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Abstract

Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the
maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period.
However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced
hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid
(20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize
and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth,
synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein
expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory
processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have
anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling
may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It
would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and
maintenance of learning memory.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Docosahexaenoic acid (DHA, 22:6n-3) is mainly enriched in
the brain and is essential for normal neurological function [1].
In the mammalian brain, lipids make up 10% of the fresh
weight and 50% of the dry weight, and the major brain lipid
class is phospholipids, of which DHA and arachidonic acid
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(20:4n-6) are the major polyunsaturated fatty acids [2]. DHA is
mainly found in the phosphatidylethanolamine (PE) and phos-
phatidylserine (PS) fractions [3–7], and PE and phosphatidyl-
choline (PC) constitute the major neuronal membrane
phospholipid fractions [3,8].

Most DHA accumulation in the brain takes place during
brain development in the perinatal period from the beginning
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of the third trimester of gestation to 2 years after birth in
humans and from prenatal Day 7 to postnatal Day 21 in rats
[9–11]. However, hippocampal DHA levels decrease with age in
rats [12,13] and are reduced in the human brain disorder
Alzheimer's disease (AD) [14–16]. The main function of the
hippocampus is the linking of short-term memory to the
learning process and the storing of spatial information [17–19].
Hippocampal DHA deficiency is therefore associated with
reduced learning memory ability in rats [20] and with
memory loss in AD patients [21].

This review will focus primarily on DHA-mediated hippocam-
pal-dependent spatial learning memory performance, which is
usually evaluated using the Morris water maze [22] or sometimes
the arm radial maze [1]. It is proposed that the n-3 fatty acid-
mediated development and maintenance of learning memory
performance results from DHA biosynthesis and incorporation
into PE in the brain, where it is involved in neuronal morphology
and synaptic plasticity.
2. DHA biosynthesis and incorporation into PE in the brain

2.1. DHA biosynthesis in the developing fetus and adult

DHA contains 22 carbon atoms and 6 double bonds at carbon
3, 6, 9, 12, 15 and 18, counting from the methyl end of the
carbon chain. It is either formed from its precursor, α-linolenic
acid (18:3n-3), or obtained as preformed DHA or from fish oil
containing eicosapentaenoic acid (20:5n-3) and DHA. 18:3n-3 is
an essential fatty acid which must be obtained from the diet
and is found in canola oil, soybean oil, linseed oil, and flaxseed
oil [23]. 18:3n-3 and 20:5n-3 can be converted to DHA by
sequential desaturation and elongation in the endoplasmic
Fig. 1. Pathway for DHA biosynthesis and incorporation into neuronal membrane phospho
desaturase, or is provided by preformed DHA or fish oil containing 20:5n-3 and DHA. DHA is con
at the sn-2 position by LPAATs in de novo synthesis or by LPEAT2 in the deacylation-reacylat
reticulum, followed by peroxisomal β-oxidation (Fig. 1) [24].
Although the liver is the major site of DHA biosynthesis [25],
DHA can also be synthesized locally in the developing brain
[26,27].

Studies in which 14C-labeled 18:3n-3 was injected intracrani-
ally into the fetal rat brain or 13C-labeled 18:3n-3 was injected
into the fetal baboon jugular artery showed that the fetal brain
can take up, desaturate, and elongate 18:3n-3 to DHA and
incorporate DHA into membrane phospholipids [26,27]. More-
over, the activity of brain Δ6 desaturase, the rate-limiting step
in DHA biosynthesis, is much higher during the perinatal period
than after brain development in both rats [28] and mice [29].
The efficiency with which dietary preformed DHA is incorporat-
ed into the fetal or newborn baboon brain is seven- to eightfold
higher than that of 18:3n-3-derived DHA [26,30], indicating that
uptake of preformed DHA in the brain is effective in brain DHA
accumulation during brain development. Increasing the level of
maternal dietary 18:3n-3 from 0.6% of the energy source to 7%
did not alter DHA levels in neuronal cells in the 2-week-old rat
pup brain [31]. Exposure of rats to 18:3n-3 at levels greater
than 200 mg/100 g diet from in utero to lactation via maternal
intake, then as an adult (2 months old) fed the same diet, did
not alter brain DHA levels [32]. These last two studies suggest
that the DHA content of the brain is well controlled and that
the n-3 fatty acid dietary requirement is 0.4% of the energy
source [32].

