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Summary

Vision is by far the most prevalent sense for experiencing

others’ body shapes, postures, actions, and intentions,
and its congenital absence may dramatically hamper body-

shape representation in the brain. We investigated whether
the absence of visual experience and limited exposure to

others’ body shapes could still lead to body-shape selec-
tivity. We taught congenitally fully-blind adults to perceive

full-body shapes conveyed through a sensory-substitution
algorithm topographically translating images into sound-

scapes [1]. Despite the limited experience of the congenitally
blind with external body shapes (via touch of close-by

bodies and for w10 hr via soundscapes), once the blind
could retrieve body shapes via soundscapes, they robustly

activated the visual cortex, specifically the extrastriate
body area (EBA; [2]). Furthermore, body selectivity versus

textures, objects, and faces in both the blind and sighted

control groups was not found in the temporal (auditory) or
parietal (somatosensory) cortex but only in the visual EBA.

Finally, resting-state data showed that the blind EBA is func-
tionally connected to the temporal cortex temporal-parietal

junction/superior temporal sulcus Theory-of-Mind areas
[3]. Thus, the EBA preference is present without visual

experience and with little exposure to external body-shape
information, supporting the view that the brain has a sen-

sory-independent, task-selective supramodal organization
rather than a sensory-specific organization.

Results

To investigate whether visual experience in the perception of
body shapes [4] is necessary for the emergence of the body-
perception network and specifically that of the visual extrastri-
ate body area (EBA; [2, 5]), we trained and tested a group of
fully and congenitally blind individuals (without any visual
experience; see Table S1 available online) who learned to cate-
gorize various images including body shapes on a visual-to-
auditory sensory substitution device (SSD) termed ‘‘The
vOICe’’ [1]. This SSD topographically converts visual images
into auditory ‘‘soundscapes’’ by using a predetermined algo-
rithm. Behaviorally, following w70 hr of specialized training
(over several months), our subjects were able to perceive
high-resolution visual information of various object categories
[6, 7]. Specifically,w10 hr of training were devoted to learning
*Correspondence: ella.striem@mail.huji.ac.il (E.S.-A.), amir.amedi@ekmd.
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to identify SSD-soundscapes that contained body-shape sil-
houettes and outlines, an input that is normally not available
to them, via an atypical sensory modality. Subjects could
also identify the exact body posture depicted in the external
body image and mimic it (Movie S1).
To investigate the role of visual experience in body-shape

processing, we first inspected the activation generated in the
congenitally blind who perceived body-shape information via
sounds at the group level, and we compared it to that of a
group of normally sighted subjects who perceived the same
images of body silhouettes visually (see Supplemental Exper-
imental Procedures). As expected from previous literature and
in accordance with the modality of input, the activation of the
sighted peaked in the visual cortex (Figures S1A and S1B;
middle panel) and specifically showed significant bilateral
extrastriate visual-cortex activation (more significant in the
right hemisphere, see Figure S1 and Table S2 detailing the
additional peaks in multisensory parietal and frontal cortices
[5]). In the blind, although we found a strong peak in the audi-
tory cortex fitting the input modality (Figure S1A; left panel;
Table S2), the strongest activation for the entire cortex (Fig-
ure S1B) was found in the right extrastriate visual cortex,
specifically at the location of the EBA (in the posterior inferior
temporal sulcus [ITS]/middle temporal gyrus). Accordingly,
the peak overlap of the activations between the two groups
(Figures S1A and S1B; right panel) included a full overlap in
the right extrastriate visual cortex.
We further examined the visual cortex activation consis-

