R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 1 Masaryk University Brno Department of Physical Electronics Atmospheric Pressure Plasmas – Basics and Applications Ronny Brandenburg Lecture II: Diagnostics of non-thermal atmospheric pressure plasmas – Electrical characterization – Optical emission spectroscopy, fast optical/spectroscopic methods – Surface charge measurements “Macroscopic” diagnostic … to be performed AT LEAST on reactors Electrical characterization - Voltage and current oscillography - Power measurements Specific Energy Density Gas analysis (chemistry) - Flame Ionization Detection (FID): Total hydrocarbons (THC) - Fourier transform infrared spectroscopy (FTIR): IR-active species - Gas Chromatography – Mass Spectrometry (GC-MS) … and if possible Optical and spectroscopic methods - Optical emission spectroscopy: indirect and average information! - Fast imaging: Distribution of MDs local power density R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 2 Electrical characterization of DBDs Equivalent circuit (the simplest!) Electrical characterization of DBDs R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 3 Optical emission spectroscopy • Simple, non-intrusive • Emission of plasma (indirect information) gas/excitation temp. electrons (Stark tech.) • Monitoring of processes intensity spectrum performance Filamentary plasmas 2 mm Electrical breakdown in several individual ionization channels Filaments = repetitive, but transient Microdischarges (MDs) 6 mm 4 mm Volume Barrier Discharge (air) Surf ace Barrier Discharge (air) Plasma jet (Ar) Atmospheric pressure high collision rates (rapid ionization, quenching) streamer breakdown mechanism favoured (Raether/Meek criterion) small dimensions (Paschen law) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 4 Discharge physics and plasma chemistry Plasma-CHEMISTRY Electric Field Breakdown Electrons & Ions Excited Species Chemical Reactions Heat and Mass Transfer Discharge-PHYSICSTimescales 10-12 s ... 10-9 s ... 10-6 s ... 10-3 s 10-3 s ... 101 s Plasma parameters (E/n, ne) Densities of active species (nX, n+, n-) Excitation and relaxation processes Yield of (by-)products Efficiency of decomposition etc. MDs as „tiny chemical reactors“ MD-multitude determines overall chemistry The challenge Small scale (diameter, discharge gap) 10 µm … 5 mm Transient and short lived 10 ns … 1 µs Erratic appearing Triggering ? Low emission intensity Spectral resolution ? Current-v oltage oscillogram 1 mm R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 5 Methods overview Current pulse measurements (Current probes/Rogowski coils) + Mandatory information, but often difficult to measure - No spatial information Optical and spectroscopic methods + Passive methods, easy to apply, “intuitive” + Independent from gas and discharge type - Limited to emission indirect information Laser diagnostics (LIF, TALIF Volker Schulz-von der Gathen) + Direct information on density, field, … - Specified diagnostic systems etc. Mass spectrometry (Achim von Keudell, Jan Benedikt,) + Direct and un-specified excess - Gas sampling limited to stable compounds Surface charge measurements Quantitative measurement of deposited charges Simulation (Fluid, hybrid, …) Needs experimental verification Microdischarge investigation: Single filaments Volume Barrier Discharge (VBD) asymmetric symmetric Negative Corona Discharge (-CD) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 6 Fast current measurements duration: 1-10 ns transported charge: 100-1000 pC current density: 100-1000 A cm-2 ICCD-camera (short exposure time photos) Principle Image intensification by micro-channel plate; CCD-Sensor Parameters ∆t down to 2 ns (new: down to 80 ps, Lav ision f ast gated iCCD) Gain 105 … 106 Pecularities Temporally resolved measurement only if pulsed driven Photos of