A study using 2H-labeled 18:3n-3 showed that human infants
are able to synthesize DHA [33] and another using 11C-labeled
DHA showed that the human adult is able to take up DHA and
incorporate it into the brain [34]. However, although the human
adult can convert 13C-labeled 18:3n-3 into 20:5n-3 and, to a lesser
extent, docosapentaenoic acid (22:5n-3), very little is converted to
DHA (summarized in the review [35]). Maternal milk or plasma
lipids. DHA is either formed from its precursor 18:3n-3, the limiting step being Δ6
verted to DHA-Co-A by Acsl-6, then incorporated into lyso-phosphatidic acid or lyso-PE
ion process.
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levels of 18:3n-3, 20:5n-3, and 22:5n-3, but not DHA, are
increased in lactating women supplemented with 18:3n-3 (10.7
g/day for 4 weeks) from flaxseed oil [36], and blood levels of
20:5n-3, but not DHA, are increased in healthy humans supple-
mented with 18:3n-3 (2–40 g/day for 3–26 weeks) or 20:5n-3 (1–
4 g/day for 4–12 weeks) [37]. These findings indicate that the
developing brain has the ability to synthesize DHA, while in the
adult, DHA synthesis is low, and it is not known whether the aged
brain can synthesize DHA. Thus, preformed DHA derived from the
food, may be the best source of DHA for maintaining brain DHA
levels in the adult.

2.2. DHA incorporation into PE in the brain

DHA is converted into DHA-Co-A by acyl-CoA synthetases then
incorporated into lyso-phosphatidate or lyso-phospholipids at the
sn-2 position by lysophosphatidate acyltransferases (LPAATs) (also
known as 1-acyl-sn-glycerol-3-phosphate acyltransferases, AGPATs)
in de novo synthesis or by lysophospholipid acyltransferases in the
deacylation-reacylation process (Fig. 1) [38].

LPAAT/AGPAT mRNA expression is tissue-specific. Levels of
mRNAs for LPAATδ (also known as AGPAT4) and lyso-PE acyl-
transferase 2 (LPEAT2, previously named AGPAT7 or LPAATη) are
much higher in the brain than in other tissues [38,39]. Recently, it
was reported that mRNA for LPEAT2, which acts mainly to acylate
1-acyl-lyso-PE or 1-alkenyl-lyso-PE to form PE and plasmalogen, is
mainly expressed in the brain in the human or mouse [40],
suggesting that LPEAT2 is important in maintaining high levels of
brain PE and plasmalogen. PE and plasmalogen levels are reduced in
the hippocampus in aged rats (12 vs. 2 months old), aged humans
(N70 vs 33–36 years old) and AD patients [13,14,41–43]. It would
be interesting to know whether DHA is the preferred substrate for
LPEAT2 and whether LPEAT2 activity is responsible for DHA
incorporation into PE and plasmalogen during brain development
and for the decrease in hippocampal DHA and PE levels in the aged
or AD brain.

