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Abstract

The carcinogenic risk of aromatic amines in humans was first discovered when a physician related the occurrence of urinary
bladder cancer to the occupation of his patients. They were employed in the dyestuff industry, chronically exposed to large
amounts of intermediate arylamines. Laboratory investigations disclosed that rats and mice administered specific azo dyes
arylamines or derivatives developed cancer, primarily in the liver. Also, at that time, a possible pesticide, 2-aminofluorene,
was tested for chronic toxicity, revealing that it rapidly induced cancers in several organs of rodents. This led to investigations
on the mode of action of this class of chemicals, including their metabolic conversion. Biochemical activation to more reactive
N-hydroxy compounds was found to occur, mostly in the liver, through what is now known as the cytochrome P450 enzyme sys-
tems, and also through prostaglandin synthetases. There were species differences. Guinea pigs were resistant to carcinogenesis
because of the low titer of the necessary activating enzymes. In target tissues, a second essential reaction was necessary, namely
acylation or sulfate ester formation. The reactive compounds produced display attributes of genotoxicity in appropriate test
systems. Interest in this class of compounds increased when of Sugimura and colleagues discovered the formation of mutagens
at the surface of cooked meat or fish, that were identified as heterocyclic amines (HCAs). These compounds undergo the same
type of activation reactions, as do other arylamines. Epidemiological data suggest that meat eaters may have a higher risk of
breast and colon cancer. HCAs induced cancer in rats in these organs and also in the prostate and the pancreas. In addition, there
is some evidence that they affect the vascular system. The formation of HCAs during cooking can be decreased by natural and
synthetic antioxidants, by tryptophan or proline, or by removing the essential creatine through brief microwave cooking prior to
frying or broiling. The amounts of HCAs in cooked foods are small, but other components in diet such as�-6-polyunsaturated
oils have powerful promoting effects in target organs of HCAs. On the other hand, the action of HCAs may be decreased by
foods containing antioxidants, such as vegetables, soy, and tea. Some constituents in foods also induce phase II enzymes that
detoxify reactive HCA metabolites. Additional mechanisms involved decreased growth of neoplasms by intake of protective
foods. Possibly, the carcinogenic effect of HCAs is accompanied by the presence of reactive oxygen species (ROS), which are
also inhibited by antioxidants. World-wide, there have been many contributors to knowledge in this field. Adequate information
may permit now to adjust lifestyle and lower the risk of human disease stemming from this entire class of aryl and HCA.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Human observations at the end of the 19th century
by a skilled clinician in the then new dyestuff industry
in the German Rhineland led to the report that a num-
ber of employees presented with urinary bladder can-
cer (reviewed in[1,2]). These pioneering findings were
extended to workers in the dyestuff industry in Great
Britain. Furthermore, the split products of the azo
bond in such dyes, aromatic amines, also led to urinary
bladder cancer. Thus, heavy occupational exposure to
4-aminobiphenyl and benzidine induced urinary blad-
der cancer in workers. The same 4-aminobiphenyl is
also present in tobacco smoke, and it was noted that
smokers were at high risk not only of heart disease
and lung cancer, but also of urinary bladder cancer,
demonstrated by Tannenbaum and Skipper[3]. These
human observations were complemented by labora-
tory research in animal models initially, and by ex-
amination of the mechanism of action of the aromatic
amines.

2. The carcinogenic azo dyes and arylamines

The field of the carcinogenic azo dyes was the
subject of detailed research by investigators at the
McArdle Laboratory, University of Wisconsin, led by
Harold Rusch, Elizabeth and James Miller[4,5], be-
ginning about 1944, and with important contributions
by Van Potter and Henry Pitot, and their many stu-
dents. These investigations led to an understanding of
structure–activities correlations of the carcinogenicity
of many types of azo dyes in rats.

In addition, important advances were made by
Boyland, who was initially concerned with indus-
trial carcinogenesis, through studies of workers in
the rubber industry, who had urinary bladder can-
cer [6,7]. Later on, he made major contributions,
together with Haddow and colleagues at the Chester
Beatty Institute in London, through investigations
of the mechanisms of action of many types of ary-
lamines, including some used in hair dyes. Wood and
Bonser[8] were involved in this field, together with
Clayson (reviewed in[1,9]). Walpole and Williams
[10] undertook the synthesis of methyl analogs of
4-aminobiphenyl, used in the dyestuff and rubber
industry, based on the hypothesis that methyl sub-