tency across the various blind participants. We computed
the statistical parametric map of body-shape activations in
each of the subjects and plotted the cross-subject overlap
probability map over all the individual subjects in each of the
two groups (Figure 1A). As expected, the highest overlap be-
tween the sighted subjects’ activations for body images was
found in the visual cortex, including the extrastriate visual cor-
tex (Figure 1A; middle panel). In the blind, because we used an
auditory input we found maximal overlap in the auditory cor-
tex. However, surprisingly, the largest cross-subject overlap
outside the auditory cortex for body-shape soundscapes
was found in the extrastriate visual cortex (Figure 1A; left
panel; overlap probability of 100%). Moreover, activation
was fully anatomically consistent between all (100%) individual
subjects across both groups solely at the location of the EBA.
We also plotted the visual cortex peaks of all individuals from
both groups (Figure 1B). The panels represent all of the sub-
jects’ peaks with (bottom panel) and without (top panel) a
group tag, thus showing that the groups cannot be distin-
guished by simple examination of the peak distributions. We
also compared the distribution of the single subjects’ peaks
across the groups by using clustering analysis to indepen-
dently divide the peaks according to their spatial locations. A
k-means clustering analysis ([8, 9] see details in Supplemental
Experimental Procedures) generated two clusters, each
showing a mixture of peaks of both blind and sighted individ-
uals rather than a distinct anatomical cluster for each popula-
tion (Figure 1C).
Importantly, the defining feature of the EBA is its body-

shape selectivity versus objects, faces, and textures or
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Figure 1. Extrastriate Individual Subject Activation Peaks for Full-Body Perception in the Congenitally Blind and Sighted

(A) Activation for full-body silhouettes is shown in comparable experiments in the sighted controls (middle panel; using vision) and in the congenitally blind

(left panel; using SSD soundscapes). The blind participants in this study were enrolled in a novel training program (described in detail in [6]) in which they

were taught how to effectively extract and interpret high-resolution visual information from the complex soundscapes generated by the vOICe SSD. The

average training duration of the participants here was 73 hr, during which they were taught how to process two- dimensional still (static) images, including

images of body postures, faces, objects, and textures. Each condition in the fMRI experiment included 10 novel soundscapes representing unfamiliar

images from the trained object category. During body-shape epochs, the subjects heard soundscapes of three body-shape silhouettes (2 s per stimulus),

each repeated twice (see Supplemental Experimental Procedures). The sighted subjects performed a visual localizer version of the experiment by using the

same images. The Tel-Aviv Sourasky Medical Center Ethics Committee approved the experimental, and written informed consent was obtained from each

subject. Overlap probability maps across the individual blind subjects (left panel) were derived from single-subject activation contrast maps at a restrictive

threshold of p < 0.001, corrected for multiple comparisons. The blind reproducibly activated the extrastriate body area (EBA) for body shapes. The blind

subjects’ activation was as consistent as in the normally sighted controls (middle panel), in that all the individual subjects (100%) across both groups (right

panel) showed full activation overlap solely in the extrastriate cortex.

(B) Plot of individual peak activations, demonstrating the spatial reproducibility of extrastriate body activation in the blind and sighted subjects. In the top

panel, all subjects’ peaks (both blind and sighted) are represented by green diamonds. In the lower panel, there is a group tag (blind or sighted; blue and red

diamonds, respectively) for each individual. Note the overlap of the two groups of subjects.

(C) For purposes of illustration of the spatial consistency between the blind and the sighted, we conducted a k-means clustering analysis. K-means is

designed to partition n observations (in our case the Talairach coordinates of the EBA peaks of 14 individual subjects: 7 sighted, 7 blind) into k clusters

(in our case k = 2) in which each observation belongs to the cluster with the nearest mean so as to minimize the within-cluster sum of squares [8, 9].

Blue and red represent blind and sighted individuals, respectively; circles and Xs represent the two resulting clusters; a black star marks the center of

each cluster. Both clusters contain peaks for both the blind and the sighted. This analysis further supports the anatomical consistency of the extrastriate

body activation between the blind and the sighted.
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scrambled images [2, 5, 10–12]. Indeed, our control sighted
group showed such a preference in the ITS bilaterally (Fig-
ure 2A; right panel), peaking, as previously reported, in the
right hemisphere. Surprisingly, the blind showed a comparable
preference for body shapes versus objects, faces, or textures
in the right ITS, in a location slightly more posterior to the
selectivity peak of the sighted (Figure 2A; left panel; the loca-
tion difference between the groups’ selectivity peaks was
1.25 cm, or four functional voxels). Themore posterior location
of the selectivity peak in the blind is comparable to the location
of haptic body selectivity as seen in the normally sighted,
which is found posteriorly to the classical visual EBA [11, 14].
Furthermore, similar to previous reports [5, 12], the EBA
response was nearly twice as large for body shapes as for
faces, objects, and textures in both groups (Figure 2A;
although absolute values of the GLM parameter estimation
for the blind were lower than those for the sighted). Thus the
preference effect strength was also similar in both groups.
Next we directly compared the activation generated by body
shapes with those of each one of the other visual categories
separately and independently, across the entire brain. In the
sighted, all contrasts revealed significant bilateral extrastriate
visual activations, whose intersection peaked in the right ITS
(Figure 2B; right panel). In the blind, this peak was the only
one across the entire brain to show full category selectivity
for body shapes, as compared to each one of the other



