C8953

NMR structural analysis - seminar Vector model of NMR experiments + ¹³C APT

Martin Novák 323460@mail.muni.cz

March 16, 2016

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ④ ◆ ◎

Sketch the estimate of ¹³C spectrum of attached hypothetical molecule.

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ④ ◆ ◎

Analysis of simple pulse sequences using vector model

- simple model based on rotation of the vector of bulk magnetization in the plane perpendicular to the vector of magnetic field, direction is determined by the "right-hand rule"
- NMR signal is detectable only as coherent magnetization oscillating in *xy* plane
- ► the free precession ω (due to the B₀) of magnetization vector is eliminated by introducing rotating frame $ω_0 \Rightarrow$ magnetic field of excitation pulses (B₁) is motionless and the individual resonance frequencies differs in so called offset $Ω_i = ω_i ω_0$
- applicability of vector model is rather limited to simple single-quantum experiments without transfer of polarisation

T_1 relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by **a**) $T_1 = \tau/2$ and **b**) $T_1 = 5\tau$. Draw semi-quantitatively resulting spectrum.

T_1 relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by **a**) $T_1 = \tau/2$ and **b**) $T_1 = 5\tau$. Draw semi-quantitatively resulting spectrum.

▲□▶▲□▶▲三▶▲三▶ ● ● ●

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence: **90(y)** - τ - **90(y)** - aq Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau = 0, \pi/2, \pi$.

2. Draw lineshapes of resulting signal assuming the a) y+ b) x+ corresponds to zero phase of receiver.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence:

90(y) - au - 90(y) - aq

Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau = 0, \pi/2, \pi$.

2. Draw lineshapes of resulting signal assuming the a) y+ b) x+ corresponds to zero phase of receiver.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ⊙

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

First **ignore 180 pulse** in hydrogen channel. Explain the role of CPD block.
Lets consider **the complete sequence** and isolated spin systems **a**) ¹³C-¹H and **b**)
¹³C-¹H₂.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

First **ignore 180 pulse** in hydrogen channel. Explain the role of CPD block.
Lets consider **the complete sequence** and isolated spin systems **a**) ¹³C-¹H and **b**)
¹³C-¹H₂.

▲□▶▲□▶▲□▶▲□▶▲□ ♪ ④ ◇ ◇

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. First **ignore 180 pulse** in hydrogen channel. Explain the role of CPD block.

2. Lets consider **the complete sequence** and isolated spin systems **a**) ${}^{13}C{}^{-1}H$ and **b**) ${}^{13}C{}^{-1}H_2$.

◆□▶▲□▶▲□▶▲□▶▲□▼

APT - Attached Proton Test

based on heteronuclear spin echo

►
$$t_1 = 1/^1 J_{CH}$$

¹³C signals are differentiated according to the number of directly bound ¹H

- Cq, CH₂ positive
- ► CH, CH₃ negative

Evolution of signal governed by the value of $^1J_{CH} \implies$ reflected by the intensity of APT signal

¹³C APT Cinnamic acid

¹³C APT Cinnamic acid

¹³C APT of Nicotine

¹³C APT of Nicotine

¹³C APT 4

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - 釣へぐ

¹³C APT 4

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - 釣へぐ

2D spectroscopy

