

Central European Institute of Technology BRNO | CZECH REPUBLIC

Image analysis I

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

March 21, 2016

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE



Outline

Image analysis I

- Fourier transforms
 - Why do we care?
 - Theory
 - Examples in 1D
 - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

Fourier transforms

Outline

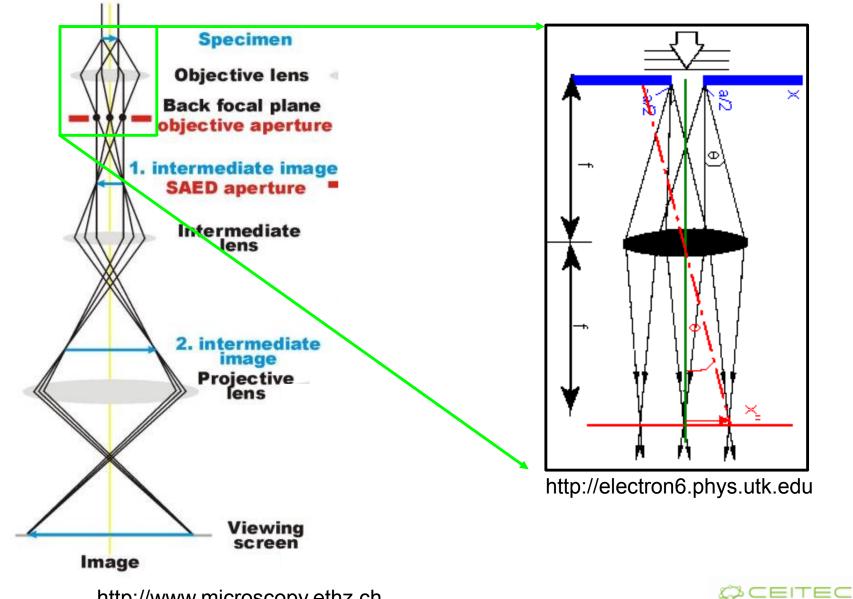
Image analysis I

Fourier transforms

- Why do we care?
- Theory
- Examples in 1D
- Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

