C8953
 NMR structural analysis - seminar
 Vector model of NMR experiments $+{ }^{13} \mathrm{C}$ APT

Martin Novák

323460@mail.muni.cz

March 16, 2016

Sketch the estimate of ${ }^{13} \mathrm{C}$ spectrum of attached hypothetical molecule.

Analysis of simple pulse sequences using vector model

- simple model based on rotation of the vector of bulk magnetization in the plane perpendicular to the vector of magnetic field, direction is determined by the "right-hand rule"
- NMR signal is detectable only as coherent magnetization oscillating in $x y$ plane
- the free precession ω (due to the B_{0}) of magnetization vector is eliminated by introducing rotating frame $\omega_{0} \Rightarrow$ magnetic field of excitation pulses $\left(B_{1}\right)$ is motionless and the individual resonance frequencies differs in so called offset $\Omega_{i}=\omega_{i}-\omega_{0}$
- applicability of vector model is rather limited to simple single-quantum experiments without transfer of polarisation

T_{1} relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by a) $T_{1}=\tau / 2$ and b) $T_{1}=5 \tau$. Draw semi-quantitatively resulting spectrum.

T_{1} relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by a) $T_{1}=\tau / 2$ and $\left.\mathbf{b}\right) T_{1}=5 \tau$. Draw semi-quantitatively resulting spectrum.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence:

90(y) - τ - 90(y) - aq

Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau=0, \pi / 2, \pi$.
2. Draw lineshapes of resulting signal assuming the a) $y+$ b) $x+$ corresponds to zero phase of receiver.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence:

90(y) - τ - 90(y) - aq

Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau=0, \pi / 2, \pi$.
2. Draw lineshapes of resulting signal assuming the a) $y+$ b) $x+$ corresponds to zero phase of receiver.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. First ignore 180 pulse in hydrogen channel. Explain the role of CPD block.
2. Lets consider the complete sequence and isolated spin systems $\mathbf{a})^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and \mathbf{b}) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}_{2}$.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. First ignore $\mathbf{1 8 0}$ pulse in hydrogen channel. Explain the role of CPD block.
2. Lets consider the complete sequence and isolated spin systems $\mathbf{a})^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and \mathbf{b}) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}_{2}$.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. First ignore 180 pulse in hydrogen channel. Explain the role of CPD block.
2. Lets consider the complete sequence and isolated spin systems $\mathbf{a})^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ and \mathbf{b}) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}_{2}$.

APT - Attached Proton Test

based on heteronuclear spin echo

- $\mathrm{t}_{1}=1 /{ }^{1} \mathrm{~J}_{\mathrm{CH}}$
${ }^{13} \mathrm{C}$ signals are differentiated according to the number of directly bound ${ }^{1} \mathrm{H}$
- $\mathrm{Cq}, \mathrm{CH}_{2}$ positive
- $\mathrm{CH}, \mathrm{CH}_{3}$ negative

Evolution of signal governed by the value of ${ }^{1} \mathrm{~J}_{\mathrm{CH}} \Longrightarrow$ reflected by the intensity of APT signal

${ }^{13} \mathrm{C}$ APT Cinnamic acid

13C APT CINNAMIC ACID

${ }^{13} \mathrm{C}$ APT Cinnamic acid

Notes:

- C9, C1 positive quaternary
- C7 deshielded by -M effect of carboxyl group + in neighbourhood of aromatic system
- equivalent C2/6, C3/5 in aromatic region, para $\mathbf{C 4}$ less sensitive

${ }^{13} \mathrm{C}$ APT of Nicotine

${ }^{13} \mathrm{C}$ APT of Nicotine

Notes:

- C2, C6 CH negative connected to N
- C3 quaternary, C4 more deshielded
- $\mathbf{C 7}$ tertiary carbon, in neighbourhood of aromatic system and N
- C9 secondary, close to N; C12 primary attached to N
- C11 connected to tertiary carbon

${ }^{13} \mathrm{C}$ APT 4

${ }^{13} \mathrm{C}$ APT 4

Next topic

2D spectroscopy