Figure 2. Extrastriate Body Selectivity without

Visual Experience

(A) The preference for body shapes over other

visual categories was tested in a direct contrast

(versus objects, faces, and textures) in each of

the groups (random-effect general linear model

[GLM] analysis [13], p < 0.05 corrected for multiple

comparisons). The maps show a highly significant

activation in the inferior temporal sulcus (ITS;

enlarged) in both groups. For demonstrative pur-

poses, we also sampled the activation GLM

parameter estimates (and activation time courses,

see Figure 2C) for each experimental condition

(body-shapes, faces, objects, and textures) in the

selectivity peaks for body shapes in both groups

in a region-of-interest (ROI) group level random-

effect analysis. This analysis also shows clear

and significant body-category selectivity in both

groups, although with slightly less differentiation

between body and object response peaks in the

blind compared to the sighted. In line with previous

reports, the magnitude of the response of the EBA

in both groups was nearly twice as large for body

shapes as for faces, objects, and textures. In the

sighted group, the peak showed a GLM parameter

estimate of 1.6 for bodies but only 0.74, 1, and 0.78

for faces, objects, and textures, respectively, with

an average selectivity effect size of 53%. In the

blind, the selectivity peak showed a parameter

estimate of 0.72 for bodies but only 0.43, 0.5, and

0.45 for faces, objects, and textures, respectively,

with an average selectivity effect size of 64%.

Thus, despite the difference in absolute activation,

the preference effect strength was similar in both

groups.

(B) The overlap of the preference maps for body

shapes versus each one of the other visual cate-

gories independently (textures inblue,everydayob-

jects in green and faces in purple) is depicted for

each group. The full body-shape preference is

unique to the right ITS (Talairach coordinates 238,

277, 26) of the blind across the entire brain. The

sighted group (right panel) shows bilateral selec-

tivity for body shapes in a nearby location (although

more significant in the right hemisphere). Eachmap

is a random-effect GLM contrast at p < 0.05, cor-

rected for multiple comparisons.

(C) Activation time course sampled for demonstra-

tive purposes from the peaks of selective activa-

tion (peaks of the maps depicted in A, at p <

0.005) further supports the similar selectivity for

body shapes in both groups. Error bars represent

the SEM.
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categories (Figure 2B; left panel). The activation time course
sampled for demonstrative purposes (Figure 2C) further sup-
ported the similar selectivity for body shapes in both groups.

Finally, we inspected the network functional connectivity (by
using intrinsic, rest state [15] functional-connectivity analysis)
of the EBA of the blind. We found that the
EBA of the blind showed highly sig-
nificant functional connectivity to the
contralateral location (comparable to
the left EBA of the sighted), as well as to
a vast region in the visual cortex, in-
cluding the fusiform gyrus. Intriguingly,
outside the occipital cortex, the EBA
was most connected to the posterior su-
perior temporal sulcus (pSTS)/temporal-
parietal junction (TPJ; Figure 3), to areas which are considered
an integral part of the body-image network that are also
involved in Theory-of-Mind (ToM) tasks [3, 16, 17]. Addition-
ally, the EBA was functionally connected to a small cluster in
the parietal lobe (left posterior intraparietal sulcus; IPS), which



Figure 3. Functional Connectivity of the EBA in the Blind

The intrinsic functional connectivity [15]) of the right EBA in the blind was

investigated with a data set of spontaneous BOLD fluctuations from a group

of 13 congenitally blind subjects (see Table S1). Functional connectivity was

computed from a seed ROI in the peak of intersubject-consistent body-

shape activation in the blind group (100% overlap) in the right ITS, which

also overlapped with the activation in the sighted (see Figure 1A). Individual

time courses from this seed ROI were sampled from each of the partici-

pants, z-normalized, and used as individual predictors in a group analysis

using a GLM in a hierarchical random effects analysis. The minimum sig-

nificance level of the results was set to p < 0.05 corrected for multiple

comparisons, using the spatial extent method. This analysis revealed EBA

functional connectivity to both the contralateral extrastriate cortex and

the fusiform gyrus, as well as several areas in the body-image network,

such as the pSTS/TPJ and IPS.
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has been linked to multisensory and visuomotor integration of
information related to body movements, and specifically to
coding of the peripersonal space [18].