stituents would lower carcinogenicity. They discov-
ered, however, that 3-methyl-4-aminobiphenyl and
related compounds were actually more carcinogenic,
and interestingly gave rise to chemicals that in-
duced colon cancer. 2′,3-Dimethyl-4-aminobiphenyl
was used extensively to induce colon cancer in
rats for mechanistic studies[11–13]. It was also
found that this chemical could cause cancer of the
mammary gland and the prostate, and hence was
a valuable addition to the list of experimental car-
cinogens[14,15]. On the other hand, Walpole dis-
covered that 1,3-dimethyl-4-aminobiphenyl, or 3,5,
3′,5′-tetramethylbenzidine, with the 2-ortho-methyl
groups hindering reactions on the significant amino
group, are not carcinogenic, and he and other in-
vestigators noted they were not mutagenic[16–18].
Along those lines, Weisburger et al.[19] reported
that 3-methyl-2-naphthylamine induced cancer in the
colon and mammary gland in rats and formulated the
hypothesis thatortho-methylarylamines might be car-
cinogens, verified by the finding thatortho-toluidine,
the simplest compound of this class, was proven to
be carcinogenic[20,21].

3. The carcinogenic 2-acetylaminofluorene
and its mechanism of action

Toxicity studies of the proposed pesticide, 2-amino-
fluorene, were performed by Wilson et al.[22]. They
reported that this compound displayed low acute
toxicity, but continuing administration to laboratory
rodents led to increasing toxicity, and unexpectedly
demonstrated that this chemical was highly carcino-
genic. Bielschowsky investigated the modification by
endocrine factors of such experimental carcinogens,
the acetyl derivative 2-acetylaminofluorene[23]. Re-
search on this carcinogen extended by the group of
the Millers [5] at the McCardle Laboratory for Can-
cer Research and by Weisburger and Weisburger[24]
at the NCI. The Millers and the Weisburgers visual-
ized the potency of arylamines based on experience
with structure–activity correlations and examined the
relationship between structure and carcinogenesis.
The Weisburgers synthesized the isomeric 1-,2-,3-,
and 4-acetylaminofluorene and found that only
the 2-isomer was highly carcinogenic. Theoretical
chemists in Paris, Bergmann and Pullman (cf.[25]),
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and Bernard attempted to interpret structure–activity
correlations with aminofluorene by examining elec-
tron structure in these ring systems, as they also did
with the polycyclic aromatic hydrocarbons, utiliz-
ing elaborate calculations and specific assumptions,
a heroic effort before the availability of computers.
A current approach along those lines has recently
appeared[26].

A major biochemical activation reaction was N-
hydroxylation [27]. Ring-hydroxylation and conju-
gation led to the formation of detoxified metabolites
[24]. A major element in the activation reaction is
performed by cytochrome P450 1A2, although sev-
eral other cytochromes can also generate reactive
metabolites[28]. A second set of activation reactions
is sulfation of the N-hydroxy compounds by a PAPS
sulfotransferase, mainly with regard to liver carcino-
genesis[29,30]. Of great relevance was the essential
activation by several isomeric forms of N-acetylases
in the extra-hepatic organs, in animal models and in
humans[31–33]. Differences in sensitivity as a func-
tion of species or individuals are accounted for by
distinct levels of the enzymes required. For example,
guinea pigs are not sensitive to the carcinogenic ac-
tion of the arylamines, because they have low titers

Table 1
General conclusions after 100 years of research on arylamines and heterocyclic arylamines

No. Conclusion

1 The title compounds can induce cancer at specific sites in animal models and in humans.
2 The appropriate chemical structure determines whether a chemical is a potent carcinogen.
3 A methyl grouportho to amino group often increases the carcinogenicity, and may alter organotropism.
4 Arylamino compounds or a N-acetyl derivatives have similar effects, since acetylation or deacetylation can occur in vivo.
5 Biochemical oxidation, to form N-hydroxy compounds, mainly by cytochrome P450 1A2, but also other cytochrome P450 enzymes,

and by prostaglandin H. synthases is required to elicit not only carcinogenicity, but other actions such as methemoglobin formation.
6 Biochemical reduction by enzymes such as xanthine oxidase reductase of nitro aryl compounds can yield the proximate

