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ABSTRACT

Motivation: The precise prediction of protein secondary structure is
of key importance for the prediction of 3D structure and biological
function. Although the development of many excellent methods over
the last few decades has allowed the achievement of prediction
accuracies of up to 80%, progress seems to have reached a
bottleneck, and further improvements in accuracy have proven
difficult.
Results: We propose for the first time a structural position-specific
scoring matrix (SPSSM), and establish an unprecedented database
of 9 million sequences and their SPSSMs. This database, when
combined with a purpose-designed BLAST tool, provides a novel
prediction tool: SPSSMPred. When the SPSSMPred was validated
on a large dataset (10 814 entries), the Q3 accuracy of the protein
secondary structure prediction was 93.4%. Our approach was tested
on the two latest EVA sets; accuracies of 82.7 and 82.0% were
achieved, far higher than can be achieved using other predictors.
For further evaluation, we tested our approach on newly determined
sequences (141 entries), and obtained an accuracy of 89.6%. For
a set of low-homology proteins (40 entries), the SPSSMPred still
achieved a Q3 value of 84.6%.
Availability: The SPSSMPred server is available at
http://cal.tongji.edu.cn/SPSSMPred/
Contact: lith@tongji.edu.cn
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1 INTRODUCTION
Even prior to the determination of the protein structures of
hemoglobin and myoglobin by X-ray diffraction analysis (Kendrew
et al., 1958; Muirhead and Perutz, 1963), activity in the field of
protein structure study had been increasing steadily; after this point
and for some decades, the field attracted intense interest. It is
known that the structure of a protein determines its function, and
understanding the functions of proteins (such as catalysis, transport,
immunity, body defense and so on) is of fundamental importance
in the discovery of drugs to treat various diseases. Knowledge of
protein structures is therefore highly desirable.

In the protein structure hierarchy, there are four distinct levels—
the primary, secondary, tertiary and quaternary. Among these, the
protein secondary structure occupies an important position, as it

∗To whom correspondence should be addressed.

is the basis for the spatial structure of a protein. The secondary
structure is formed at an early stage of protein folding, so the study
of protein secondary structures is indispensable as the first and the
most important step in 3D structure studies. The protein secondary
structure has also been found to be instrumental in affecting the
performance in predicting the tertiary structure (Clementi et al.,
2003; Monge et al., 1994), subcellular localization (Nair and Rost,
2003) and so on.

Unfortunately, experimental methods for the detection of protein
secondary structure are time consuming and labor intensive. The
great disparity between the known protein sequences stored in the
UniProt (Wu et al., 2006) and detected protein structures deposited
in the Protein Data Bank (PDB) (Rose et al., 2011) continues to
grow larger. To fill this void, the identification of protein secondary
structures in terms of the three states of α-helix, β-sheet and random
coil has been carried out using their amino acid sequences; this
technique has become increasingly prominent. In spite of the many
efforts made by researchers over the last few decades, the prediction
of protein secondary structures from their amino acid sequences is
still difficult.

Looking back on some 40 years of protein secondary structure
prediction work, it might be possible to discern two categories that
encompass the majority of the research—template-based methods
and machine-learning methods. Template-based methods focused
on connections between a query sequence and template pool
sequences with known structures. The two most successful template-
based methods were NNSSP (Salamov and Solovyev, 1997) and
PREDATOR (Frishman and Argos, 1997). By comparison, machine-
learning methods generated a learning model via the use of a
series of proteins with known structures for prediction. In this
category, Artificial Neural Networks (Babaei et al., 2010; Chen and
Chaudhari, 2007), Support Vector Machines (Chen et al., 2007; Chen
et al., 2009; Hu et al., 2004; Nguyen and Rajapakse, 2003; Ward
et al., 2003) and Hidden Markov Models (Aydin et al., 2006; Di
Francesco et al., 1997; Zheng, 2005) were the most widely used
algorithms. Machine-learning methods have been deemed to be the
most effective and robust, and have been demonstrated in numerous
successful examples that often led to near-perfect predictions.