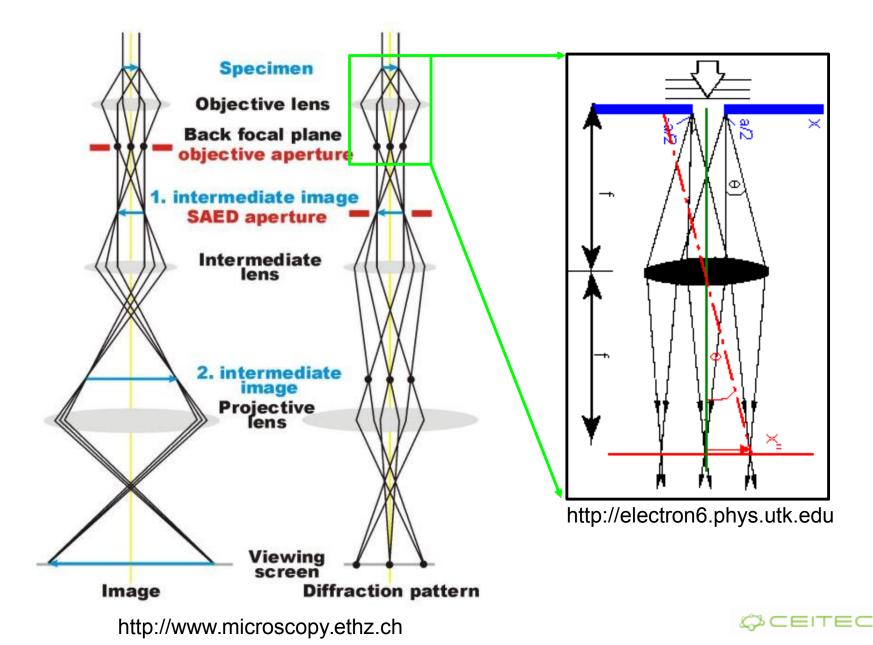
A quiz

A quiz



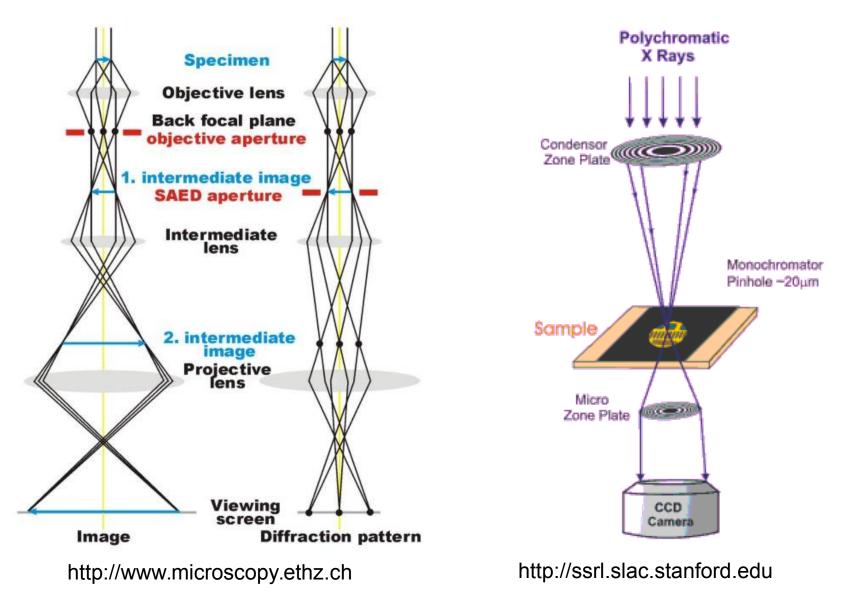
http://www.microscopy.ethz.ch

Relationship between imaging and diffraction

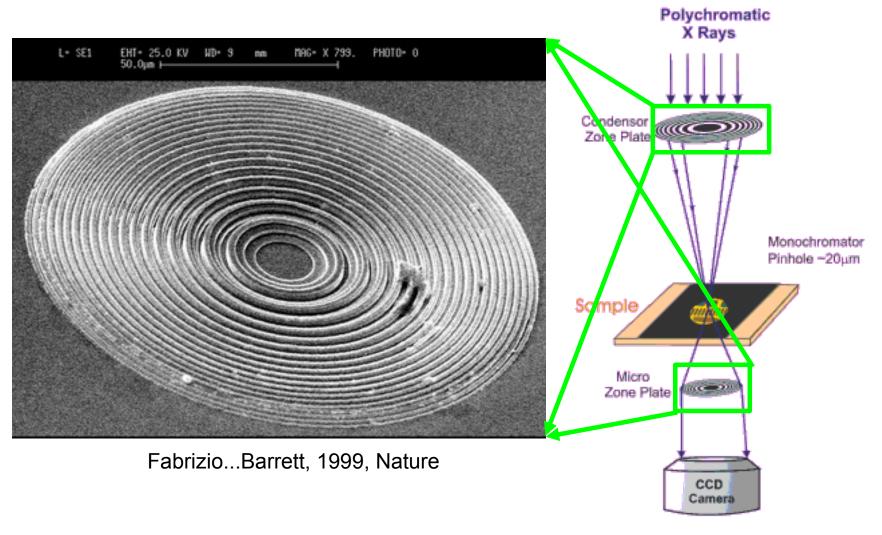


The only difference between microscopy and diffraction is that, in microscopy, you can focus the scattered radiation into an image.

How do X-ray microscopes work?



How do X-ray microscopes work?



Best resolution: ~20nm

http://ssrl.slac.stanford.edu

Outline

Image analysis I

Fourier transforms

- Relationship between imaging and diffraction
- Theory
- Examples in 1D
- Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

Relevance of Fourier transforms to EM

Fourier transform ~ diffraction pattern see John Rodenburg's site, http://rodenburg.org $v=\alpha/\lambda$

Fourier series

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

- *f*: function which we are transforming (1D)
- *x*: axis coordinate
- *i*: √-1
- *k*: spatial frequency
- *F(k)*: Fourier coefficient at frequency k

Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

Euler's Formula: $e^{i\phi} = \cos \phi + i \sin \phi$

$$F(k) = \int_{-\infty}^{\infty} f(x) \cos(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x) \sin(-2\pi kx) dx$$

$$a + i \qquad b$$

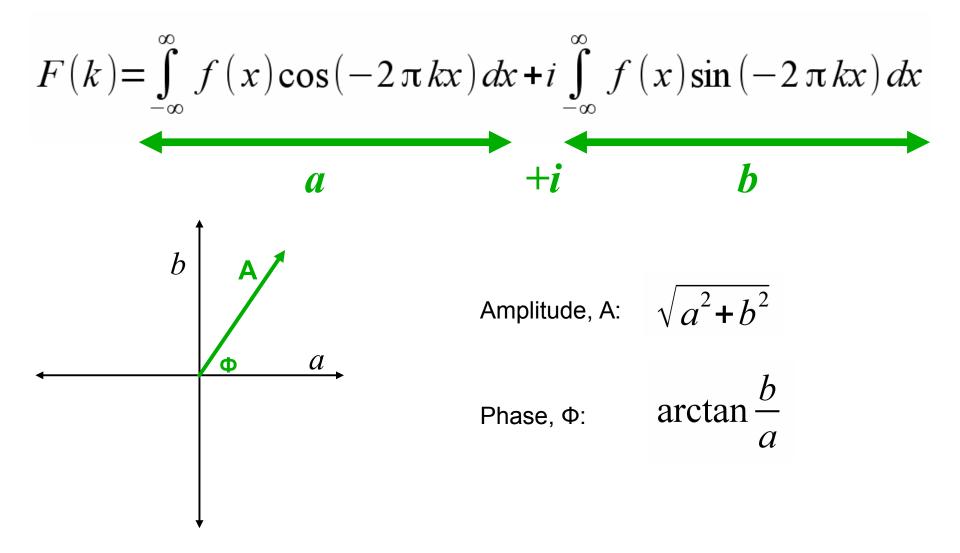
Fourier transforms: Sines + cosines

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

$F(k) = a\cos(-2\pi kx) + ib\sin(-2\pi kx)$

(NOTE: This isn't the same a & b from the previous slide.)