N-hydroxy intermediate as a function of structure.
7 The N-hydroxarylamines require a second step biochemical activation viaortho-acetylation, sulfate ester formation (mainly for

liver as target) or other reactive ester biosynthesis.
8 The reactive compounds are genotoxic, i.e. react with DNA and genes at specific codons, yielding a mutated gene.
9 Those compounds also increase the rate of cell duplication through specific mechanisms. The effect is to introduce the mutated

gene into daughter cells, the classic initiation reaction.
10 Some chemopreventive agents decrease the rate of cell duplication, permitting the operation of DNA repair systems and restoring

the integrity of the normal cell DNA and genes.
11 Other chemopreventive agents increase the level of mainly phase II enzymes, such as glucuronosyltransferases or glutathione

transferases, serving to eliminate the reactive carcinogens as inactive metabolites.
12 The intestinal microflora can split phase II conjugates such as glucuronides, and the N-hydroxy compound liberated can be

subjected to acetylation to form a DNA reactive, genotoxic metabolite affecting the colon. The N-hydroxy compound liberated can
also undergo enterohepatic cycling and metabolisms, or be reduced to the parent amine, that can also be reabsorbed, or, if formed
in the lower intestinal tract, to be excreted.

of enzymes to perform N-oxidation[24]. In several
organs, prostaglandin H synthases can catalyse the
N-oxidation reaction, often associated with reactions
such as peroxidation and peroxyl radical formation
and the generation of reactive oxygen species (ROS)
[34,35]. In addition to the sulfation and acetylation
reactions, there are certain other activation reactions
by phase II enzymes for some types of arylamines
and species[36,37]. On the other hand, formation
of glucuronides through the action of isozymes of
UDP-glucuronosyl transferases, or that of glutathione
S-transferases, yielding conjugated polar derivatives
are important detoxification reactions[24,38]. Foods
such as vegetables or the black or green tea polyphe-
nols, that increase these phase II enzymes, may, in
part, reduce carcinogenesis through such mechanisms
[39,40] (Table 1).

The National Center for Toxicological Research,
FDA, in Arkansas, conducted an extensive program on
dose–response relationships with 2-acetylaminofluo-
rene, attempting to visualize in large numbers of rats
the lowest dose of a carcinogen that would have mini-
mal effects, the so-called ED01 studies[41]. Recently,
the group of Williams demonstrated that certain geno-
toxic carcinogens, including arylamines, displayed a
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dose–response with a definite threshold[42,43]. Al-
though threshold level of exposure for arylamine car-
cinogenicity is apparent in animal models, in humans,
other environmental factors including diet, as well as
specific genetic factors may potentially affect suscep-
tibility to arylamine carcinogenesis. For example, the
customary high-fat Western diet may have a promot-
ing action on arylamine-induced cancers and thereby
may alter the risk of carcinogenesis at specific organs
such as breast, colon, prostate, or pancreas[44].

4. The heterocyclic arylamines, carcinogens in
cooked meat

Sugimura in 1976 asked the question about what
might be in the fumes emitted during cooking of
meat or fish, although Widmark thought there might
be “cancer-producing substances in fried meat” in
1939 (cf.[45]). Ames provided an easy and sensitive
assay to detect genotoxic carcinogens by determin-
ing their mutagenicity in a bacterial system, the now
well-known, reliable Salmonella typhimuriumtest
[46]. This was used by Sugimura and colleagues, who
discovered mutagenicity in fumes from frying meat
or fish. An analysis of the surface of the brown part
of the cooked foods was found to be even more mu-
tagenic[47,48]. Weisburger, at the American Health
Foundation and his associates had been studying the
role of dietary fats in essential roles in the develop-
ment of high incidence types of neoplasia such as in
the breast, colon, prostate and pancreas[49]. Dietary
fats could act as promoters, but the potential genotoxic
carcinogens in the diet were not known at that time.
It seemed possible that these mutagens formed during
cooking might be likely candidates. Weisburger and
a post-doctorate fellow, Spingarn, convinced a fast
food restaurant to fry 50 kg of ground, lean meat to
the well-done state, and then a pharmaceutical house
to extract the fried meat in 2000 l of methanol, and
to provide his laboratory with a lyophilized prod-
uct [50]. This was utilized to develop a separation
method by HPLC, employing mutagenicity to locate
peaks of interest. Spingarn obtained a brief fellow-
ship to work with Sugimura and associates, where the
chemical structure of one of the mutagens, namely
2-amino-3-methylimidazo[4,5-f]quinoline (IQ), was
established[51]. IQ was a newly discovered chemi-

cal, a heterocyclic aromatic amine (HCA), anortho-
methylamino structure. Systematic studies later pro-
vided information on other such chemicals present
in cooked meat or fish. Felton and associates made
a key discovery based on the use of specialized
analytical techniques, using multiple chromatographic
steps, combined with mutagenicity[52]. They reported
the presence of another HCA, 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine, PhIP, in relatively
large amounts, but that had lower specific muta-
genicity and thus, was missed by previous inves-
tigators. This group later developed procedures to
minimize HCA formation during cooking and still
kill any Escherichia coli present in ground beef
[53]. They reported on the production of HCAs as a
function of heat flow during frying[54]. Gravy and
meat drippings contained elevated levels of HCAs
[55,56].

