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Secondary structure prediction methods are computational algorithms that predict the

secondary structure of a protein (i.e. a helices, b strands and turns) from the primary

structure (the amino acid sequence).

Introduction

For most proteins, the three-dimensional (3D) structure is
determined only by the amino acid sequence. Although it
has been discovered that molecular chaperones present in
cells speed the rate of folding and prevent misfolds, a
protein’s native 3D structure is currently believed to be
determined only by its sequence and the local environment
(i.e. the solvent). Recent genome sequencing efforts, such
as the Human Genome Project, have caused an explosion
in the number of known protein sequences. However,
experimental methods for determining 3D structure, such
as X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy, are comparatively slow and expen-
sive. Therefore, purely computational methods for deter-
mining a protein’s 3D structure and function from
sequence alone are highly desirable, and development of
such methods will continue to be one of the major
challenges for computational biologists in the coming
postgenomic era.
Secondary structure prediction has long been viewed as a

useful first step in prediction of 3D structure. Every
computational method is parameterized, or trained, on a
‘training set’ of proteins with known secondary structure.
The accuracy of themethod is then estimated by testing the
methodonadifferent set of proteins, the ‘test set’.Although
the correct secondary structure of proteins in the test set
must be known in order to judge the prediction accuracy,
this information is withheld from the algorithmmaking the
prediction. Assuming the proteins in the test set represent a
statistically significant sample of the unknown proteins on
which the algorithmmight actually be used, this procedure
gives a good estimate of howaccurately an algorithmmight
perform on unknown proteins. By comparing the accuracy
of various methods using several measures, it is easy to
demonstrate that significant progress has been made in the
field as the sizes of the training sets have increased and the
algorithms themselves have become more complex.

Measures of accuracy

The most intuitive measure of secondary structure predic-
tion accuracy, and therefore the most often quoted in

describing the accuracy of various methods, is simply the
percentage of residues in a protein or set of proteins for
which the secondary structure is predicted correctly. Most
methods attempt to distinguish the most commonly
occurring types of secondary structure, a helices and
extended b strands, from the rest of the protein, which is
described as ‘coil’. If every residue in a protein is predicted
to be in one of three states (helix, strand or coil), the three-
state prediction accuracy, or Q3, is measured by simply
dividing the number of correct predictions made by the
total number of residues in the protein:
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Here, Rstrand is the number of correctly predicted residues
of type strand, andN is the total number of residues. There
are several problems with judging algorithms only on the
basis of Q3. First, the Q3 score does not account for
differing success rates on different types of secondary
structure. Also, theQ3 score overemphasizes prediction of
coil, the most common type of secondary structure.
Because approximately 50% of most proteins are neither
helix nor strand, a hypothetical algorithm that predicted
every residue as coil would be 50% accurate (although
100%useless). To quantify an algorithm’s performance on
different types of secondary structure, researchers often
calculate Matthews correlation coefficients for prediction
of helix (Chelix), strand (Cstrand) and coil (Ccoil):
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In this calculation, pH is the number of correctly predicted
helical residues, nH is the number of residues that are
correctly identified as something other than helix, oH is the
number of nonhelical residues that are predicted as helix,
and uH is the number of helical residues that are missed by
the algorithm. A corresponding calculation is done for
Cstrand andCcoil. Matthews coefficients range from 2 1 for
perfectly anticorrelated predictions to 1 1 for perfect
predictions, andare close to 0 for randompredictions (such
as the above example).
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A third quantitative measure of accuracy, segment
overlap score (Sov), has recently been proposed as a
standard for comparison of secondary structure prediction
algorithms (Zemla et al., 1999). The definition is fairly
complex and beyond the scope of this article. LikeQ3, Sov
can range from 0 to 100%. Compared toQ3, the Sov score
places emphasis on the ability of algorithms to correctly
predict the core regions of secondary structure elements,
penalizing algorithms that incorrectly break a single helix
or strand into two or more separate elements of secondary
structure. Therefore, secondary structure predictionmeth-
ods that produce high Sov scores should be most useful to
researchers for whom an accurate prediction of the exact
number and sequential order of helices and strands in a
protein is more important than a prediction of the precise
locations of the boundaries of the elements. Several
prediction methods published between 1994 and 1999
report a similar (but somewhat subjectively defined)
measure proposed by the same research group, which
was also called Sov. Since Sov scores for algorithms
published to date have not been recalculated according to
the new quantitative definition, further discussion of Sov
will be omitted from this article. However, this measure
may prove very useful in comparing future prediction
methods.