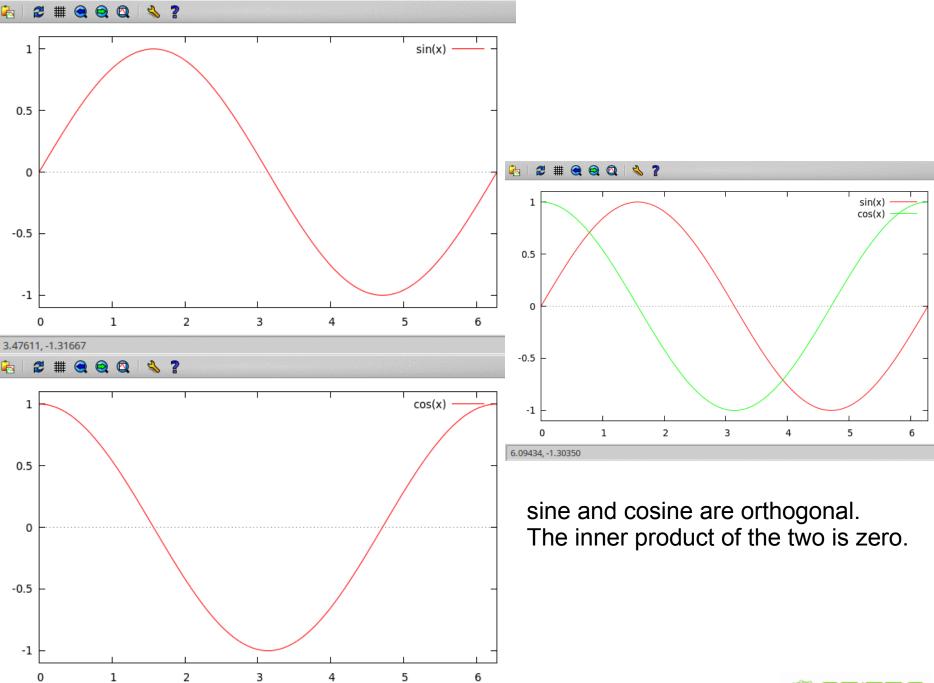
Fourier transforms: Definition



Fourier coefficients, discrete functions

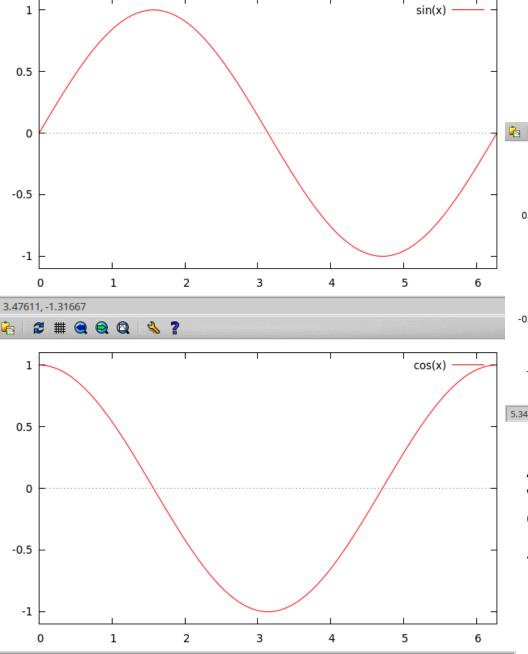
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

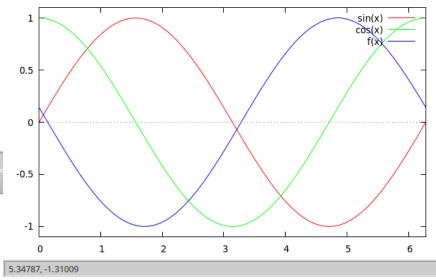


4.80194, -0.0982937

4.80194, -0.0982937

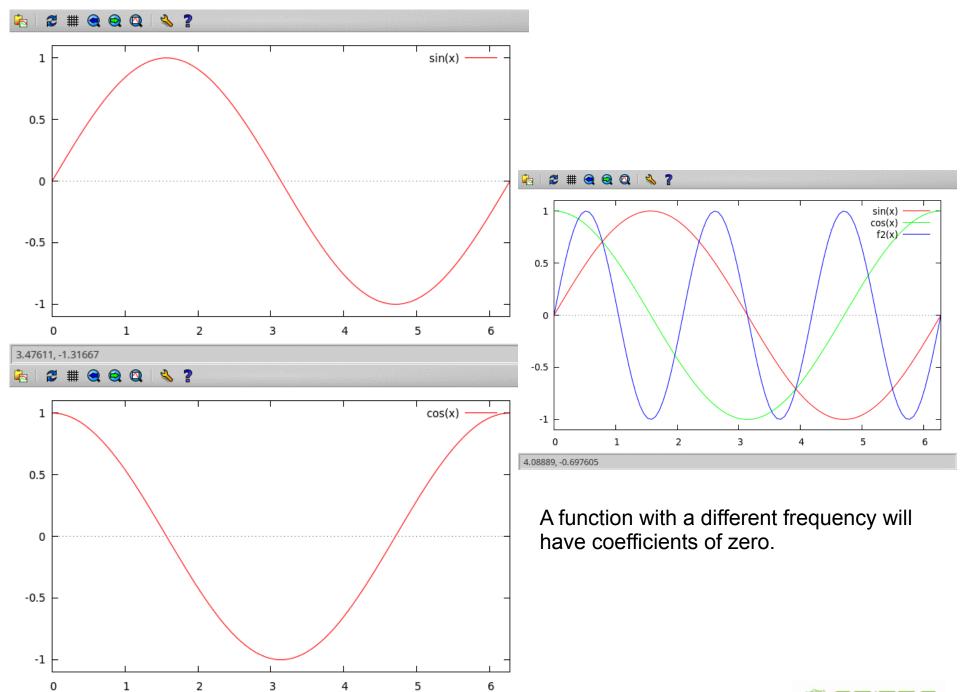


🔁 | 22 🎟 🥶 😋 🔍 | 🔦 ?



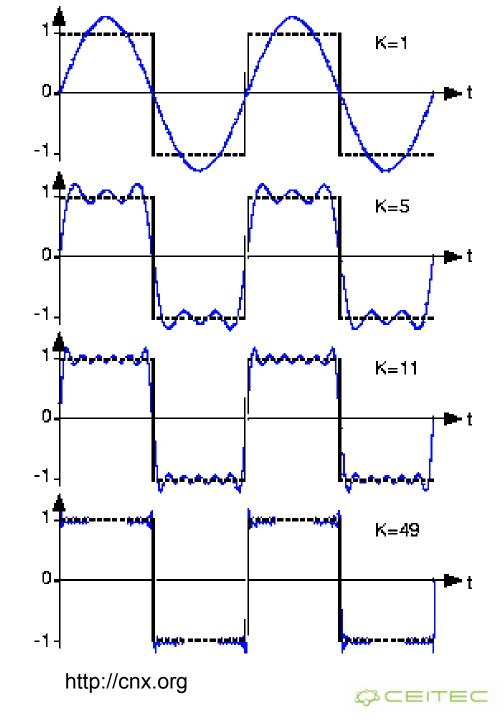
A function with the same frequency but with an offset will have some components of both sine and cosine.