individual MDs or discharge channels Hamamatsu R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 7 ICCD-camera (short exposure time photos) Volume Barrier Discharge (VBD) Positive Corona T.M.P. Briels et al. J. Phys. D: Appl. Phys. (2008) R. Brandenburg et al. J. Phys. D: Applied Phys. (2005) Stereoscopic ICCD-imaging (pos. corona) Discharge channels analyzed in full 3D Reconnection and merging of discharge channels Branching angles E.M. van Veldhuizen et al. Eur. Phys. J. - Appl. Phys. 47, 22811 (5p) (2009) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 8 Plasma bulltes (Plasma jet) E. Kindel, H. Lange et al.; GD 2008 Cardiff Striated MD in asymmetric volume BD in Ar Appearence of striated channel dependent on argon gas purity (argon flow rates above 100 sccm) and applied voltage amplitude Moste stable striated regime at 2 kVp-p (f= 60 kHz; T= 16 µs) striated non-striated T. Hoder et al. Phys. Rev. E 2011 R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 9 Reconstruction of temporal development Simultaneous recording of current and ICCD-photo (gate-signal) “Sorting” of ICCD-photos according to relation between ICCD-gate and current pulse Spatio-temporally resolved development time 1. glow-discharge-like structure 2. striated column and extended cathode layer 3. striated structure decay tow ards cathode R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 10 MD striation mechanism Scaling parameters from scaling law theory for low pressure discharges: i = 0.8 mA, r = 60 µm, λ = 200 to 300 µm i/r ≈ 13 A/cm, p·r = 5 Torr·cm, 3 ≤ λ/r ≤ 5 Similar to striations in low pressure glow discharges Different diameter of the cathode layer - channel constriction different current densities at the cathode layer and in the channel electron density gradient local disturbance & spatial electron relaxation Energy dissipation length λe(U) = 196 µm (theory*) corresponds to distance between the neighboring striations λ *D. Loffhagen, M. Becker; INP Greifswald 0.12 mm 0.7 mm λ Streak camera (optoscope) Principle Temporal profile transformed into spatial profile by defined deflection in streak tube and (I)CCD Parameters ∆t down to 1 ps Gain 105 … 106 Pecularities Temporally resolved investigation of individual MDs One spatial dimension I(t) I(x) Hamamatsu R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 11 Streak photos of positive coronas O. Eichwal d et al.; J. Phys. D: Appl. Phys. 41 ( 2008) 234002 Primary streamer (ps) and secondary streamer (ss) Return stroke (return streamers) and spark (S) formation ~ 50 ns Marode 1974 Sigmond 1983 Eichwald 2008 7mm R.S. Sigmond; J. Appl. Phys. 56 (5),1 (1984) E. Marode; Journal of Applied Physics, Vol. 46, No.5 (1975); Raizer “Gas discharge physics” (Springer) Streak photos in volume BD R.-J. Zahn S. M üller, 8th Int. Symposium on Science & Technolog yof Light Sources, Greifswald (1998). Kr/He/Cl2 @ 400 mbarAir C. Heuser, Diss. R WTH Aachen; G. J. Pietsch, Contributi ons to Plasma Physics 41, 620-628 (2001); Optical streak Electro-Optical streak R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 12 2929 Pulsed driven volume BD in N2/O2 1mm Dielectric: Al2O3(εr ≈ 9), about 0.5 mm thick „Square wave“HV-pulses: UP= 7 … 10 kV; dU/dt ~ 250 V/ns; f = 10 kHz Simultaneous measurement with ICCD and streak camera Electrical diagnostics Discharge cell Diagnostics 30 50 75 100 125 150 175 200 0 25 50 75 Rising slope Falling slope Discharge currentdevelopment t / ns IDBD /mA 30 Electrical measurements One MD in the rising and in the falling slope of pulsed high voltage Similar current pulses at both slopes Decreases current pulse amplitude and duration with increasing [O2] 0.1 vol.