Comparison of accuracy

A comparison of published accuracy statistics for several
historical and current methods of secondary structure

prediction is shown in Table 1. The test sets consist of 62
proteins for the three pre-1983 methods, and at least 124
nonhomologous proteins for the later methods. In most
cases, the test sets contained no proteins that were highly
homologous to the proteins used to parameterize the
methods. There are three cases for which the training and
test sets overlap; for thesemethods, the reported accuracies
are approximately 1–5%higher thanmight be expected for
newly discovered proteins. In one case, results are reported
for a data set in which short helices and strands were
redefined as coil; although this increases the apparentQ3 of
the method, correlation coefficients show the method to be
slightly less accurate than similar methods. For methods
with a publicly available web server or downloadable
program, the name of the program is given. In some cases,
statistics could not be computed from the information
published.

Helix and Strand Propensities for
Individual Amino Acids

In 1961, Anfinsen hypothesized that the conformation of
proteins was determined primarily by their amino acid
sequence. Shortly thereafter, theoreticians began attempts
to predict protein structure from sequence. Earlymodels in
the mid-1960s classified amino acids as helix formers or
helix breakers, based on the few known X-ray crystal
structures (mostly of predominantly a-helical proteins

Table 1 Comparison of accuracy of various secondary structure prediction methods

Names of downloadable programs are given in parentheses.
aCases in which the training and test sets overlap.
bData set in which short helices and strands were redefined as coil.
—, Statistics could not be computed from the information published.

Type Method Year Q3 (%) Chelix Cstrand Ccoil

Statistical Chou & Fasman 1974, 1978 49.9 0.22 0.22 0.25

Lim a 1974 59.4 0.37 0.29 0.31

Garnier et al. (GOR) a 1978 55.9 0.35 0.31 0.30

King et al. (DSC) 1997 70.1 — — —

Nearest neighbour Yi and Lander 1993 68.0 0.52 0.41 0.44

Salamov and Solovyev (SSPAL) 1997 73.5 0.65 0.53 —

SSPAL, single sequence input 1997 71.0 0.61 0.49 —

Frishman and Argos (Predator)b 1997 74.8 0.61 0.45 0.44

Neural networks Qian and Sejnowski 1988 64.3 0.41 0.31 0.41

Holley and Karplus 1989 63.2 0.41 0.32 0.36

Rost and Sander (PHD) 1993, 1994 72.2 0.63 0.53 0.52

Chandonia and Karplus (Pred2ary) 1999 74.8 0.68 0.54 0.55

Combined Cuff and Barton (JPred) a 1999 72.9 — — —

Homology modelling Theoretical limit 88.0 — — —

Protein Secondary Structures: Prediction

2



such as myoglobin) available at the time. Other methods
involved using ‘helical wheel’ plots to search for sequences
that could formamphipathic (chargedor polar onone side,
and hydrophobic on the other) a helices. Most methods
reported at least 60–70% accuracy at helix prediction on
test sets consisting of only a fewproteins. The first attempts
at b-sheet prediction were made in 1970, but these were
largely unsuccessful.
In 1974, Chou and Fasman presented the first algorithm

for predicting a-helix, b-strand and coil regions of globular
proteins.The algorithmwasparameterizedusing a set of 15
crystal structures available at the time. In total, the data set
contained 2473 residues, of which 36% were a helix, 17%
were b sheet and 47% were coil. Compared to current
databases, which contain a representative cross-section of
known protein structures (containing hundreds of times
more data), the data set of Chou and Fasman slightly
overrepresents helix and underrepresents strand; however,
this data set was significantly larger and more diverse than
those used to parameterize prior algorithms.
The Chou and Fasman method uses a-helix, b-strand

and coil ‘conformational parameters’ derived for each
amino acid. These are calculated by dividing the observed
frequency of each amino acid in each type of secondary
structure by the overall frequency of that secondary
structure type in the data set. The a-helix conformational
parameters are used to classify the 20 amino acids into six
categories, ranging from ‘strong helix formers’ (Glu, Ala
and Leu) to ‘strong helix breakers’ (Pro and Gly). Glu, the
strongest helix former, is 1.53 times as likely to be present in
a helix as the average amino acid; at the other end of the
spectrum, Gly is only 0.53 times as likely to be present in a
helix. The 20 amino acids are also classified into six
categories according to their relative chances of being
found inb sheet; these normalized probabilities range from
1.67 forMet to 0.26 for Glu. Chou and Fasman present 10
rules for helix and strand nucleation, extension and
termination. After assigning regions of the sequences as a
helices and b strands according to these rules, unassigned
regions are predicted as coil. The rules are fairly complex,
but easily implemented on a computer. Chou and Fasman
claimed 80% (Q3) accuracy for their algorithm (Chou and
Fasman, 1974).
Other prediction algorithms invented in the mid-to-late