That is, *a* and *b* will be non-zero.



4.80194, -0.0982937

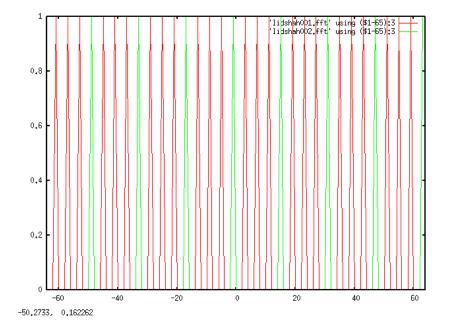
The higher the spatial frequencies (i.e., higher resolution) that are included, the more faithful the representation of the original function will be.

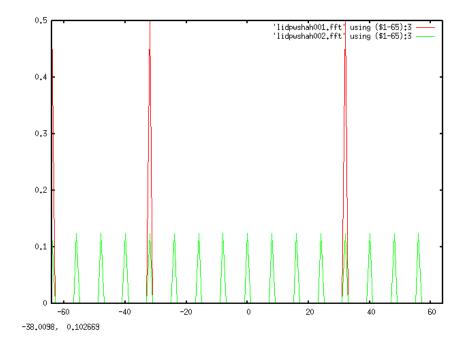


Some properties

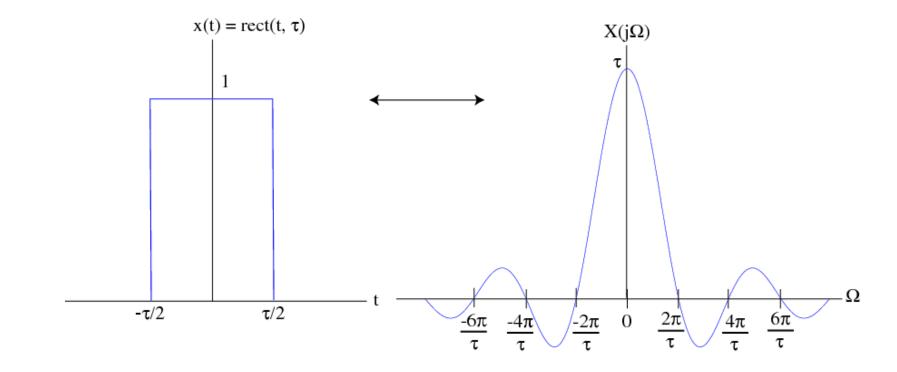
- As *n* increases, so does the spatial frequency, *i.e.*, the "resolution."
 - For example, sin(2x) oscillates faster than sin(x)
- Computation of a Fourier transform is a completely reversible operation.
 - There is no loss of information.
- Fourier terms (or coefficients) have amplitude and phase.
- The diffraction pattern is the physical manifestation of the Fourier transform
 - Phase information is lost in a diffraction pattern.
 - An image contains both phase and amplitude information.

Some simple 1D transforms: a 1D lattice





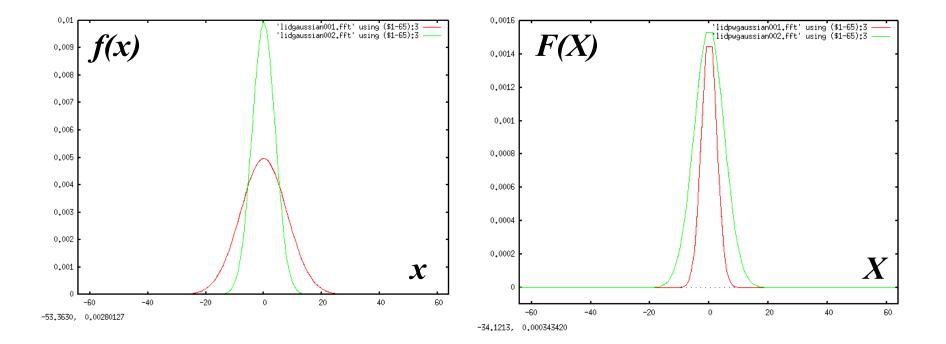
Some simple 1D transforms: a box



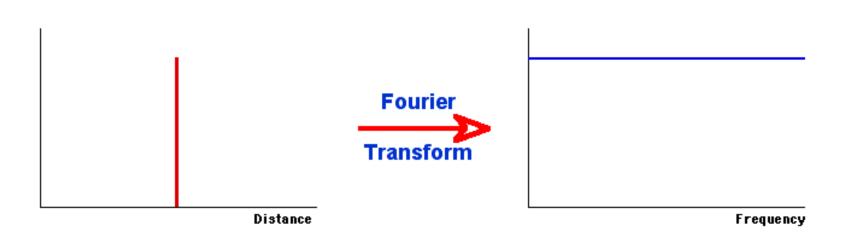
http://cnx.org

Later, you will learn that multiplying a step function is bad, because of these ripples in Fourier space.