This new class of chemicals seems to be formed
by Maillard reactions in the presence of creatinine,
as reported initially by Grivas et al.[57], Jägerstad
et al. [55], Skog [58], and Taylor et al.[59]. These
findings accounted for the fact that only foods con-
taining creatine, mostly meat and fish, would give
rise to HCAs during cooking, and leading to the
ortho-aminomethylimidazo ring present in the HCAs.
It also explained why cooking of other types of foods
does not yield typical HCAs. This research required
technical developments, including essential in vitro
bioassay systems, the test of Ames[46] for muta-
genicity inS. typhimurium, a modifiedS. typhimurium
more sensitive to HCAs established by Kamataki
et al.[60], and of the test of Williams[43], examining
DNA repair in hepatocytes. Very valuable are specific
adsorption procedures of HCAs from dilute aqueous
solutions with blue cotton or blue rayon, to concen-
trate these compounds, developed by Hayatsu et al.
[61]. Structural elements bearing on mutagenicity
were reviewed by Hatch et al.[62].

The finding that this new class of mutagens could
cause cancer was by the Tokyo group of Ohgaki
et al. [63] in mice, of Takayama et al.[64] in rats,
and of Tanaka et al.[65] and Weisburger[66] who
administered IQ to female rats and discovered a high
incidence of cancer in the mammary gland, and ade-
nomas in the pancreas. PhIP is also a mammary gland
carcinogen in rats[67,68]. A major series of bioas-
says were conducted by Ito and coworkers[69,70,72]
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and associates in Nagoya (cf.[71]). In rats, certain
HCAs induced cancer in mammary gland, colon,
pancreas and prostate, target sites in humans that
are often linked to dietary factors. This research in
rats suggested that the HCAs may be the genotoxic
carcinogens associated with human cancer in these
target organs. It was documented by Adamson et al.
[73] at the NCI that IQ induced primary liver can-
cer in non-human primates in as little as 3 years,
one of the shortest latent periods in tests of chemi-
cals in that system. The proceedings of two interna-
tional conferences record these and related findings,
including discussions of the relevant mechanisms
[71,72].

Studies implicating the role of HCAs in human
cancer were not far behind, when Gerhardsson de
Verdier et al.[74] reported that regular consumers of
well done fried meat led to cancer in colon, rectum,
and pancreas, mimicking the animal findings. Find-
ings by Sinha and Rothman further supported the
involvement of well-done cooked meat consumption
and specifically PhIP and MeIQx exposure in human
breast and colon cancers[75], and Sinha [Mutat. Res.,
this issue]. In Sweden, and at IARC similar findings
were made and reviewed[76–78]. The problem in in-
terpreting epidemiologic results for colorectal cancer
as a function of meat intake is two-fold. Some re-
ports fail to examine the extent of cooking. It is clear
that only well-done to very well done meat contains
adequate amounts of HCAs[55–58,77]. Secondly,
colorectal cancer is a complex disease involving mul-
tiple etiologic and genetic factors. Nutritional habits,
including type and amount of fats and HCA intake
affect mainly the induction of distal colon cancer and
to some extent of rectal cancer (in the latter, alcohol
also plays a role). For proximal colon cancer, nutri-
tion has little influence, and inclusion of proximal
colon cancer is a confounding factor. Biochemical
approaches suggested that the aorta and heart are also
possible targets[79–81]. Life-long vegetarians have
a demonstrated lower incidence of heart disease and
several types of cancer, such as in the breast or colon
[82,83]. A number of investigators have discussed the
presence of HCAs in cooked foods, and the risk of
several important types of cancer in consumers (cf.
[84–87]). The general consensus from these studies
is that intake of well-done meats is associated an
increased risk of certain cancers.