The development of the now widely adopted machine-learning
methods underwent three stages. During the initial stage, simple
methods were used for the prediction of structures, and these
methods suffered from a lack of data. Predictions were based
on sequence compositions and physical and chemical properties;
probably, the most famous early methods from that exploratory
stage were those proposed by Chou and Fasman (1974a, b),
Garnier, Osguthorbe and Robson (GOR) (Garnier et al., 1978) and

32 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

 by L
enka M

alinovska on M
arch 1, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[18:09 5/12/2011 Bioinformatics-btr611.tex] Page: 33 32–39

SPSSMPred

Lim (1974). They achieved accuracies of 56–60%, as assessed by
Kabsch and Sander (1983a, b). Later, methods were improved in
many aspects, and the accuracy performance improved (Deleage and
Roux, 1987; Holley and Karplus, 1989; King and Sternberg, 1990;
Kneller et al., 1990; Presnell et al., 1992). The second stage arrived
with the availability of large families of homologous sequences,
which revolutionized the prediction of secondary structures. The
combination of sequence alignments generated from a series of
protein families with sophisticated computing techniques such as
neural networks led to accuracies well in excess of 70%. Many
good methods for the prediction of secondary structures from
multiply aligned protein sequences emerged in that period, such
as PHD (Rost and Sander, 1993), ZPRED (Zvelebil et al., 1987),
NNSSP (Salamov and Solovyev, 1997), SSPRED (Mehta et al.,
1995), SOPMA (Geourjon and Deleage, 1994), SSP (Solovyev
and Salamov, 1994) and DSC (King and Sternberg, 1996). A
notable multiple sequence alignment tool was PSI-BLAST (Altschul
et al., 1997), which produced a position-specific scoring matrix
(PSSM) constructed from a multiple alignment of the top-scoring
BLAST responses to a given query sequence. With the continuing
development of algorithms and the better usage of sequence
alignments, many famous predictors converged on accuracy figures
of ∼80%, including PSIPRED (Jones, 1999) (which used PSI-
BLAST profiles for prediction), JPRED (Cole et al., 2008; Cuff
et al., 1998) (which made consensus predictions), PHD (Rost
and Sander, 1993) (which performed an all-in-one prediction) and
nnPredict (Kneller et al., 1990) (which used neural networks). The
third stage was the use of sequence-structural alignments; several
excellent and inspiring articles (Lin et al., 2010; Montgomerie
et al., 2006; Pollastri et al., 2007; Zhou et al., 2010) have been
published on this work in recent years. These methods focused on
sequence similarities and the direct usage of structural information,
and achieved accuracies slightly in excess of 80%, which showed
that the deep consideration of structural information did impact
the performance of the prediction. Zhou et al. (2010) dexterously
incorporated other secondary structural elements (in the form of a
shape string) to improve the predictive performance. Montgomerie
et al. (2006) directly utilized the secondary structures of the best-
matched sequences as the secondary structures of a query. Pollastri
et al. (2007) generated a set of templates based on a similarity
search of the PDB; the templates were further implemented as
inputs for an ensemble of recursive neural networks. Lin et al.
(2010) constructed a dictionary for the storage of short subsequences
and their secondary structures, and directly used these structural
elements when a query matched the short subsequences.

Here, we present a novel predictor, SPSSMPred, for the prediction
of protein secondary structures. SPSSMPred is based on an
original structural position-specific scoring matrix (SPSSM) that is
generated by sequence alignment, but its elements are secondary
structural profiles. The SPSSM can be used to build the relationship
between structural profile and protein secondary structure. For
the first time, we develop a strategy to construct a database of
the secondary structural profiles of 9 million sequences. This
database, 9M_database, is one in which every union is an amino
acid and its secondary structural profile is derived from the non-
redundancy database used in PSI-BLAST. We provide a BLAST
tool, 9M-BLAST, to align a query against the 9M-database and
results in PSSM and SPSSM simultaneously. A non-redundant
dataset is used as the training in the classification algorithm of

conditional random fields (CRFs) (Lafferty et al., 2001). The
SPSSMPred was tested on newly published protein sequences and
benchmark EVA datasets—we achieved results much closer to the
expected theoretical limit of secondary structure prediction (Rost,
2003).

