)


Data format: genotypes of an individual in ONE row


File Edit Format View Help Ssu1 Ssu5 Ssu7 KV22 1 217							
	Sould Sould Sould 1643 1664 1664 1644 1664 1664 1645 1664 1664 1646 1664 1664 1647 1666 1666 1648 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664 1649 1664 1664	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hest Hest Hest 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193 180 180 193	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87 87 87 87 87 87 87 87 87 87 87 8	124 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1248 115 115 1249 115 115 1248 115 115 1248 115 115 1249 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115 115 1244 115