Discussion

The absence of visual experience poses a unique challenge to
the creation of the brain’s representation of bodies because it
greatly limits the ability to perceive others’ body postures and
motion or to read cues indicative of their actions and intent
from their body shape, details which are available in the blind
solely by touching people in their proximity, and in the case of
our subjects, by using SSD sound input for w10 hr. We show
here that despite the lack of any visual experience with body
shapes from external sources, when using SSDs the blind
can not only perceive whole-body images (Movie S1; Supple-
mental Experimental Procedures) but also process them in the
dedicated ‘‘visual’’ neural network, because the activation and
selectivity for body shapes in the congenitally blind was found
not in the somatosensory or auditory cortices, but rather in the
visual cortex, overlapping the EBA location and peaking in very
close proximity to the sighted EBA peak. This result was veri-
fied in several converging analyses at the group level (Fig-
ure S1; Figure 2) between the subjects in each group and in
their overlap (Figure 1A; probability maps), as well as when in-
specting single subjects’ activation peaks and their clustering
(Figures 1Band1C). Functional-connectivity analysis (Figure 3)
further showed that the EBA was not only activated by body-
shape processing but also that it is connected to two key com-
ponents in the body-image network: the pSTS/TPJ and IPS,
regions that have been implicated in mediating the spatial
unity of the self and body (embodiment), interpreting the
motions of a human body in terms of goals, and the ability to
reason about the contents of mental states of others (ToM)
[3, 16–18].
In addition to previous findings regarding the preservation of

functional properties of components of the mirror system, the
ToM [19, 20], and processing of action verbs [21] in blind
people, to which we show that the EBA is functionally con-
nected, our data suggest that despite vastly different life expe-
riences and some differences in the blind body-image [22], the
blind brain still contains many aspects of the neural network
for the perception and processing of others’ external body-
images.
Our study suggests there is another key task and/or function

(body-image-shape analysis) that demonstrates retention of
function in ‘‘visual’’ areas in the brains of the congenitally blind
[23–25]. Other studies have argued for similar theoretical impli-
cations concerning the perception of motion (hMT+; [26]), gen-
eral object shapes and tools (lateral-occipital complex, [27–29]
inferior-temporal gyrus [30], and parietal lobe; [31]), spatial
location (middle-occipital gyrus; [32, 33]), and reading (visual
word-form area; [6, 9]). However, besides adding a new re-
tained domain to ‘‘vision,’’ the current study is unique in
another aspect: this is the first time visual cortex functional
preservation is reported for a percept normally inaccessible
to the blind. Location, motion, small palpable objects, and
script, which have been the targets of previous studies, are
as available to the blind as they are to the sighted, albeit via
other senses. Blind children learn to read Braille at the age
of 6, and haptic object recognition and auditory localization
are available to the blind early in life as the brain develops. In
contrast, blind people’s experience of the full body configura-
tion of others is highly restricted, and the SSD used here was
learned in adulthood for a limited time. Nevertheless, despite
the vast plasticity of the visual cortex to process other sensory
inputs and other cognitive tasks [25, 34], our data show activa-
tion of the extrastriate ‘‘visual’’ cortex of the blind during the
perception of full body shapes, which thus suggests retention
of functional specialization in this same region (showing high
anatomical consistency of the extrastriate visual cortex peaks
between the two groups). This supports the existence of
innately determined constraints for the emergence of the
EBA that are sensory independent but domain specific [23],
task or computational specific [35, 36] (similar concepts have
also been referred to as metamodal, amodal, or supramodal
[26, 30, 37]). Such constraints might arise from the connectiv-
ity [23] of the extrastriate cortex to other parts involved in
higher-order perception and integration of the body image,
such as the pSTS/TPJ and IPS (Figure 3). Such functional
connectivity (likely following anatomical connectivity) may
be speculated to affect cortical organization during develop-
ment even in the complete absence of bottom-up visual infor-
mation, driving the organization of the right extrastriate cortex
toward deciphering the geometric shape of the body. This
specialization may begin very early and might even exist
from birth, as infants (as early as three months) already
show differential brain responses to natural versus distorted
body configurations [38].
Importantly, the recruitment of the extrastriate visual cortex