2 METHODS

2.1 SPSSPred flowchart
A flowchart for the SPSSPred is shown in Figure 1. To perform a query,
9M-BLAST is first used to search the 9 million sequences and their
corresponding structural profiles in the 9M_database, which is established in
advance from PDB_99 using PSI-BLAST. As a result, both the PSSM and
SPSSM are obtained simultaneously. Finally, from the PSSM and SPSSM,
23 features in total are treated as input access CRFs for modeling prediction,
where the training set is the sequences of PDB_30.

2.2 SPSSM
The SPSSM is a distinctive PSSM-like profile composed from three boxes,
where the SPSSM scores are used to appraise matched sequences after
alignments are stored (Fig. 2, bottom). The score is defined as

Score1(i,s)=
∑
A(i,j)

θ(S(i,j),s) (1)

where i is the position of an amino acid in the target sequence and s is one
of the three state secondary structure elements, H, E or C. A(i,j) denotes a
set of all the matched sequence’s amino acids at the position i, and j directs
matched sequences in A(i,j). S(i,j) represents the corresponding secondary
structure element of A(i,j). θ(S(i,j),s) is defined as

θ(S(i,j),s)=
{

1 if S(i,j)=s

0 else
(2)

The scores for the state of H, E and C are calculated separately, then
allotted to the corresponding three boxes. It is clear that the score is the

Fig. 1. The flowchart of the SPSSMPred.
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Fig. 2. An example of generation of raw SPSSM in 9M_database. A query in 9M_database is sp|P85173.1, and its listed 49 amino acids (first line).
Four aligned ‘Sbjcts’ examples (in PDB_99) are shown, and two arrow tips point to two obtained sequences and their secondary structures. Then the
query and found secondary structural elements are shown in middle. After score, its raw SPSSM is constructed and a part of them (in red) is shown in
bottom.

frequency of the secondary structural elements, and that there are three
elements for each amino acid in the sequences.

The SPSSM reflects the sequence alignment’s shapes, and the properties
of the secondary structure. The SPSSM is the expansion of the PSSM with
regard to the structural aspects; the SPSSM inherits the concepts of the
PSSM, but takes more consideration of the deeper common ground beneath
the aligned sequences, where structural information may provide extra clues
for regularity.

There are two forms of SPSSM; the raw SPSSM and the normalized
SPSSM. The former is mainly stored in the 9M_database, and the latter is
one of the results produced by 9M-BLAST.

The raw SPSSM in the 9M_database is obtained by first running
PSI-BLAST against the PDB_99 (with three iterations and 500 maximum
target sequences) to find homologous sequences relative to the target
sequence (Fig. 2). The matched piecewise local sequences are then
selected according to e-values that are below a given threshold (say
10–5). All the selected sequences are subsequently identified and ranked
in accordance by their e-values in ascending order, and the top N (default
is 10) of these sorted sequences that are considered as containing rich
homologous information are reserved (if the number of the selected
sequences were less than N, all the selected sequences would be
kept). The scores of all amino acids in the 9M_database are then
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calculated according to Equation (1), and the final raw SPSSM is
constructed.

When 9M-BLAST is executed for a query against the 9M_database,
the procedure is similar to that mentioned above. However, there are two
differences; one is that 9M-BLAST uses the raw SPSSM instead of the
secondary structural elements, and the other is that the output of 9M-BLAST
is the normalized SPSSM, which is defined as

Score2(i,s)=
∑
A(i,j)

P(i,j,s)

/ ∑
s∈{H,E,C}

∑
A(i,j)

P(i,j,s) (3)

where P(i,j,s) denotes the value of the corresponding secondary structural
profile set of A(i,j) in the 9M_database, where the raw SPSSM has been
calculated according to Equation (1).