1970s included the method of Lim (Lim, 1974), and the
Garnier, Osguthorpe and Robson (GOR) method (Gar-
nier et al., 1978). The method of Lim is of special interest
because it involves no numeric parameters. Instead, amino
acids are classified into six categories according to size,
hydrophobicity and conformational flexibility. Lim then
presents several dozen rules for matching patterns of
amino acid types with helices and strand formation, based
on the current theory of hydrophobic packing in the core of
proteins. Remaining segments of the chain are classified as
coil. Lim demonstrated the predictions to be 70% (Q3)
accurate on the sequences he tested. The GOR method

takes the opposite approach to that of Lim, attempting to
use more information statistically derived from known
structures in the prediction process. In the GOR method,
secondary structure type at a given sequence position is
correlated with the amino acid types at positions up to
eight residues away in sequence. These statistics are used to
calculate conformation preferences for a helix, b strand, b
turn and coil at each position in a new sequence.
Predictions are then made using only a few rules, which
account for cooperativity in secondary structure formation
and the relative frequencies of the four types of secondary
structure in thedatabase.GORclaimed49%(Q4) accuracy
for the four-state prediction problem; although this is low
compared with other algorithms that claimed 70–80% Q3
accuracy, the four-state prediction problem is significantly
more difficult.
Because of conflicting accuracy claims for various

algorithms, Kabsch and Sander conducted a study in
1983 comparing the Chou and Fasman, GOR and Lim
algorithms. The test set contained 62 proteins, the largest
such set that had been assembled. Twenty-four of the
structures were known prior to 1974, when the Chou and
Fasman and Lim methods were published. The 38 post-
1974 structures in the data set were therefore thought to be
a better test of the algorithms’ expected performance on
newly discovered proteins. Results of the threemethods on
the entire test set are shown in Table 1. Themethod of Chou
and Fasman performed with about 50% accuracy on both
pre-1974 and post-1974 structures, significantly lower than
the authors’ original claimof 80%accuracy. The other two
methods performed significantly better on the earlier test
set, indicating possible overparameterization of the algo-
rithms tofit existing data.Basedon results on thepost-1974
set, both the GOR and Lim methods could be expected to
perform at about 56% accuracy on newly discovered
sequences. This increase in accuracy in both algorithms
relative to Chou and Fasman’s technique was largely due
to improvements in a-helix prediction, with more modest
gains in b-strand prediction accuracy; however, even a
56% rate of successful predictions was significantly lower
than the authors’ prior claims. Kabsch and Sander
concluded that ‘an error rate of 44% is unacceptable for
many purposes, and newly developing methods must do
better’ (Kabsch and Sander, 1983).

Use of Sequence Alignment to Improve
Predictions

The use of larger training data sets and more complex
statistical methods gradually improved prediction accu-
racy to over 60% by the late 1980s. A major increase in
accuracy came in 1993, whenRost and Sander began using
multiple sequence profiles to predict secondary structure.
Rather than training and testing their method on single
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sequences, Rost and Sander first constructed profiles of
sequences by using local alignment algorithms to collect
evolutionarily related sequences from current sequence
databases. Although the majority of the sequences in each
profile did not have known 3D structures, the authors
hypothesized that the sequences that were highly similar to
the sequence being predicted would also assume a similar
fold. This additional information, such as the sequence
conservation rate at each position and the range of possible
amino acid types that might be accommodated at each
position in the 3D structure, enabled a 7% increase in the
accuracy of their algorithm, from 62% to 69% (Rost and
Sander, 1994).
Prediction algorithms which rely only on simple

statistics of amino acid frequencies have been updated to
take advantage of multiple sequence profiles. The recently
published DSC algorithm (King et al., 1997) achieves
70.1% overall accuracy on a test set of 126 proteins which
were not homologous to those used to parameterize the
algorithm. Although this figure is lower than that for other
contemporary algorithms, the authors claim an advantage
in the simplicity of the method. The most accurate
predictionmethods to date are based on nearest neighbour
methods and neural networks (discussed in the following
two sections); because these methods employ complex
nonlinear statistics, they have been criticized by some as
‘black boxes’, as the exact derivation of any individual
prediction is often unclear.