Fourier transforms: plot of a Gaussian



Some simple 1D transforms: a sharp point (Dirac delta function)

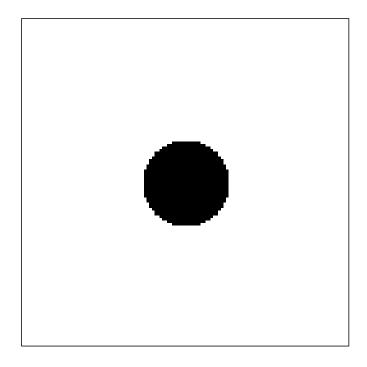


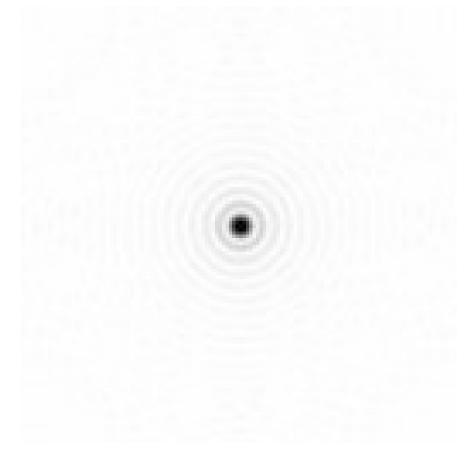
http://en.labs.wikimedia.org/wiki/Basic_Physics_of_Nuclear_Medicine/Fourier_Methods

Some simple 2D Fourier transforms: a row of points

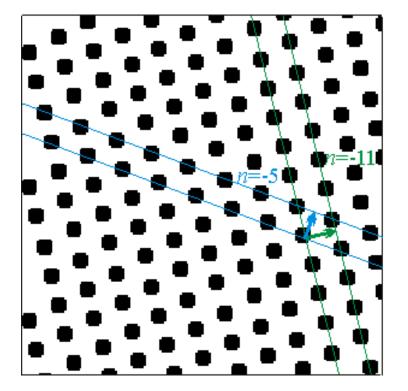
Some simple 2D Fourier transforms: a series of lines

Some simple 2D Fourier transforms: a sharp disc

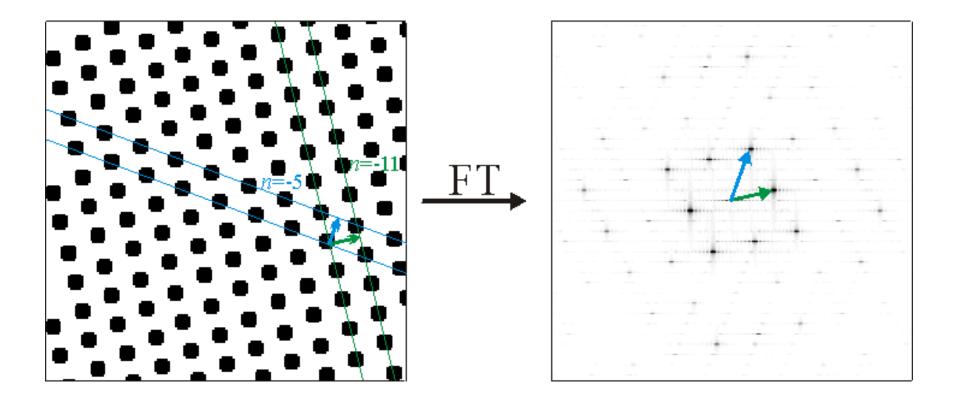




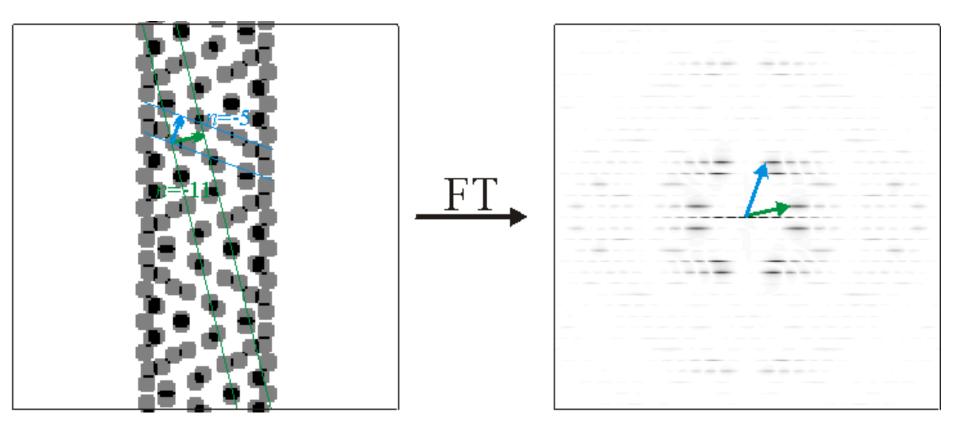
Some simple 2D Fourier transforms: a 2D lattice