The normalized SPSSM is utilized as a feature for modeling and
prediction. Though there are only three elements in the normalized SPSSM
for an amino acid, due to it carrying homological and/or remote homological
information on the secondary structure, the profile is often much better able
to detect weak relationships than other features that have been used. We have
written procedures to construct the raw SPSSM for the 9M_database and the
normalized SPSSM as an output of 9M-BLAST.

2.3 Profile encodings
We use widely applied sequence profiles as encodings for our predictor,
as well as newly proposed structural profiles. Sequence profiles contain
rich sequence evolution information, and have long been proved to be an
effective variable for the prediction of secondary structures. On the other
hand, structural profiles are very simple, include valuable structural evolution
information derived from all the known detected structures and are evidently
of significant importance in improving prediction performances. As a result,
we utilize 23 variables [PSSM (20 variables) and SPSSM (3 variables). The
clarified 23 variables are also shown in Fig. 1.] as our final total encodings,
and establish a new relationship between structural profiles and secondary
structures in modeling. In the case that the structural profile is not sufficient
for encoding, the sequence profile will then take the dominant role in the
prediction.

2.4 CRFs
We perform our prediction by applying CRF to the problem of protein
secondary structure. CRF is capable of incorporating evidence that contains
long-range effects and unknown dependencies without requiring any
probabilistic modeling of the observed data, and avoid a fundamental
limitation of maximum entropy Markov models (MEMMs) (Liu et al., 2004)
and other discriminative Markov models based on directed graphical models,
which can be biased toward states with few successor states. CRF is superior
to many other machine learning methods in terms of speed. In our approach,
CRF is utilized for modeling and prediction.

We used only Unigram template for CRF, the template that we generated
considered two upward variables and two downward variables in row,
and then, all the variables in column were traversed. We set all the
parameters for modeling by default. We applied the CRF++ binary package
for MS-Windows. The environment for training and testing was windows 7
64-bit operating system with Intel Core 2 Quad CPU and RAM 6 GB.

2.5 Web servers
There are two servers—SPSSMPred server and 9M-BLAST server—that
we have set up for scientific users on our local infrastructure. These are
available at http://cal.tongji.edu.cn/SPSSMPred/. The SPSSMPred (version
1) server predicts secondary structure for query sequence(s) in three state
forms, and results are provided in the form of a web page and/or an e-mail.
The 9M-BLAST server affords four levels of normalized SPSSMs for a query
sequence(s), resulting from alignments against the 9M_database.

3 RESULTS AND DISCUSSION

3.1 Dataset construction
Two major datasets were constructed in our approach; these were
named PDB_99 and PDB_30. We constructed PDB_99 by using CD-
HIT (Li and Godzik, 2006) for single-copy sequences, with sequence
identity cut off value at 99% against sequences stored in PDB (as of
2010, containing 70 177 proteins) with a resolution of <2.5 Å and
an R-value of <0.3, and using only X-ray structures, the resolution
of which is usually higher. This returned 19 876 entries and their
secondary structure elements. The three-state secondary structure
elements (H: helix, E: sheet and C: random coil) in the PDB_99
were converted using the eight-state define secondary structure of
proteins (DSSP) (Kabsch and Sander, 1983a, b) with the following
scheme: H, G and I to H; E to E; all others to C (Rost and Sander,
1993). PDB_30 was then generated, in which the sequences were
obtained using CD-HIT cut off at 30% against the PDB_99, and any
sequence of length <20 amino acids was removed (containing 9062
entries). In both PDB_99 and PDB_30, an amino acid sequence and
its secondary structure element were joined as a union.