3. n-3 fatty acids are involved in neuronal development and
function

3.1. n-3 fatty acids supplementation increases PE levels and neurite
outgrowth

DHA and PE are the major neuronal membrane components, and
the formation of neurons requires membrane structures. Neurons in
the hippocampus can synthesize DHA from 18:3n-3 and incorporate
DHA mainly into the PE fraction [44]. In PC12 cells (a neuronal cell
model) overexpressing long-chain acyl-CoA synthetase 6 (Acsl-6,
previously named acyl-CoA synthetase 2), DHA is converted to
DHA-Co-A, but not 20:4n-6 or oleic acid (18:1n-9) (Fig. 1), DHA
uptake into cells is specifically increased; levels of phospholipid,
especially PE, are increased and neurite outgrowth is enhanced
[45,46]. In human neuroblastoma SH-SY5Y cells, DHA and 20:5n-3
but not 18:3n-3, 20:4n-6, linoleic acid (18:2n-6), erucic acid
(22:1n-9) or behenic acid (22:0) increase neuron growth-associat-
ed protein-43 (GAP-43) mRNA levels, and DHA increases expression
of GAP-43 protein, a marker of axonal growth essentially for neurite
outgrowth, to promote neurite outgrowth [47]. In addition, DHA,
but not 20:4n-6, docosapentaenoic acid (22:5n-6) or 18:1n-9,
promotes neurite growth in rat primary hippocampal neurons
[48,49], in cortical neurons [50] and differentiated human mesen-
chymal stem cells [51]. DHA also enhances the differentiation of G-
olig2 embryonic stem cells into neuronal cells and increases neurite
outgrowth, including neurite length, neurite number and number of
branches per neuron [52]. In addition, DHA, but not 20:4n-6, 22:5n-
6, or 18:1n-9, promotes synaptogenesis in rat primary hippocampal
neurons, as shown by the number of synapsin puncta [49].
Moreover, a single intracerebroventricular injection of 30 nmol of
20:5n-3 stimulates myelin protein expression in the neonatal rat
brain [53]. Furthermore, neuron size in the hippocampus is
decreased in DHA-deficient young rats (21 days old) [54]. These
studies show that DHA increases membrane PE levels, GAP-43
protein expression, neurite outgrowth, neuronal differentiation and
synaptogenesis during neuronal development. It would be interest-
ing to know whether Ascl-6 plays an important role in brain DHA
accumulation during brain development and whether it is respon-
sible for the decrease in brain DHA levels in aged or AD patients.

3.2. Optimal DHA levels for neuronal development

A study on hippocampal neurons showed that supplementation
with 5–10 μM DHA, which resulted in hippocampal neuron DHA
levels of 12–16% of the total fatty acids in the total lipid fraction, is
optimal for rat primary hippocampal neuronal survival during
development, while supplementation with a concentration higher
than 50 μM resulted in decreased neuronal survival [55], suggesting
that an appropriate DHA concentration is important for hippocam-
pal neuronal development. In addition, supplementation with 5 μM
DHA enhances the differentiation of neuron cells from G-olig2
embryonic stem cells [52]. The n-3 fatty acid concentration in rat
plasma or brain is reported to be 10.6 μM or 1.3 nmol/g brain,
respectively [56], and hippocampal DHA levels in normal rats or
primates are 12–14% of the total fatty acids in the total lipid
fraction [20,57]. These studies indicate that n-3 fatty acids help in
the development of hippocampal neurons by maintaining appro-
priate DHA levels.

3.3. Effects of DHA levels on learning memory performance

In general, brain DHA deficiency is induced by feeding an n-3
fatty acid-deficient diet in utero (via the maternal intake) and
throughout life for two to three generations [58]. A reduction in
brain DHA levels down to 3–5% of the total fatty acids in the total
lipid fraction is associated with poor water-maze learning memory
performance [58,59], and recovery of brain DHA levels to 8–12% of
the total fatty acids in the total lipid fraction in DHA-deficient rats
leads to recovery of water-maze learning memory [60]. In addition,
in young adult (2 months old) DHA-deficient rats fed a diet
supplemented with n-3 fatty acid-enriched fish oil (18 mg of 20:5n-
3+12 mg of DHA/day, accounting for 0.3% of the energy source) for
about 12 weeks, hippocampal DHA levels recovered from 5% to 11%
of the total fatty acids in the total lipid fraction and water-maze
learning memory performance was improved [20]. Moreover, n-3
fatty acid supplementation during brain development and during 80
days of adulthood of chow diet-fed rats induced an increase in DHA
levels in the hippocampus from 12% to 15% of the total fatty acids
in the total lipid fraction and water-maze learning memory
performance was enhanced [20]. These studies indicate that
hippocampal DHA levels play an important role in mediating
learning memory performance.

4. n-3 fatty acids maintain learning memory performance by
strengthening synaptic plasticity

Synaptic plasticity is the remodelling and reinforcement of
connections between neurons. Long-term potentiation (LTP) in the
hippocampus is an experimental model of activity-dependent
synaptic plasticity used to study synaptic efficiency in learning
memory formation. LTP is triggered by activation of postsynaptic N-
methyl-D-aspartate (NMDA) receptors via strong postsynaptic
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depolarization followed by activation of calcium-calmodulin-depen-
dent protein kinases II (CaMKII) and cyclic adenosine monopho-
sphate (AMP) response element binding protein (CREB) in
postsynaptic dendritic spines, resulting in an increased strength of
synaptic transmission [61,62]. It is triggered by tetanic electric
stimulation, which causes a long-lasting potential recorded as
excitatory postsynaptic potential in the activated synapse that is
maintained for hours in in vitro hippocampal slice preparations and
for days for the maintenance of memory in animals [63].