Nearest Neighbour Methods

In the late 1980s, a new class of secondary structure
prediction algorithm began to take advantage of the large
number of 3D structures that were becoming available in
public databases. These ‘nearest neighbour’ methods use
sequence alignment techniques to search the database of
available structures for segments of known proteins that
are homologous to the query sequence. At each residue in
the query sequence, a secondary structure prediction is
made by choosing the secondary structure state (a helix, b
strand or coil) held by the majority of the residues in
homologous sequences of known structure.
An important element of nearest neighbour algorithms

is the choice of sequence alignment algorithms used to find
the neighbours. Early algorithms used standard 20� 20
amino acid substitutionmatrices, such as the BLOSUMor
PAM matrices (Dayhoff, 1978). In 1991, the environmen-
tal scoring method of Bowie and colleagues introduced
substitutionmatrices based on amino acid type, secondary
structure and solvent exposure of residues, significantly
improving the accuracy of sequence alignment. These
improved substitution matrices enabled the nearest neigh-
bour method of Yi and Lander to achieve prediction
accuracy of 68.0% on single sequences (Yi and Lander,

1993). Nearest neighbour methods are particularly useful
in cases where structures of proteins highly homologous to
the query sequence are present in the database, but
unknown to the investigator using the method. In these
cases, the homologous structure may be automatically
identified through sequence alignment and heavily
weighted in making predictions, resulting in accuracy
levels comparable with homology modelling (85–90%).
In 1995, Salamov and Solovyev used multiple sequence

profiles and a larger number of environmental classes (72,
as opposed toYi and Lander’s 15) to improve the accuracy
of nearest neighbour methods to 72.7%. An improved
version of this method that uses a more advanced local
sequence alignment algorithm produces the most accurate
results of any nearest neighbour algorithm published to
date, with a Q3 of 73.5%. Nearest neighbour algorithms
such as this one also performwell comparedwith statistical
or neural network-based methods when single sequences
rather than sequence profiles are used as input. The
updated Salamov and Solovyev method achieves 71.0%
accuracy in this case, the highest reported to date for single
sequences (Salamov and Solovyev, 1997).
Another notable prediction algorithm that uses nearest

neighbour methods is that of Frishman and Argos (1997).
As in other, similar algorithms, homologous neighbours
are identified using a local sequence alignment algorithm
on a large database of sequences. Seven propensities for
various types of secondary structure are then calculated for
each position in the alignment; in addition to the standard
three secondary structure categories, propensities for all
helices (including a, 310 and p helices), parallel and
antiparallel b strands, and turns are also calculated. The
propensities at each residue are then translated into
predictions using a set of heuristic rules, similar to the
original method of Chou and Fasman (Frishman and
Argos, 1997). Although the authors claim 74.8% accuracy
for the algorithm, this was accomplished by redefining the
shortest helices and strands (which are themost difficult for
all methods to predict reliably) in the data set as coil.When
evaluated on this basis of Matthews correlation coeffi-
cients, the method of Frishman and Argos is less accurate
than other recently developed nearest neighbour algo-
rithms (Table 1).

Neural Networks

The neural networkmodel is based on attempts to simulate
computationally processes that take place in biological
neural networks. The model consists of a set of units that
represent neurons, and weighted connections between the
units. Each unit sums the input fromvarious other neurons
and/or outside sources, processes the input with a
sigmoidal ‘activation function’ that represents the activa-
tion threshold of biological neurons, and passes the