3.2 The 9M_database
The 9M_database is a BLAST compatible database and is the kernel
of the SPSSMPred, in which there are an unprecedented 9 million
sequences and corresponding secondary structural profiles. The
sequences in the 9M_database were derived from the non-redundant
NCBI database (as of 2009, 9 069 431 proteins) applied in PSI-
BLAST. The secondary structural profiles of the 9M_database were
generated by alignment and score [Equation (1) in Section 2]. Each
of the 9 million sequences was aligned against PDB_99 with PSI-
BLAST by setting the e-value at four different levels (1e-5, 1e-3,
1e-1 and 10) and other parameters at default. The aligned sequence
segments and corresponding unions in PDB_99 were obtained in
this way. The secondary structure elements in the matched unions
were scored in three boxes that contained the scores of three-
state secondary structural elements. These boxes then constituted a
secondary structural profile of the original sequence. This procedure
was repeated until the profiles of all sequences in the 9M_database
were formed.

In constructing the 9M_database, we have created a vast,
unparalleled database with integrated sequences and secondary
structural profiles. The 9M_database is based on the concept that
local similarities in protein sequences typically exhibit conserved
structures and also, in addition, that a high degree of robustness of
the structure with respect to the sequence variation may represent a
remote homology nature in the sequence.

3.3 Structural information in the 9M_database
We calculated the percentage coverage of the structural profiles
stored in the 9M_database. The results showed that 94.9% of the
9 million sequences were covered by structural profiles, giving
a total of 8 593 661 SPSSMs, and 70.2% of the 3 101 645 645
amino acids (2 176 906 296) overlapped with structural profile
information. By comparison, regarding the protein database of
known structures, there are only 4 788 328 amino acids of 19 876
proteins stored in PDB_99. This indicates that the 9M_database
is extremely expansive not only in sequence diversity but also in
structure extension, and acts as an abundant sequence and structural
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profile database. Even in the case that some very small parts
of the sequences were not aligned by 9M-BLAST, resulting in
zero encodings in SPSSMs, PSSMs (see following section) of the
SPSSMPred would compensate for the insufficiencies of SPSSMs,
and would play an important part in the prediction.

3.4 9M-BLAST: a tool for alignment against the
9M_database

We modified PSI-BLAST slightly to construct 9M-BLAST tool,
which can align against the 9M_database for a query. When
9M-BLAST alignment is carried out, both PSSM and SPSSM are
obtained simultaneously. It is clear that 9M-BLAST provides more
information than BLAST against the non-redundant database, and is
expected to be a powerful tool for the prediction of protein structure
and function based on sequence.

9M-BLAST is a convenient and practical PSSM and SPSSM
creation tool that we constructed to facilitate the process
of extracting whole useful sequences and structural profiles.
9M-BLAST enriches the traditional Blast algorithm by providing
not only the sequence profile, but also structural profile knowledge
of the homology and remote homology (which may be utilized as
a modified or enhanced version of Blast in sequence and structure
analysis).

3.5 Validations and large-scale predictions
In order to gain an understanding of the performance of the PDB_30
training model of 9062 sequences, we performed a 5-fold cross-
validation, as detailed in Table 1. Note that because the 9M_database
was derived from a very large, diverse set of databases including
PDB, when analyzed using 9M-BLAST, any sequence in the 9062
with an exact match in the 9M_database was discarded for fairness.
The 5-fold cross-validation is a relatively strict cross-validation
method used to estimate how accurately a predictive model will
perform in practice, and is important in guarding against testing
hypotheses suggested by the data. The results showed that our
program predicted three-state secondary structures with an average
Q3 of 93.7% and an average segment overlap measure (SOV) (Rost
et al., 1994; Zemla et al., 1999) of 94.6%, which indicated that
the training model had strong potential for practical applications.
The SOV score treats secondary structure segments as basic units,
and can effectively capture structurally important features while
reducing the significance of those that are less important. An SOV
score of 94.6% was obtained under the 5-fold cross-validation,
which indicated that the overall secondary structure segments’
regions were distinguished relatively well.