% O2 in N2: Q= 1 nC Eel ≈ 10 µJ Pel ≈ 100 mW Voltage Current R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 13 3131 Streak-Camera imaging: single MD 32 Streak-camera imaging: 1,000 MDs acc. Cathode directed ionisation front / streamer Glow region after streamer passage Polarity-Difference: Longer MD duration in case of falling slope Larger dark space in case of rising slope 1mm A C 1mm C A RisingslopeFallingSlope 20 ns5 ns R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 14 3333 Cathode directed streamers 1mm A C 1mm vRS ≈ 1.3 106 m/s C A vFS ≈ 0.6 106 m/s 5 ns vRS ≈ 1.1 106 m/s vFS ≈ 1.1 106 m/s 5 ns Duty cycle 10% (tPulse = 10 µs) Duty cycle 50% (tPulse = 50 µs) Short duty cycle (tpulse= 10 µs, tpause= 90 µs) vRS ≈ 2 vFS Symmetric pulse (tPulse = tPause= 50µs): vRS ≈ vFS Streamer velocity and MD-structure depend on time between MDs RisingslopeFallingSlope H. Höft, M. Kettlitz, T. Hoder et al., submitted to J Phys D Cathode directed streamers (short duty cycle) T. Hoder, H. Höft, M. Kettlitz et al., submitted to Physics of Plasmas R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 15 Cross-Correlation Spectroscopy (CCS) Principle Time-correlated single photon counting (TC-SPC) with reference signal from MDs itself Parameters ∆t down to 12 ps Gain up to 108 ∆λ about 0.03 nm Pecularities highest sensitivity temporally and spectrally resolved investigation of repetitive, but erratic appearing discharge events averaging over many MDs (stability required) 2D spatial resolution possible TC-SPC Board High Gain Photomultiplier (PMT) CCS principle SYNC-Signal: • represents shape of the f ull light pulse • utilisation !!! START STOP Delay Single Photon Accumlation MAIN-Signal: • random single photons • spatially resolv ed • spectrally resolv ed Microdischarge First counted photon time Time inf ormation R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 16 High-Gain Photomultiplier W. Becker, Becker-Hickl GmbH Berlin Gain of up to 108 CCS set-up SYNCMAIN Imaging Optics Mono- chro- mator PMT (low Gain) PMT (high Gain) TAC ADC Delay cable CFDCFD ‘Start‘ ‘Stop‘ Microdischarge Memory-address no count, if no correlation MEM TC-SPC Module Routing device HV-PS HV TTL (Trigger) MEM-segment control SYNCMAIN Imaging Optics Mono- chro- mator PMT (low Gain) PMT (high Gain) TAC ADC Delay cable CFDCFD ‘Start‘ ‘Stop‘ Microdischarge Memory-address no count, if no correlation MEM TC-SPC Module Routing device HV-PS HV TTL (Trigger) MEM-segment control HV-PS – High voltage power suppl y PMT – Photomultiplier CFD – Constant fraction discriminator TAC – Time-to-amplitude convertor ADC – Analog-digital converto r ME M - Memory R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 17 1. negative Sys. FNS 2. positive Sys. SPS N2 12 10 8 6 4 2 0 0.8 1.8 2.4 U, eV R,Å ')( 3 2 υuCN Π υ)( 1 2 gXN Σ Emission spectrum in air eV19Enm391h)X(N)B(N 0,B0''g 2 20'u 2 2 ==λν+Σ→Σ =υ ++ =υ ++ eV11Enm337h)B(N)C(N 0,C0''g 3 20'u 3 2 ==λν+Π→Π =υ=υ 47 Microdischarge development (VBD) 1. Pre-breakdown phase: several 100 ns, localised (residual surface charges) 3. Relaxation (decay) phase: compensation of external E-field outward directed propagation of surface discharges 2. Breakdown phase: cathode directed ionization front (2ns), 0 CATHODE (-) ANODE (+) x(mm) r (mm) 0 0.2 0.4 0.6 0.8 1.0 0.2-0.2 anode glow and surface discharge R. Brandenburg et al. J. Phys . D: A pplied P hys. (2005) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 18 Microdischarge development (VBD in air) R. Brandenburg et al, IEEE Trans. Plasma Sci. (2008) SPS:11eVne∘∘∘∘E/n FNS:19eVhighE/n Development along MD-axis in the volume R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 19 Asymmetric volume barrier discharges T. Hoder et al. J.Phys. D: Appl. Phys. 43 ( 2010) 124009 + - M+D- SPS FNS Pre-breakdown (Townsend) phase Pre-breakdown phase of several 100 ns Raether-Criterion not fullfilled 18<∫ dxeffα ( )cmTorrpd ⋅≈ 100 Townsend-breakdown, localised due to minor field inhomogenity by residual surface charges (valid for repetitive