Protein Secondary Structures: Prediction

4



resulting output to other neurons to which it is connected.
Computationally, the neural network can be thought of as
a complex nonlinear function that maps a set of inputs
(units with no input from other neurons, only from
external sources) to a set of outputs. Well-established
algorithms have been developed to ‘train’ a neural network
to map a series of given input patterns to their desired
output. The trained network can then be used to evaluate
new data that become available. This pattern recognition
ability of neural networks has been a topic of research in
the field of artificial intelligence for many years.
In the late 1980s, several research groups trained neural

networks to map patterns present in amino acid sequences
to the correct secondary structure. Qian and Sejnowski
developed a series of cascading networks that map single
sequences to structure. The first network in the cascade is
shown a window of 15 sequential residues as input, and
trained to predict propensities for helix, strand and coil of
the central residue in the window. The input window is
‘slid’ along the sequence, and centred on each residue until
all are predicted. Output from the first network is fed into a
second network (this time using a window of 17 residues),
which refines the results of the first network and produces a
final prediction. The overall accuracy (Q3) of the algorithm
is 64%, significantly better than statistical methods
available at the time (Qian and Sejnowski, 1988). Holley
and Karplus experimented with different network topol-
ogies and a variety of methods for encoding the amino
acids in the input window; with only two outputs
representing helix and strand propensities, their network
produces predictions which are 63% accurate, and slightly
better at predicting b strand than the networks developed
by Qian and Sejnowski (Holley and Karplus, 1989).
In 1993, Rost and Sander developed a neural network

algorithm which was trained and tested on profiles of
multiple sequences. While this innovation was responsible
for a 7% improvement in accuracy, other improvements
included a two-network cascade similar to the method of
Qian and Sejnowski, and the use of a ‘jury’ of seven
different encoding/topological schemes similar to those
tested by Holley and Karplus. The combination of
improvements resulted in predictions that were 71.2%
accurate, the highest accuracy available at the time.Minor
improvements in the algorithm have since brought the
accuracy to 72.2%, as shown in Table 1 (Rost and Sander,
1994).
Recently, Chandonia and Karplus (1999) published a

method that is similar to that of Rost and Sander but uses
networks trained on much larger protein databases.
Network topology is tuned to the increased information
content of the larger training sets. The method also uses an
iterative algorithm of predicting the structural class of a
protein, then using that information to invoke neural
networks specialized for predictions of each class of
proteins. Accuracy of this method is the highest published
to date, at 74.8%Q3.Matthews correlation coefficients for

helix prediction are over three times higher than for the
original Chou and Fasman method, and correlation
coefficients for strand and coil are improved more than
twofold.
Another recently published method (Cuff and Barton,

1999) uses a jury of various prediction methods described
here (Rost and Sander, 1994; Frishman and Argos, 1997;
King et al., 1997; Salamov and Solovyev, 1997) to produce
a combined prediction. Although the jury prediction is
more accurate (72.9% Q3) than any of the individual
methods that were used, results must be interpreted with
care, as several of the algorithms in the jurywere trained on
proteins homologous to those in the test set. However, the
authors make the convincing point that the different
methods of assigning secondary structure as helix, strand
and coil used by the authors of each of the algorithms can
affect the apparent accuracy. For example, some methods
attempt to predict 310 and p helices as well as a helices,
while others predict b bridges as well as b strand. Different
definitions of helix and strand may produce an apparent
difference in accuracy between various algorithms of up to
3%.Thismeans that all users of predictionmethods should
be aware of exactly what types of secondary structure their
algorithms were designed to predict.
Neural networks have also been used tomake secondary

structure predictions other than the standard predictions
of helix, strand and coil. Recently, a neural network
method developed by Shepherd and colleagues was able to
distinguish b turns from non-b-turn regions of proteins at
75% accuracy; the Matthews correlation coefficient for
this prediction increased to 0.35, relative to around 0.20 for
older b-turn prediction methods. The algorithm can also
distinguish between common types of b turn with more
limited accuracy (Shepherd et al., 1999).

Fold Recognition Algorithms

As more protein structures are discovered, the problem of
protein structure prediction is increasingly being reduced
to the problem of identifying the correct fold for a newly
discovered sequence among the folds in the current
structural database. If the correct fold for a protein can
be identified, the problem of secondary structure predic-
tion is largely solved; a 1994 study by Rost and Sander
showed that, on average, the secondary structure in pairs of
structurally homologous proteins are 88% identical. In
practice, this means that highly accurate secondary
structure predictions can currently be made for proteins
which are at least 30% identical in sequence to a protein
with known structure.Most newly discovered proteins still
fall below this threshold, so conventional secondary
structure prediction algorithms must be used.
Secondary structure predictions are also being used as a

starting point for fold recognition algorithms. Several
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studies in recent years have shown that alignment using a
scoring scheme based on predicted secondary structure in
combination with traditional scoring methods is more
accurate than the traditional methods alone. For more
information on such methods, see Fischer and Eisenberg
(1996).
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