Based on the original discovery of Swedish re-
searchers[55,57,58], that the key amino-methylimi-
dazo ring stemmed from creatinine, only muscle
meats that contain creatinine, give rise to HCAs upon
cooking. The Felton et al.[84,88] recorded that brief
microwaving of meats in a vessel that allowed run
off of the juices led to the elimination of most of the
creatinine. Then, ordinary cooking procedures could
follow and produced significantly lower amounts of
HCAs. Addition of creatinine produced more HCAs,
and thus, the amount of creatinine seems to be a
limitating factor. Skog et al.[89] found that car-
bohydrates lowered mutagen formation. Kikugawa
et al.[90] reported similar findings with higher levels
of glucose, ascorbate or erythorbate. Our group ob-
served that many types of antioxidants interfered with
the production of HCAs. This includes the synthetic
BHA, or those present in soy protein products, or
the antioxidant polyphenols present in green or black
tea [91,92] (Table 2). Also, tryptophan and proline
decreased the formation of these mutagens[93].

Virtually all studies in vitro demonstrating genotox-
icity of heterocyclic amines (HCA), and of aromatic
amines, as a function of chemical structure, have
established the general attributes of these chemicals
as likely human carcinogens. It has been established
that HCAs are carcinogenic in many animal models,
not only in those generally used in carcinogenicity
bioassays, but also in non-human primates. Inter-
estingly, whereas IQ is carcinogenic, MeIQx was
negative in non-human primates apparently because
of low N-hydroxylation of MeIQx in this species and
preferential glucuronide formation[94]. Currently, a
number of new approaches utilizing transgenic an-
imals provide an accelerated and specific means of
demonstrating carcinogenicity, and are the basis for
investigations at the molecular level[95–98]. Carcino-
genesis involves the formation of reactive metabolites
that form DNA adducts and induce mutations in spe-
cific genes[99–115]. In addition, the expression (or
lack of expression) of specific genes may also affect
susceptibility to HCA carcinogenesis. For example,
doses as low as 2 or 10 ppm of IQ in sensitive het-
erozygous p53-deficient mice yielded a small, but
significant increase in foci of aberrant crypts in the
colon. Importantly, a dosage of 0.4 ppm had no effect,
possibly providing evidence for a practical thresh-
old [113]. Genes regulating apoptosis, a process that
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Table 2
Prevention of the formation of heterocyclic amines

No. Process

1 Mixing 7–15% weight of soy protein concentrate with ground beef decreases formation of mutagens during frying by about 90%[91].
2 Mixing 2.5 g pectin or 4.0 g textured ProComm® or 4.0 g. Bontrac® (soy protein products) to 50 g beef patties decreased

formation of mutagens during frying by 50–60%[91].
3 Mixing 1-3 mM chlorogenic acid or of 10–20 mM butylated hydroxyanisole (BHA) decreased mutagenicity of fried 50 g beef

patties by 50–60%, and by 80–90%, respectively[91].
4 Applying a 0.5, 2, 5 or 7% solution in water of a commercial green tea polyphenol, polyphenon 60® to the 2 surfaces of 30 g

beef patties led to a dose-related lowering of mutagenicity after frying[89]. Similar tests, but using a black tea polyphenol,
polyphenon B® using 159, 175, 521 and 589 mg applied to both sides of 30 g beef patties, decreased mutagenicity by 70,70,90
and 95%, respectively[92].

5 Applying l-tryptophan orl-proline to the surface of ground meat produced a dose-related inhibition of mutagenicity. Also, such
inhibition was found in the liquid model reactions of Jägerstad and colleagues[89].

serves to eliminate abnormal cells, may be modulated
by specific HCAs as well as by chemopreventive
agents and thus may influence arylamine carcino-
genesis[116–118]. Future research with techniques
such as cDNA microarrays and proteomics may pro-
vide further insight into the critical genes affecting
susceptibility to HCA carcinogenesis.

5. Modification of the action of heterocyclic
amines

Just as it was determined for arylamines, the het-
erocyclic compounds undergo hydroxylation on the
nitrogen to generate the N-hydroxy compounds, prox-
imate carcinogens. This reaction occurs mostly in the
liver of diverse species. In the target organs, such as
intestinal tract or mammary gland, a conversion of the
proximate to the ultimate carcinogen occurs with the
biosynthesis of an acetyl ester or similar ester forms. In
contrast, C-hydroxylation is a detoxification reaction,

Table 3
Effect of green tea on percent of the total metabolites of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in 24 h