Some simple 2D Fourier transforms: a 2D lattice



Some simple 2D Fourier transforms: a helix

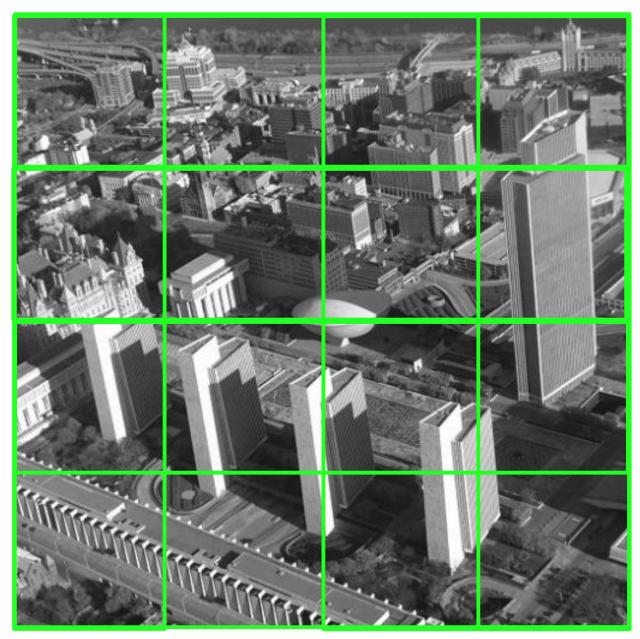


Outline

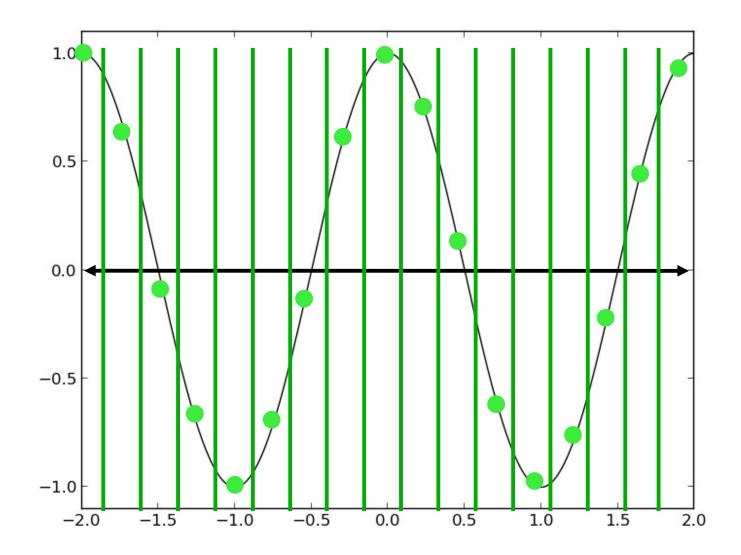
Image analysis I

- Fourier transforms
 - Relationship between imaging and diffraction
 - Theory
 - Examples in 1D
 - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

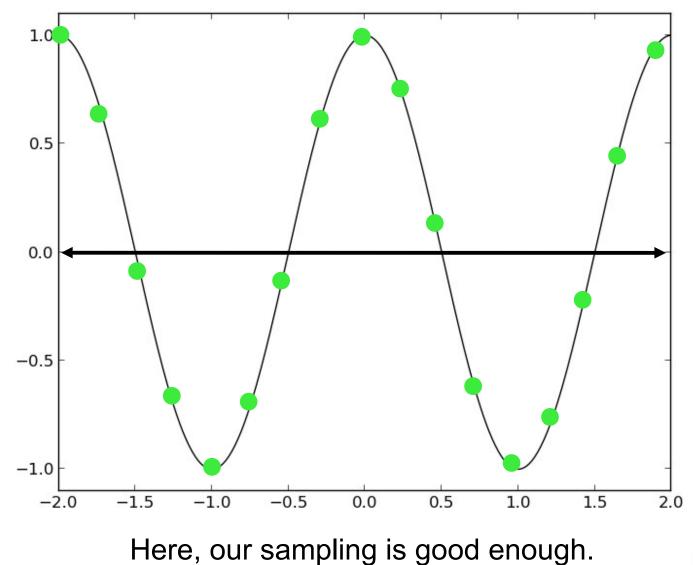
Digitization in 2D



Digitization in 1D: Sampling

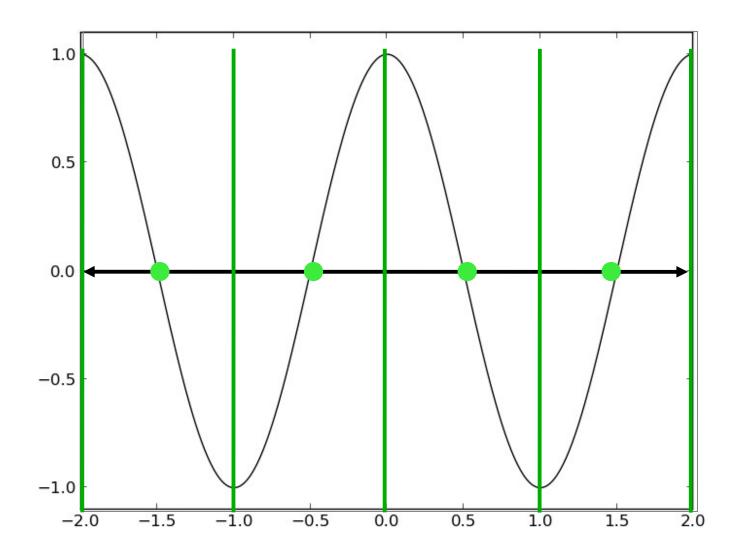


Digitization: Is our sampling good enough?

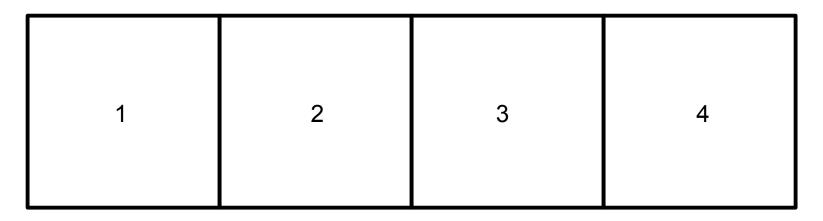


SPICEITEC

Digitization in 1D: Bad sampling



What's the best resolution we can get from a given sampling rate?



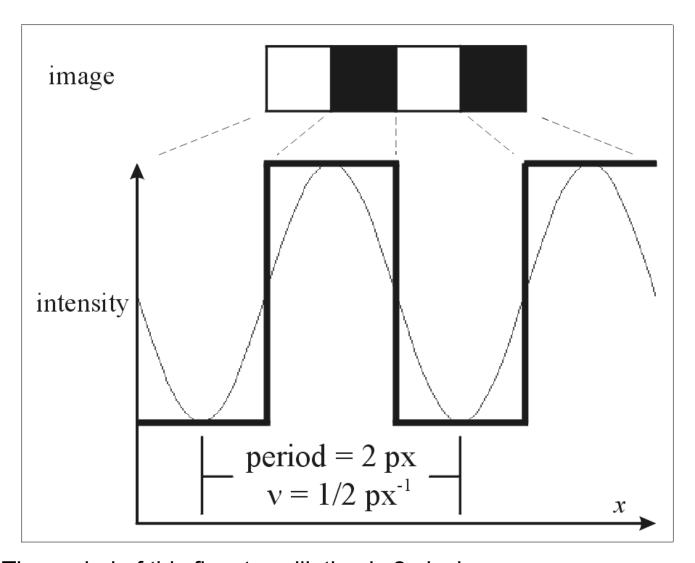
A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect?