4.1. n-3 fatty acids enhance LTP and dendritic spine formation in
the hippocampus

20:5n-3 enhances CREB activity in PC12 cells [64] and DHA
supplementation shows longer-lasting phases of LTP in rat
hippocampal slices [65]. In rat hippocampal slices prepared from
young mice (18 days old) exposed to an n-3 deficient diet
compared to an n-3 adequate diet via the maternal intake, the
expression of the NMDA receptor subunits NR1, NR2A, NR2B was
reduced in the hippocampus, LTP was impaired and hippocampal
DHA levels were reduced from 12% to 3% of total fatty acids in the
total lipid fraction [49]. DHA acts synergistically with the effect of
exercise on synaptic plasticity and water-maze learning memory
performance by increasing levels of CaMKII, CREB, brain-derived
neurotrophic factor (BDNF) and synapsin 1 in the hippocampus in
adult rats given a DHA-enriched diet (1.25% DHA and 0.25% 20:5n-
3 w/w in the control chow diet for 12 days) [66]. LTP in the
hippocampus was enhanced in adult rats (1.5 months old)
supplemented with 20:5n-3 (1 mg/day for 8 weeks) [64]. Adult
normal gerbils given DHA supplementation (300 mg/kg/day for 4
weeks) showed an increase in phospholipids [PE, PS, and
phosphatidylinosital (PI), but not PC] and in postsynaptic dendritic
spine density in the hippocampus, while 20:4n-6 had no such
effect [67]. In addition, memory performance in the radial-maze
test was improved and c-Fos-positive neurons, a marker of
neuronal activity, were increased in the hippocampus in adult
rats (5 weeks old) given DHA supplementation (300 mg/kg per day
for 12 weeks) [68]. These findings suggest that n-3 fatty acids
increase CaMKII and CREB levels to enhance LTP promoting
dendritic spine formation, BDNF secretion, and the number of c-
Fos-positive neurons to strengthen synaptic plasticity for spatial
learning memory formation.

4.2. n-3 fatty acids increase synaptic protein expression
and synaptogenesis

In rat primary hippocampal neurons, DHA, but not 20:4n-6
promotes synaptogenesis, synaptic activity, synapsin-1 expres-
sion and the expression of glutamate receptors α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit
GluR1, GluR2 and NMDA receptor subunits NR1, NR2A, NR2B
[49]. In adult (12-week-old) fat-1 transgenic mice with high
endogenous DHA levels compared to the wild-type mice,
expression of synaptic genes including those coding for
synapsin-1, GAP-43, post-synaptic density protein-95 (PSD-95),
GluR1 and cytoskeleton protein F-actin in the hippocampus is
up-regulated, and water-maze learning memory performance
improved [52]. In adult gerbils (4–6 months old, weighing
about 60–80 g), DHA or 20:5n-3 supplementation (300 mg/kg
per day for 4 weeks) of the normal chow resulted in an
increase in brain PE, PS, and PI levels and synaptic protein
expression, while 20:4n-6 had no effect [69]. Levels of synaptic
proteins, including pre-synaptic protein synapsin-1 and syn-
taxin-3, post-synaptic protein PSD-95 and cytoskeleton protein
F-actin, were increased in the hippocampus of adult gerbils
given DHA supplementation (300 mg/kg per day for 4 weeks)
[67,70]. Levels of DHA and PSD-95 in the cortex were
increased and water-maze learning memory performance im-
proved in aged (17 months old) AD mice fed an n-3 fatty
acid-deficient diet with DHA supplementation (0.6% w/w in the
n-3 deficient diet for 103 days) [71]. These studies show that
synapsin-1 and GAP43, markers of synapses and axons,
respectively, in the hippocampus is increased in n-3 fatty
acid-supplemented adult rats, suggesting that n-3 fatty acids
increase synaptic gene and protein expression, thus increasing
synaptogenesis and neurite outgrowth to maintain learning
memory function.