Metabolites Males Females

Control Tea Control Tea

5-OH-IQ sulfate 13.5± 0.2 16.0± 0.3a 10.7 ± 0.2 14.1± 0.2a

5-OH-IQ-glucuronide 24.0± 1.0 30.0± 3.0a 18.0 ± 0.2 25.1± 0.2a

N-OH-IQ-N-glucuronide 21.8± 0.3 24.0± 0.4a 15.4 ± 0.3 20.3± 0.4a

IQ sulfamate 31.0± 3.0 20.2± 0.2a 50.2 ± 1.1 35.3± 0.4a

Urine of male and female F344 rats.
a Student’st-test,P < 0.05, tea vs. control. The data are the mean±S.D. for the groups of 10 rats for each of the four series. Increases

in N- and C-hydroxylation, but especially of glucuronide formation by tea intake led to the results shown; from[126].

and the resulting phenolic compounds undergo conju-
gation by phase II enzymes such as sulfotransferase,
glutathione transferase, or glucuronosyl transferase.
Extracts of vegetables, and green or black teas induce
these phase II enzymes, and therefore, increase the
detoxification reactions[119–126](Table 3). Specific
bacterial systems in the intestinal tract participate in
the metabolism of HCA, both the chemical reaching
the gut directly, and more frequently, the chemicals
and their metabolites being secreted into the intesti-
nal tract through the bile[127–129]. Polymorphisms
and differences in expression of genes involved in
metabolic processing, such as enzymes involved in
the production of reactive metabolites, including cy-
tochrome P4501A2, and other cytochrome P450 en-
zymes, sulfotransferases, or acetylases may influence
genotoxicity[28–33,130–135](Table 1). With many
types of genotoxic carcinogens, there are parallel
findings in man and animals, given similar chronic
exposure and concentration, although with HCAs,
humans seem to be more sensitive[136,137]. This
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is especially true when there are promoters involved,
such as those associated with certain dietary fats at
these target organs. Although analyses of risk stem-
ming from the intake of HCAs reported relatively low
risk assessments, the potentially powerful promotion
by �-6-polyunsaturated oils on HCA carcinogene-
sis, paralleling that of other carcinogens, deserves
further explanation[49,138–140]. Nevertheless, a se-
ries of epidemiologic reports suggested that saturated
fats were promoters, when the fats were consumed
with the fried or broiled meats, a source of HCAs
[49,139,140]. Interestingly, fried and broiled fish have
been reported to contain various HCAs. However, fish
consumption is associated with a lower risk of certain
cancers such as colorectal cancer[49,49a]. Although
further studies are required, the�-3-polyunsaturated
oils in fish appear to be protective[49].

6. Reactive oxygen species and heterocyclic
amine metabolism

The formation of ROS associated with the metabo-
lism of fats and oils, and also that of the HCAs
[141–146]. It may well be that the documented ef-
fects of the HCAs in damaging the vascular system
and the heart, as well as formation of oxidized forms
of DNA, may stem from the simultaneous formation
of ROS. In contrast, the effect of antioxidants in pro-
tecting against HCAs may also be the result of their
action in inhibiting the formation and action of ROS
[124,145,146].

At a level of DNA, there are adducts at N-2 and
C-8 positions of guanylic acid, formed through the
reactive metabolites of the HCA. These can undergo
DNA repair, and the rate of cell cycling is of great
importance in that regard. If cell cycling is enhanced,
as it is often as a result of cell damage from the ac-
tion of exogenous toxicants such as carcinogens, or
of organ-specific promoters, DNA damage cannot be
repaired. The cell bearing an altered, mutated DNA is
the likely precursor to tumor formation. On the other
hand, a decreased cell cycling, as is observed with
some products like the tea polyphenols, may hinder
the fixation of carcinogen-induced mutation and geno-
toxicity [117,118]. Stimulation of apoptosis by tea
polyphenols and other chemopreventive agents would
also serve to eliminate tumor cells[116–118].

7. Conclusions

The discovery of the HCAs in the food chain of a
large proportion of people in the world has provided
impetus in research on the formation and mode of
action of these chemicals, as well as practical appli-
cation to reduce disease risk by modifying their pro-
duction or increasing their detoxification, as reviewed
in this paper, and at the 8th International Confer-
ence in general. A number of reviews and papers at
conferences have appeared[37,71,72,147], including
the 23rd International Symposium of the Princess
Takamatsu Cancer Research Fund[148]. Of great
relevance is an excellent, recent multi-author mono-
graph edited by Nagao and Sugimura[149]. A fair
understanding in this field came about by world-wide
collaboration between a number of research groups
that testifies to the rapid development possible through
multi-disciplinary interactive research. Prevention of
chronic diseases is the obviously the ideal means for
disease control. Healthy people require little medical
care, and thus, preventive public health approaches
would lower medical care expenses.
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