We predicted all the PDB_99 sequences apart from the PDB_30
(we defined it as the rest of PDB_99, containing 10 814 protein

Table 1. The 5-fold cross-validation on PDB_30 (training set, 9062 proteins)
and the prediction of PDB_99 preclude the PDB_30 (remaining 10 814
proteins) (numbers given in percentages, %)

Q3 QC QH QE SOVall SOVC SOVH SOVE

PDB_30 (5-fold) 93.7 92.4 94.9 94.2 94.6 93.5 95.2 95.6
PDB_99 (preclude

PDB_30)
93.4 92.1 94.3 94.3 94.5 93.5 94.9 95.8

chains). When tested with our program using the same strict
constraints as in the 5-fold cross-validation (to enable a fair
comparison, when using 9M-BLAST, any sequence in the 10 814
with an exact match in the 9M_database—as aligned with the PDB
index—was not included), an accuracy of 93.4% was achieved
(Table 1). Our method performed satisfactorily for this large quantity
of sequences, which indicated that the SPSSMPred is efficient for
large-scale predictions. It should be noted that this was an example
to confirm the ability of our method on large scale, and more strict
evaluation examples such as suggested by Jones (1999) were showed
in below.

3.6 Performance on newly measured proteins
We also tested the performance of the SPSSMPred on newly
measured proteins (measured using X-ray crystallography). These
proteins have not yet been mentioned in the literature relevant to
the field of protein structure prediction; we wished to evaluate the
ability of our predictor to analyze proteins with structures that have
not already been solved. We established two test sets, T_241 and
T_141, which were derived from entirely new measured sequences
published in January, February and March, 2011 in PDB (1907
proteins). The T_241 dataset included sequences determined using
only the X-ray method, while the T_141 dataset was built with
stricter conditions; resolution of <2.5 Å, R<0.3 and using only
X-ray structures. After sequence identity cutting off value at 99%
by CD-HIT on the two datasets, 241 proteins remained in T_241,
and 141 proteins remained in T_141.

Table 2 shows that impressive scores of 89.6% (Q3) and 89.8%
(SOV) for the T_141 test set and 85.3% (Q3) and 85.8% (SOV)
for the T_241 test set were obtained. These values approach the
theoretical limit of protein secondary structure prediction, which
means that not only was an excellent model built, but also the
practical performance on not-yet-released proteins was outstanding.
In Table 2, we also tested the performance of our program when only
PSSM was used for T_141 dataset and T_241 dataset in the same
pipeline to make a comparison of the contribution between PSSM
and SPSSM. It should be noted that the T_241 results were not as
good as those from T_141 and the performance on new measured
proteins in Table 2 also showed a decrease of QC and QE. The
reason for this could be that T_141 was obtained under stricter
conditions, with resolution of <2.5 Å and R<0.3; these conditions
matched the training model with the same screening parameters. It
was also suggested that several β-sheets reported by DSSP were
smaller in size and DSSP fragmented the actual β-sheets in many
independent ones (Parisien and Major, 2005), which led to a decrease
in prediction accuracies of QC and QE. This also indirectly indicated
that our model was able to achieve satisfactory prediction results
when sufficiently exact measurements were available. Besides,

Table 2. Performance on new measured proteins of PDB January, February
and March, 2011 (%)

Q3 QC QH QE SOVall SOVC SOVH SOVE

T_141 89.6 87.7 91.5 90.0 89.8 86.9 91.6 91.9
T_241 85.3 82.6 90.1 82.8 85.8 84.2 88.6 84.5
T_141(PSSM only) 73.5 77.4 75.7 62.0 68.4 67.6 70.2 66.5
T_241(PSSM only) 71.7 74.6 73.8 62.3 67.6 68.1 68.6 65.1
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Table 3. Performance on low-homology proteins (%)

Q3 QC QH QE SOVall SOVC SOVH SOVE

40 low homology 84.6 82.3 87.7 83.5 82.7 79.1 85.8 84.3

the performance of a predictor is also dependent on accurate
secondary structure assignment from protein atomic coordinates,
perhaps β-Spider (Parisien and Major, 2005) could assign more
reasonable β-sheet, which may improve unbalance of accuracies
on H to E and C.