for processing body shapes reported here did not result from
the fact that the stimuluswas animate (despite the existence of
an inanimate/animate stimulus distinction recently reported in
the visual cortex of the blind [39]), as it showed a preference for
body shapes over faces (Figure 2B; see body versus faces),
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both of which are animate stimuli. Therefore, the blind EBA
preference is specific to the representation of the body.

However, several aspects of our findings suggest that the
body-perception network in the blind is not identical, or as fully
developed, as that of the sighted. For instance, whereas the
EBA of the blind showed both strong activation and selectivity
for body shapes (Figure 2), an additional component of the
body-perception network, the fusiform body area (FBA; [40,
41]), only showed activation for body shapes (although at a
highly significant threshold; see Table S2) and connectivity
to EBA (see Figure 3) but not selectivity for body shapes.
This is consistent with the existence of selectivity for haptic
perception of body parts in the right (posterior) EBA but its
absence in the FBA in the sighted [11, 14]. In sighted people,
such findings were explained either by the use of isolated
body parts (not whole-body configurations) or the sequential
nature of haptic exploration, which does not elicit whole-shape
gestalt representations. Although here we used whole-body
silhouettes, which are typically favored by the FBA, it may be
that the blind’s lack of experience with full-body configura-
tions, which are much less accessible than the perception of
individual body parts (e.g., in shaking hands or being led by
hand), caused less specialization in this part of the network.
Relatedly, it was recently suggested that the ventral-medial
aspect of the ventral stream serves as a gateway between
perception and memory [42], perhaps generating more reli-
ance on individual life experience and expertise missing in
the blind. Similarly, although both groups showed similar
selectivity effect size in the EBA, the blind showedweaker gen-
eral activation strength (Figure 2A). This could suggest that the
level of expertise in perceiving body shapes or visual experi-
ence in general may affect EBA recruitment. Although we
cannot address this question here, it would be interesting in
the future to discern the effects of the lack of visual input
and the lesser expertise and experience with body shapes
by further testing this group of blind subjects after more
body-specific training. Similarly, the effect of our SSD longitu-
dinal training (over several months) on body responsiveness
could be investigated further. Generally, such experimental
designs may also help address the ongoing visual literature
debate related to the role of expertise in face processing
in the fusiform face area [43]. Furthermore, although the
assessment of retinotopic areas cannot be conducted in the
congenitally blind, it may be interesting to investigate whether
high-resolution imaging (combined with creative ways to
define motion-sensitive area hMT+, e.g., by using a visual-to-
somatosensory SSD to provide tactile motion stimulation;
[26]) can also reveal the distinction within the EBA to multiple
body-selective foci surrounding hMT+ recently reported in
sighted people [44], hints of which can be found in our data
(see Figure S2).

From the rehabilitation perspective, although SSDs have
several advantages [45], they were never widely adopted by
the blind community. The encouraging behavioral results ob-
tained here in perceiving visual details, which are otherwise
entirely unavailable to the blind and which normally convey
social cues—namely, the body posture of others—as well
as other capacities shown previously, such as object-type
recognition, reading [6], spatial location, and navigation [46]
abilities, provide a careful basis for optimism that SSDs
can become useful stand-alone visual aids, especially when
used in conjunction with constructed training. Regardless,
SSDs may be used as ‘‘sensory-interpreters’’ that provide
high resolution [7], instructing the perception of visual signal
arriving from lower-acuity invasive devices such as retinal-
implants [47].
To summarize, our results show that the extrastriate visual

cortex may develop and engage in its role in perception of
body information and its functional connectivity to other key
structures in understanding body images of others and their
intentions in the absence of vast exposure to body-shape in-
formation and even in the full absence of visual experience.
Thus, our findings join novel converging evidence, suggesting
that the brain has a sensory-independent, task-selective
supramodal organization rather than a sensory-specific one.

Supplemental Information

Supplemental Information includes two figures, two tables, Supplemental

Experimental Procedures, and one movie and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2014.02.010.
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