mode) Accumulation of positiv ions during Townsend phase streamer start Yu. Yurgelenas et al.; Plasma Phys. and Controlled Fusion (2005) SPS R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 20 Pre-breakdown (Townsend) Phase Dielectric cathode (M+D-): Emission of residual surface electrons Shorter Townsend-prephase and stepest luminosity increase Dielectric anode (M-D+): Positive residual surface charge Local field increase and this enhanced pre-phase Intensity (photons) measured closed to anode T. Hoder et al. J.Phys. D: Appl. Phys. 43 ( 2010) 124009 Cathode directed ionisation front Cathode directed propagation of increasing field maximum (positive streamer) Velocity depends on distance from cathode (v = 105 … 2 106 m/s), No v- dependence on (N2-O2) gas composition in symmetric VBD Velocity dependent on discharge configuration (sym. vs asym. VBD) K.V. Kozlov et al..; J. Phys. D: Appl. Phys. (2005) FNS Position(mm) time (ns)∆t ∆z Anode Cathode R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 21 Ionization front (pos. streamer) Dielectric cathode (M+D-): Emission of residual surface electrons More effective γ-processes Pos. charging of D slower streamer Dielectric anode (M-D+): More effective α-processes (bulk) No reversed field by surface charge deposition and secondary electron emission Faster streamer T. Hoder et al. J.Phys. D: Appl. Phys. 43 ( 2010) 124009 CB eff CB eNCB CB n nn n E k dt dn , , , , 2 τ −⋅⋅      = C effCC B effBB C B C B II II A A C n E k k τ τ / / 00 00 + + ⋅      ⋅=      • • Theory Experiment • local field approximation • „strong“ and monotonous function ( EC,0= 11 eV << EB,0 =19 eV ) ),(),( ,, tzntzI CBCB ∝ E/n (z,t) ne (z,t) ne max particle balance equ. Evaluation of plasma parameters (model) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 22 Evaluation of plasma parameters (model) 0,0001 0,001 0,01 0,1 1 100 1000 10000 E/n 10 21 , Vm 2 R(391/337) Steady Trendline Pulsed Kim et al. [6] Crey ghton [2] Dy akov et al. [4] P. Paris; J Phys D (2005); Uni versity of Tartu Model independent calibration in progress HG lamp Mono- cromator PM RHV power – supply + Gas inlet Vacuum gauge and pump Ammeter Filter Counter PC Metal Insulator Quartz Anode Based on Townsend discharge (cell from Universtity of Tartu) Cathode Anode Air R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 23 Plasma parameters K.V. Kozlov et al : J. Phys. D: Appl. Phys. 2001 cathode (glass) cathode (glass) (glass) anode (glass) anode Td 1Td = 10-17 V cm2 electronic dissociation O2 + e → O + O + e PENNING dissociation N2 + e → N2 ∗ + e N2 ∗ + Ο2 → Ν2 + O + O kd kd (E/n (z,t)) • ne(z,t) • nO2 experiment ke E/n high ne high Two regions of high chemical activity within MD E/n; ne O-Atom generation ke (E/n (z,t)) • ne(z,t) • nN2 Calculation based on experimental results R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 24 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 ANO DECATHODE Ref. [17 ] This work [O3 ]/[O3 ]max x/d Absorption measurements C. HEUSER (1985) pulsed mode Calculated based on CCS-results (repetitive mode) Calculated O3 Concentration Profiles raw assumption: complete O to O3 conversion E/n - 2D, symmetric BD K. V. Kozl ovand H.-E. Wagner, Contrib. Plasma Phys. (2007) 1Td = 10-17 V cm2 R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 25 Time constants K.V. Kozlov et al : J. Phys. D: Appl. Phys. 2005 2222 O C ON C NC rad C eff nKnK 11 ++ τ = τ a) Pancheshnyi et al., Chem. Phys. 262 (2000) 349; b) b) Mitchell, J. Chem. Phys. 53, 5 (1970) 1795 C O C N 22 KK << In regions of relaxating plasma: decay process for estimation of effective lifetimes Quenching! SBD configuration for MD studies Localization & stabilization for time-consuming CCS measurements - Tw o needle electrodes (Ø 0,4 mm, chrome- nickel- steel- alloy) - Elektrode gap d= 1.15 mm Dielectric material: Al2O3 , 0.6 mm thickness Gas: dry air dielectric 4 … 13 kVpp ~ 60 kHz Exposed needle electrode R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 26 Discharge generation T. Hoder, H. Grosch et al., EPJD 2010; IEEE Trans. Plas. Sci. 2011 Field configuration: Calculated stream lines and potential Surface dischargeVolume discharge and surface discharge Surface Barrier Discharges (SBD) Applied Voltage closed to burning voltage one MD per half period (HP) cathode anode (exposed) (cov ered) Exposure time: 8,5 µs Negative half period f aint discharge activity at the tip of cathode anode cathode (exposed) (cov ered) Exposure time: 8,5 µs Positive half period Amplitude range: 2 mA - 40 mA Av erage amplitude: ~ 12 mA Av erage rise time: ~ 2 ns R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 27 CCS results Positive HP: exposed electrode= anode Pre-breakdown phase Cathode directed ionising front („streamer“) with decrasing velocity (v= 3.0·105 m/s -1.5·105 m/s) Comparison of different BDs v max 106 m/s v -slope increasing 106 m/s 105 m/s on dielectric increasing decreasing on dielectric 105 m/s decreasing T. Hoder et al.; J.Phys. D: Appl. Phys. 2010; H. Grosch et al., EPJD, 2010 Symmetric VBD Coplanar Discharge Surface Discharge Dielectric (-) Dielectric (+) R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 28 MD propagation on dielectric barrier Niemeyer, L.; IEEE Trans. Dielectr. Electr. Insul. (1995), Vol.2 No.4, 510- 528 Coplanar Discharge Surface Discharge Dielectric (-) Dielectric (+) dielectric cathode anode dielectric cathode anode External electric field: decraeses along MD path Surface processes: negative residual charge (e-) surface ionization αS (detrapping, photo effect, ion impact) surface attachment ηS Red: Streamlines Blue: Equipotential lines Trichel pulse corona (negative corona) SPS (337 nm, 11 eV) FNS (391 nm, 19 eV) 1. Electron multiplication phase (120 µm) 2. pos. streamer 3. anode directed streamer T. Hoder et al., prep. Appl. Phys. Lett. R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 29 Surface charge measurements M. Bogaczyk, H.-E. Wagner, Uni. Greifswald Summary Fast optical and spectroscopic methods = powerfull tools for discharge diagnostics CCS as high sensitive method for spectroscopic investigation Microdischarge development with high resolution (∆t,∆x,∆λ) Estimation of plasma parameters (E/n; τeff, ne/ne,max) Microdischarge development in barrier discharges: (1) Townsend-prephase (2) cathode directed ionization front (pos. streamer) (3) decay phase Quantified determination of positive and negative surface charges by Pockels-effect positive and negative surface charge density profiles significantly different due to the electron mobility positive and negative charges can exist simultaneously memory-effect important for discharge re-ignition R. Brandenburg (INP Greifswald) Innolec Lectureship Brno 2012R. Brandenburg, INP Greifswald Part 2: Diagnostics 30 Outlook Finished E/n-calibration of CCS device for systematic determination of plasma parameters (corona discharge) Future work: To correlate fast spectroscopic and optical investigation with measurements of surface charges structure and development (diffuse vs. filamentary) role of surface processes (e.g. exoemission) Study of the correlation between plasma physics and chemistry “From the microdischarge to the plasmareactor” 86 Acknowledgement University of Greifswald: H.-E. Wagner, F. Miethke, J. Meichsner, M. Bogaczyk, R. Wild, L. Stollenwerk Lomonossov University Moscow: K.V. Kozlov, A.M. Morozov INP Greifwald: T. Hoder, H. Grosch, R. Basner, W. Reich, J. Schäfer, T. Gerling, R. Bussiahn, E. Kindel, M. Kettlitz, H. Höft, K.-D. Weltmann Masaryk University Brno: M. Cernak, D. Trunec, Z. Navratil, P. Stahel, J. Janca, J. Jansky Support: DFG: TR 24 “Fundamentals of complex plasmas” BMBF: “ForMaT - InnoPlas”