3.7 Prediction of low-homology proteins
The excellent performance of the SPSSMPred is not limited only
to homology sequences; low-homology sequences also benefit
from numerous sequences in the 9M_database that contain remote
homology information. We cut T_141 against PDB_99 at a 30%
sequence identity level; this left 40 sequences to form a low-
homologue sequence set. For these 40 sequences (Table 3), the
accuracy was Q3 84.6%, with an SOV value of 82.7%. The results
showed that even in difficult cases where only a low number
of homologues exist, our program is still effective in searching
for distant similarities. This is because low homologues behave
relatively; one sequence that is quite dissimilar with PDB_99 may
find some resemblances in the 9M_database, due to its vast sequence
capacity. Such similarities may carry valuable structural profiles
with respect to the given low-homology sequence.

3.8 Comparison with results from benchmark EVA
datasets

We chose the two latest benchmark EVA datasets (EVAset1 and
EVAset2) (Lin et al., 2010) to further evaluate our predictor via a
comparison with other excellent existing methods. The EVA set has
served for a number of years as a benchmark for protein secondary
structure predictors, particularly for CASP competitions (Eyrich
et al., 2001). The chosen EVAset1 contained 80 sequence-unique
proteins, which is the minimum number of the EVAset2 (containing
212 proteins). These sets are considered as the strictest assessment of
the performance of a predictor, since only those sequences without
any sequence identities against the previous ones will be kept.

To more strictly assess the performance of the SPSSMPred, we
used the two EVA datasets to make a ‘blind’ test prediction, and
the results were compared with other state-of-the-art prediction
methods. It is worth mentioning that to make a relatively legitimate
and rigorous test, 11 sequences in the training model that coexisted
in the EVA sets were removed from the training set. Moreover,
during the test encoding process, any sequence alignments found
by 9M-BLAST that had an exact match in the 9M_database were
not included in the final SPSSM count.

Table 4 shows the results of the test on the two EVA sets, as
well as results from other methods. The SPSSMPred achieved Q3
accuracies of 82.0% (SOV 83.0%) and 82.7% (SOV 83.3%) for
EVAset1 and EVAset2, respectively. In a comparison with other
high-performing secondary structure predictors, the SPSSMPred
was superior, giving Q3 scores that were higher by about 3–8%.
This resulted from the fact that the application of the 9M_database
significantly improved the detection of fragmentary homology, and

Table 4. The prediction performance of different methods on the EVA
benchmark datasets (%)

Q3 SOVall SOVC SOVH SOVE

EVAset1 (80 proteins)
SPSSMPred 82.0±0.8 83.0±0.9 83.3 81.7 85.4
SymPred 78.8±1.4 76.4±1.9 70.4 85.0 76.5
SAM-T99sec 77.2±1.2 74.6±1.5 71.2 80.9 72.5
PSIPRED 76.8±1.4 75.4±2.0 65.2 82.1 72.3
PROFsec 75.5±1.4 74.9±1.9 71.3 78.3 75.9
PHDpsi 73.4±1.4 69.5±1.9 65.2 73.7 73.9

EVAset2 (212 proteins)
SPSSMPred 82.7±0.8 83.3±1.0 82.4 84.6 81.9
SymPred 79.2±0.9 76.0±1.2 71.3 85.1 77.7
PSIPRED 77.8±0.8 75.4±1.1 70.4 80.6 72.6
PROFsec 76.7±0.8 74.8±1.1 71.8 79.2 76.2
PHDpsi 75.0±0.8 70.9±1.2 67.0 77.0 72.4

that even unique sequences in the EVA sets showed some remote
similarities.

It should be noted that Table 4 also shows that the performance
of SOVH is not as good as other methods, but SOVC and SOVE are
much better compared with other prediction methods. It indicates
that our method is able to balance SOVH, SOVE and SOVC quite
well especially under non-homology conditions.