5. n-3 fatty acids promote neurogenesis

In adult rodents, the hippocampus and olfactory bulb are the
only two brain regions in which continuous neurogenesis is seen
[72,73], while in monkeys [74] and humans [75], neurogenesis
occurs only in the hippocampus. LTP enhances neurogenesis [76].
Hippocampal-dependent memory performance is correlated with
hippocampal neurogenesis in aged rats (21 months old) [77] and
adult rats [78]. While neurogenesis demonstrated by immunohis-
tochemical staining for 5-bromo-2'-deoxyuridine, an analogue of
thymidine, is decreased in the DHA-deficient embryonic rat brain
[79], it is increased in the hippocampus of adult (12-week-old)
fat-1 transgenic mice with high endogenous DHA levels [52] and
in the hippocampus of aged rats (18 months old) supplemented
with DHA (300 mg/kg per day for 2 weeks) [80], suggesting that
n-3 fatty acids promote neurogenesis in the developing, adult and
aged brain. These findings indicate a potential mechanism by
which n-3 fatty acids help in the development and maintenance of
learning memory performance by generating new hippocampal
neurons for better neural networking properties and computa-
tional capability.

6. n-3 fatty acids in neuron protection

6.1. Specific effect of n-3 fatty acids in neuron protection

Evidence is accumulating that neuron protection is provided
by n-3 fatty acids, but not other fatty acids. At the concentration
of 25 μM, DHA, but not 22:5n-6, 20:4n-6, or 18:1n-9, protects
mouse neuroblastoma Neuro 2A cells against apoptosis induced
by 2-day serum starvation [81,82], and DHA, but not 20:4n-6 or
18:1n-9, prevents oxidative stress-induced apoptosis of Neuro 2A
cells [83] as shown by the terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) or DNA fragmentation assay. At
6.7 μM, DHA, but not 20:4n-6, 18:1n-9 or palmitic acid (16:0),
prevents apoptosis of rat retina photoreceptor cells during
development or induced by oxidative stress, as shown by cell
counting [84,85]. At the concentration of 10 μM, 18:3n-3, but
not 16:0, provides protection against ischemia-induced hippo-
campal cell death and prevents kainic acid-induced seizures in
rats as shown by the TUNEL or lactate dehydrogenase assay [86].
These findings indicate a specific effect of n-3 fatty acids in
neuron protection.

6.2. n-3 fatty acids overcome oxidative stress in the damaged brain

Levels of reactive oxygen species and the number of apoptotic
neurons in the hippocampus are reduced, LTP maintained, and
water-maze learning memory performance improved in γ-irradi-
ation-damaged rats given 20:5n-3 supplementation (2% v/w in the
chow diet for 4 weeks) [87] or in rats with cerebral ischemia
given fish oil supplementation (400 mg of n-3 fatty acids/kg per
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day for 2 weeks) [88]. BDNF levels are normalized, oxidative
damage reduced, and water-maze learning memory improved in
traumatic brain injury rats fed an n-3 fatty acid-enriched diet [89].
These finding indicate that n-3 fatty acids have an antioxidative
stress effect, thus protecting neurons and maintaining learning
memory performance.

7. n-3 fatty acids reverse age-related changes

7.1. n-3 fatty acids reverse age-related synaptic plasticity changes

An age-related decrease in levels of DHA and of the GluR2 and
NR2B glutamate receptor subunits in the hippocampus is reversed
to the same levels as in adult rats (3–4 months old), in aged rats
(24 months old) given n-3 fatty acid supplementation (160 mg of
20:5n-3+110 mg of DHA/kg per day for 12 weeks) [90]. DHA
levels, KCl-stimulated glutamate release, and LTP in the hippo-
campus are decreased in aged rats (22 months old) compared to
adult rats (4 months old), and these effects are reversed in aged
rats (22 months old) supplemented with DHA (10 mg/day for
8 weeks) or 20:5n-3 (12 mg/day for 8 weeks) [91,92]. Hippocam-
pal neurogenesis is reduced in aged rats (10- or 20 months old)
compared to adult rats (3 months old) [93], and is increased in
aged rats (18 months old) supplemented with DHA (300 mg/kg
per day for 2 weeks) [80]. A decreased spine density in the
hippocampus is seen in aged rats (20–24 vs 3–5 months old) and
humans (N50 vs. ≤50 years old) [94–96], while DHA supplemen-
tation (300 mg/kg per day for 4 weeks) results in an increase in
spine density in adult normal gerbils [67]. These studies indicate a
potential mechanism by which n-3 fatty acids help in the
maintenance of learning memory performance by preventing
age-related synaptic plasticity changes.