What's the best resolution we can get from a given sampling rate?

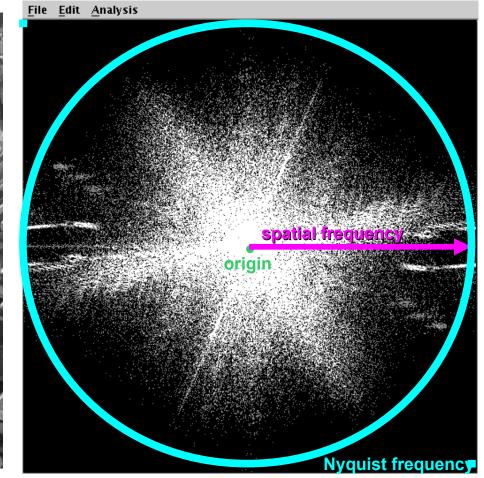
A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect? ANSWER: Alternating light and dark pixels.



The period of this finest oscillation is 2 pixels. The spatial frequency of this oscillation is 0.5 px⁻¹. The finest detectable oscillation is what is known as "Nyquist frequency." The edge of the Fourier transform corresponds to Nyquist frequency.

Nyquist frequency



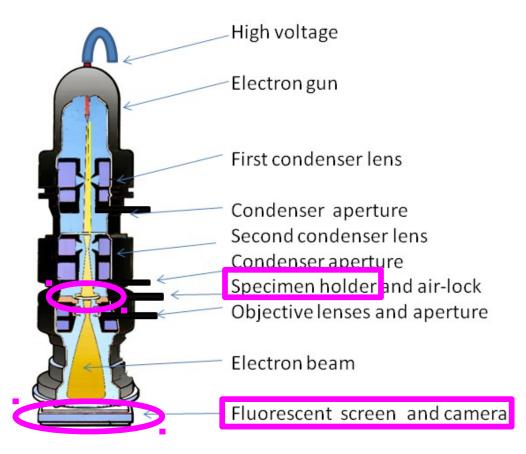
The period of this finest oscillation is 2 pixels. The spatial frequency of this oscillation is 0.5 px⁻¹. The finest detectable oscillation is what is known as "Nyquist frequency." The edge of the Fourier transform corresponds to Nyquist frequency.

What do we mean by pixel size?

Typical magnification: 50,000X Typical detector element: 15µm (pixel size on the camera scale)

Pixel size on the specimen scale: 15 x 10⁻⁶ m/px / 50000 = $3.0 x 10^{-10}$ m/px = **3.0 Å/px**

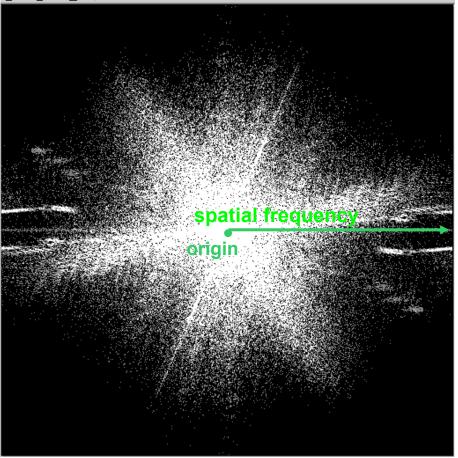
In other words, the best resolution we can achieve (or, the finest oscillation we can detect) at 3.0 Å/px is **6.0 Å**.



Transmission Electron Microscope

It will be worse due to interpolation, so to be safe, a pixel should be 3X smaller than your target resolution. http://www.en.wikipedia.org

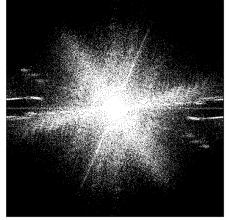
What do we mean by spatial frequency?