3.9 Prediction for an anopheles gambiae
odorant-binding protein and a T cell receptor

Protein 3L47 was taken as an example to demonstrate one prediction
result by the SPSSMPred for the prediction of almost-no-homology
and unique sequences from prior sequences of known structures
(Fig. 3). Protein 3L47 is an anopheles gambiae odorant-binding
protein that plays a key role in mosquitoes’ semiochemical system.
Semiochemicals such as pheromones, plant volatiles or animal
odors are small hydrophobic molecules that enter the antennae and
other sensory organs via pores, and pass across the hydrophilic
sensilla lymph surrounding the olfactory neuronal dendrites. The
sensilla lymph contains extremely high concentrations of odorant-
binding proteins; an understanding of these proteins is highly
desirable due to their potential, both for mediating the behavioral
expressions of mosquitoes such as host-seeking, mating, blood
feeding and oviposition, and for the development of new disease
control strategies against mosquitoes (Yang et al., 2011).

Protein 3L47 is an all alpha helix transport protein with a unique
chain A. It was released on January 12th 2011 in PDB, and after a
search of sequence alignments by PSI-BLAST against the PDB_99,
no sequence similarities could be obtained at all under an e-value
of 1e-5. When a prediction was made using the SPSSMPred, an
overall Q3 of 84.4% and an SOV of 85.3% were obtained. 3O4LB is
another all β-sheets protein example of genetic and structural basis
for selection of a ubiquitous T-cell receptor deployed in Epstein–
Barr virus, the overall performance of 3O4LB was Q3 of 90.0%,
and Figure 3b showed that we predicted all the core region of
β-sheets quite well. This highlights the aptitude of the SPSSMPred in
forecasting very dissimilar sequences, which results from its ability
to detect remote homology sequences.
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Fig. 3. An example of prediction of low-homology protein, 3L47 (a) and
3O4LB (b). The red represents helixes which have been predicted correctly.
The green represents Random Coils which have been predicted correctly.
The blue represents β-sheets which have been predicted correctly. The
gray represents structures that have been predicted incorrectly. The yellow
represents structures obtained from DSSP that are not matched to the 3D
structures but are predicted correctly by the SPSSMPred. The illustration
of the 3D structure of 3L47 (a) and 3O4LB (b) were drawn by PyMOL
(Schrodinger, 2010).

4 CONCLUSIONS
In this study, we have presented the excellent performance of the
SPSSMPred in predicting protein secondary structure. Tests on a
proteome-scale set of 10 814 protein chains showed that the overall
Q3 accuracy of the SPSSMPred was 93.4%. When tested on the
two benchmark sets, the overall Q3 accuracy scores were 82.0 and
82.7%. For the newly published T_141 and T_241—for which no
sequences appear in either the training set or PDB_99—the overall
Q3 accuracy values still reached 89.6 and 85.3%, respectively.
Moreover, after cutting out redundant sequences, the overall Q3
accuracy for the 40 low-homology sequences was 84.6%, which
confirmed that the SPSSMPred performed well in the prediction of
low-homology sequences.

The SPSSMPred is based on a new methodology for the prediction
of protein secondary structure; a methodology that is different from

existing state-of-the-art methods. First, there is no doubt that the
main contribution comes from the 9M_database, in which a huge
number of sequences bring raw SPSSMs that contain homology and
remote homology information. In fact, the 9M_database represents
almost all the experimental secondary structure information in the
PDB, and can be considered as an extension of PDB. When a query
is aligned against the 9M_database using 9M-BLAST, a PSSM
is returned in the same format as one produced by PSI-BLAST,
followed by a normalized SPSSM carrying secondary structural
profiles. Second, the SPSSM is at the heart of our methodology. The
SPSSM describes the probabilities of the three secondary structural
elements of an amino acid in sequence, and includes information on
the structural evolution. Third, in this pioneering work a relationship
is built between structural profiles and secondary structures; this is
the simplest but best model now available. We believe that this
methodology could be extended to other structural biological fields,
and that it will greatly improve prediction efficiencies.
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