7.2. n-3 fatty acids reverse age-related inflammation changes

Levels of mRNAs coding for major histocompatibility complex
molecule II (MHC II) and CD40, markers of microglial cell
activation indicating neuronal inflammation, and protein levels
Table 1
Reported effects of n-3 fatty acids on the hippocampus and learning memory performance

Molecular effect Cellular effect

Signaling
↑ CaMKII ↑ Long-term potentiation
↑ CREB
↑ Glutamate receptors
↑ Glutamate release
↑ BDNF
Structure
↑ PE ↑ Neuronal differentiation
↑ GAP-43 ↑ Neurite outgrowth
↑ Myelin ↑ Synaptogenesis
↑ Synapsin-1 ↑ Neurogenesis
↑ Syntaxin-3 ↑ Dendritic spine density
↑ PSD-95 ↑ c-Fos-positive neurons
↑ F-actin
↑ Tyrosine tubulin
↑ Acetylated tubulin
Protection
↓ MHC II Anti-oxidative stress
↓ CD40 Anti-inflammation
↓ Interferon-γ Anti-apoptosis
↓ Interleukin-1β
↓ Proinflammatory genes
↑ Anti-apoptotic genes
↓ Aβ levels
↓ Phosphorylated tau protein
of interferon-γ and interleukin-1β are increased and LTP reduced
in the hippocampus in aged (22 months old) compared to young
rats (4 months old), and these effects in aged rats are overcome
by supplementation with 20:5n-3 (125 mg/kg/day for 4 weeks)
[97]. These findings indicate a potential mechanism by which n-3
fatty acids help in the maintenance of learning memory
performance by reversing age-related inflammation changes.

7.3. n-3 fatty acids reverse the age-related reduction in hippocampal
DHA levels and learning memory performance

DHA levels in the normal adult rat brain appeared not to be
affected by feeding an n-3 fatty acid-deficient diet for 7 months
from the age of 2 months [98]. In contrast, DHA levels in the
hippocampus are reduced by 37% from 18% to 11% of total fatty
acids in the PE fraction in aged rats (18 months old) compared to
young adult rats (2 months old) fed the same normal diet [12,99]
and water-maze learning memory is impaired in aged rats (17
months old) compared to younger adults (5 months old) [100]. In
addition, brain DHA levels are reduced and water-maze learning
memory impaired in aged rats (24 months old) compared to
young adult rats (2 months old) fed normal chow diet [101]. In
contrast, in aged rats (24 months old) given n-3 fatty acid
supplementation (160 mg of 20:5n-3+110 mg of DHA/kg/day for
12 weeks), the age-related reduction in hippocampal DHA levels is
reversed to the levels seen in adult rats (4 months old) [90] and
radial-maze learning memory is improved in aged rats (23 months
old) given 300 mg DHA/kg/day for 5 weeks [102]. These studies
indicate that the age-related reduction in hippocampal DHA levels
is prevented and learning memory function improved by n-3 fatty
acid consumption.

8. n-3 fatty acids in AD prevention

AD is a progressive neurodegenerative disease characterized by
dementia. The main pathology of AD is extracellular deposits of
fibrillar aggregated amyloid β peptide (Aβ) as plaques and of
intracellular phosphorylated tau protein as tangles, which cause
Integrative effect Reference

↑ Synaptic plasticity [49,65,66,90–92]
↑ Spatial learning memory
Reversal of age-related changes

↑ Synaptic plasticity [49,52,53,67,68,70,80]
↑ Spatial learning memory
↑ Neuron protection
Reversal of age-related changes

↑ Spatial learning memory [87,88,108,110,112,116]
↑ Neuron protection
Reversal of age-related changes
↑ AD prevention
↓ Cognitive decline



369H.-M. Su / Journal of Nutritional Biochemistry 21 (2010) 364–373
neuronal death [103,104]. In AD patients, the hippocampus is one of
the first brain regions to suffer damage [105,106].

8.1. n-3 fatty acids prevent amyloid β peptide-induced neuronal death

In studies on hippocampal neurons, DHA supplementation
increased levels of cytoskeleton protein tyrosine tubulin and
acetylated tubulin and attenuated Aβ-induced neurotoxicity [55],
while Aβ-induced cytoskeleton perturbation in primary cortical
neurons was prevented by DHA [107]. These studies suggest that
the increase in cytoskeleton protein levels caused by DHA may
make the cells more resistant to Aβ-induced neurotoxicity and thus
prevent AD. Neuroprotectin D1, a DHA-derived 10, 17S-docosa-
triene, up-regulates the expression of anti-apoptotic genes and
down-regulates the expression of proinflammatory genes to
prevent Aβ-induced neuronal death [16]. In rat primary cortical
neurons, DHA or 20:5n-3 prevents neuronal apoptosis induced by
soluble Aβ oligomers by inhibiting caspase activation and enhanc-
ing ERK signaling [107]. These findings indicate that n-3 fatty acids
prevent Aβ-induced neurotoxicity by protecting neurons from
inflammation and apoptosis.

8.2. n-3 fatty acids decrease AD pathology

In studies of n-3 fatty acid supplementation in an AD animal
model, Aβ plaques in the hippocampus were reduced in aged (22.5
months old) AD mice fed a DHA-enriched diet (0.6% w/w in chow
diet) for about 103 days [108], DHA levels were increased, and soluble
Aβ levels reduced, and levels of phosphorylated tau protein decreased
in the brain in adult (3 months old) AD mice fed a DHA-enriched diet
(1.3% w/w in control diet) for 3–9 months [109], while reactive
oxygen species levels and the number of apoptotic neurons in the
hippocampus were decreased, hippocampal DHA levels increased,
Fig. 2. An unified model of the effects of n-3 fatty acids on the development and maintenance
learning memory. It is proposed that the developing brain can carry out DHA biosynthesis a
development. (B) Unified model for effects on maintenance of learning memory. It is propose
fractions, where n-3 fatty acids or DHA-RXRs signaling strengthen synaptic plasticity, incre
between the effects of DHA and estrogen.
and radial-maze learning memory performance improved in Aβ-
infused adult rats supplementedwith DHA or 20:5n-3 (300mg/kg per
day for 12 weeks) [110–112]. Phosphorylation of the anti-apoptotic
protein Bcl-2 associated death promotor (BAD) is increased and levels
of oxidized proteins decreased in the cortex and water-maze learning
memory performance is improved in aged (17 months old) AD mice
fed an n-3 fatty acid-deficient diet when the diet is supplemented for
103 days with DHA (0.6% w/w in the n-3 deficient diet) [71]. These
findings indicate that n-3 fatty acids decrease Aβ levels and have
antioxidative stress and antiapoptosis effects, leading to neuron
protection and maintenance of learning memory ability.

8.3. n-3 fatty acids delay cognitive decline

In humans, DHA levels do not change in the healthy hippocam-
pus between the ages of 33–90 years [14], but in AD patients, they
are reduced by 53% to 8% of total fatty acids in the PE fraction
compared to 17% in healthy age-matched controls [14], and in
patients with mild AD, fish oil supplementation (600 mg of 20:5n-3
+1700 mg of DHA/day for 6–12 months) delays cognitive decline
[113]. In addition, serum DHA levels in AD patients gradually
decrease with the severity of clinical dementia compared to healthy
age matched controls [21], while AD risk is reduced and cognitive
decline is delayed by higher DHA levels in blood [114,115] or n-3
fatty acid consumption (summarized in the review [116]). These
studies indicate that n-3 fatty acids play an important role in the
maintenance of cognitive performance.

9. Effects of estrogen on DHA levels and learning memory
performance

Plasma DHA levels are higher in healthy adult women than
in healthy adult men [117–119]. The conversion of 18:3n-3 to
of learning memory performance. (A) Unified model for effects on the development of
nd incorporated it into PE. n-3 fatty acids or DHA-RXRs signaling is involved in brain
d that the mature brain can take up DHA and incorporate it into neuron membrane PE
ase neuron protection and reverse age-related changes. There may be an interaction
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20:5n-3, 22:5n-3, and DHA is greater in adult women than in
adult men [120,121]. In addition, postmenopausal women with
hormone replacement therapy (HRT) have higher plasma DHA
levels than those without HRT [122,123]. Furthermore, plasma
DHA levels are increased in male-to-female transsexual subjects
receiving estradiol and decreased in female-to-male transsexual
subjects who have undergone ovariectomy and are receiving
testosterone [119]. These studies suggest that DHA biosynthesis
is higher in women than in men because of sex hormones,
especially estrogen.

Liver Δ6 and Δ5 desaturase expression is significantly higher in
8-week-old female rats than in male rats of the same age [124].
Erythrocyte DHA levels are higher in adult female rats than in male
rats of the same age [125] and DHA levels in erythrocytes and the
hippocampus, but not in the frontal cortex, hypothalamus or
midbrain, are decreased in ovariectomized female rats compared
to sham operated rats [126]. These studies indicate that estrogen
may affect DHA levels.

Estrogen plays an important role in hippocampal function by
maintaining LTP, enhancing neurite outgrowth, increasing spine
density, strengthening synaptic plasticity and improving spatial
learning memory performance [127–130]. It would be interesting to
know whether there is any interaction between DHA and estrogen
in learning memory performance.

10. Summary of the effects of n-3 fatty acids on the development
and maintenance of learning memory performance

10.1. Effects of n-3 fatty acids on the hippocampus

The reported effects of n-3 fatty acids on the hippocampus and
learning memory performance are summarized in Table 1.
Molecular signaling effects are the increased expression of CaMKII,
CREB and glutamate receptors and increased glutamate release
which promote LTP to strengthen synaptic plasticity for spatial
learning memory formation. Molecular structuring effects are
increased PE levels and synaptic and cytoskeleton protein
expression, which promote the cellular effects of increased neurite
outgrowth, synaptogenesis, dendritic spine density and neurogen-
esis and strengthen synaptic plasticity. n-3 fatty acids have anti-
oxidative stress, anti-inflammation and anti-apoptosis effects,
which result in neuron protection. In addition, n-3 fatty acids
reverse age-related changes and prevent AD. It is interesting to
note that DHA may act through retinoid signaling.

10.2. Retinoid signaling may be involved in the effect of DHA on learning
memory performance

DHA is a ligand for the retinoid X receptors (RXRs) [131], ligand-
activated transcription factors that control the expression of genes
involved in brain development, neuronal differentiation, LTP,
neurite outgrowth and neurogenesis [132–136]. Retinoid signaling
has been shown to play an important role in neuron protection,
modulation of inflammation, neurotrophin regulation and decreas-
ing the pathology of AD [137,138].

10.3. A proposed unified model for the effects of n-3 fatty acids on the
development and maintenance of learning memory performance

In the unified model of the effects of n-3 fatty acids on the
development of learning memory (Fig. 2A), it is proposed that the
developing brain can carry out DHA biosynthesis and take up DHA to
optimal levels. DHA is mainly incorporated into PE and n-3 fatty acids
or DHA-RXRs signaling helps neuronal differentiation, neurite
outgrowth, synaptogenesis, neurogenesis and neuron protection
during brain development. In terms of maintenance of learning
memory (Fig. 2B), it is proposed that the mature brain can take up
DHA and incorporated it into neuron membrane PE fractions, where
n-3 fatty acids or DHA-RXRs signaling increase synaptic protein
expression and LTP, resulting in increased dendritic spine formation,
neurite outgrowth, synaptogenesis, number of c-Fos-positive neu-
rons, BDNF secretion and neurogenesis to strengthen hippocampal
synaptic plasticity, protect neurons, prevent AD and reverse age-
related changes in the hippocampus. As noted in this review, estrogen
has a similar effect to DHA, and it would be interesting to know if
there is any interaction between the effects of DHA and estrogen on
learning memory function.
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