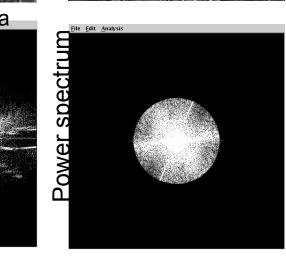


<u>File Edit Analysis</u>

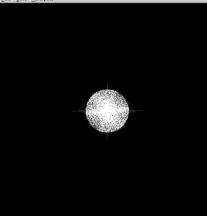
From Wikipedia

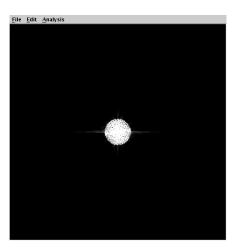
File Edit Analysis From Wikipedia



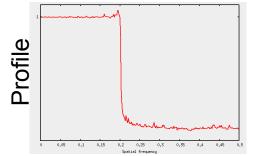


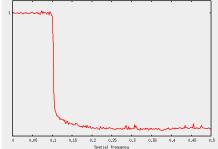
<u>F</u>ile <u>E</u>dit <u>A</u>nalysis

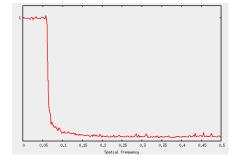


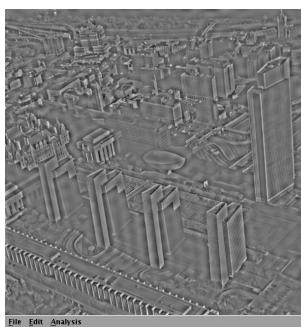


Fourier filtration

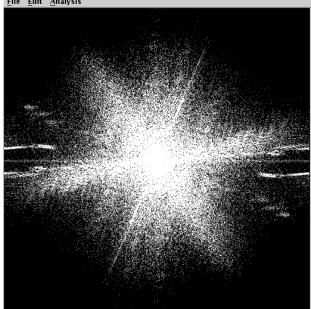


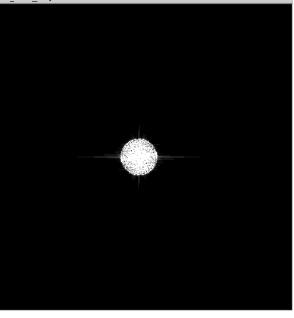


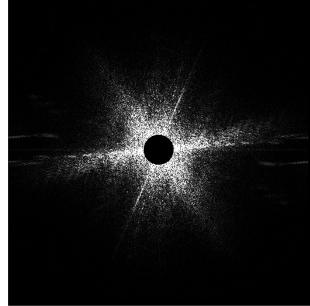




<u>File</u> <u>Edit</u> <u>Analysis</u>



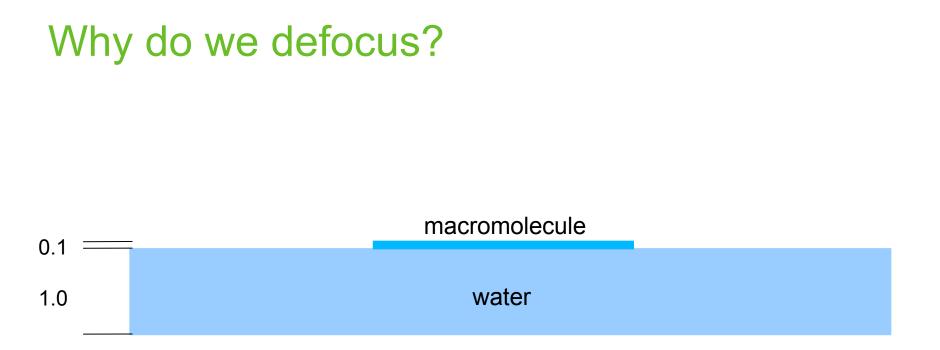




A "low-pass" filter

A "high-pass" filter

Contrast transfer function



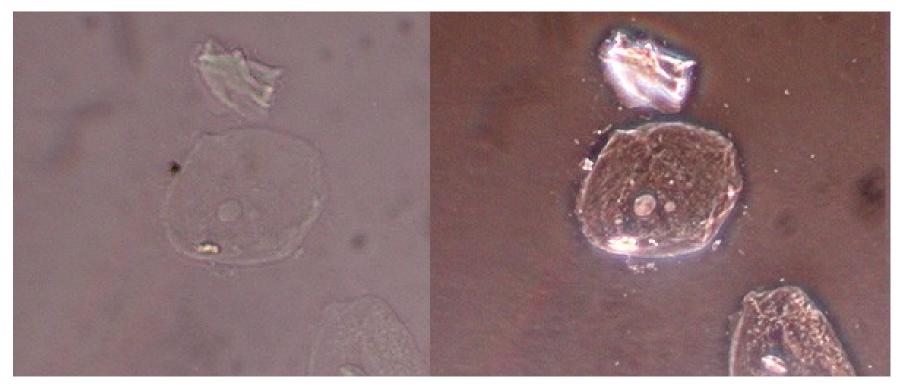
Typical amplitude contrast is estimated a 0.08-0.12 (minus noise)

Instead of amplitude contrast, we'll use phase contrast.

Phase contrast in light microscopy

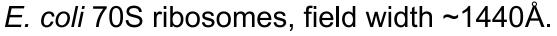
Bright-field image

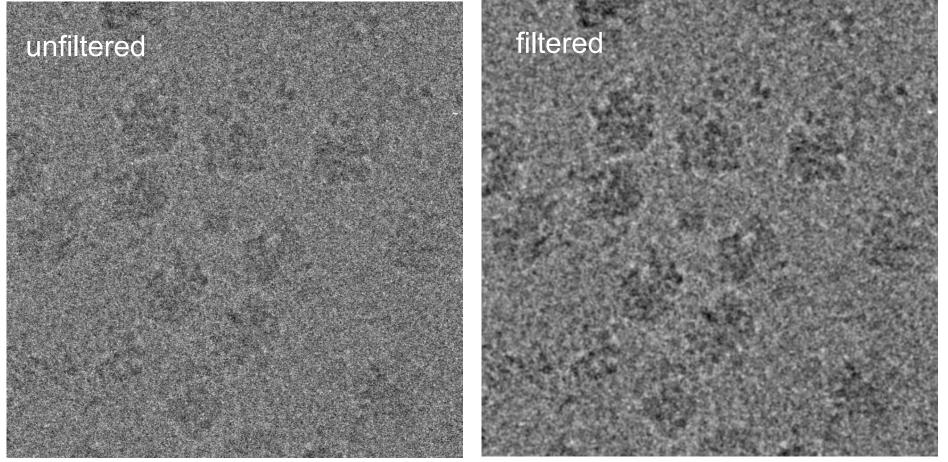
Phase-contrast image



http://www.microbehunter.com

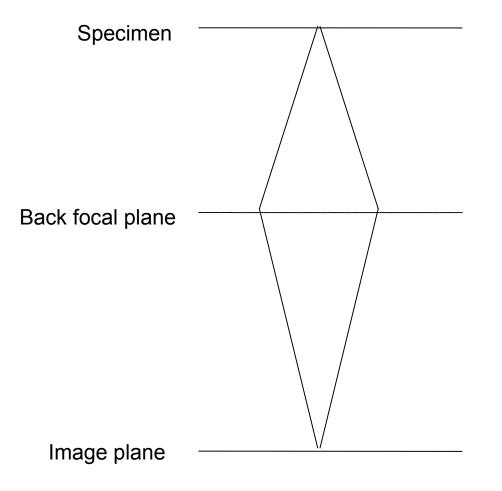
In EM, even with defocus, the contrast is poor.





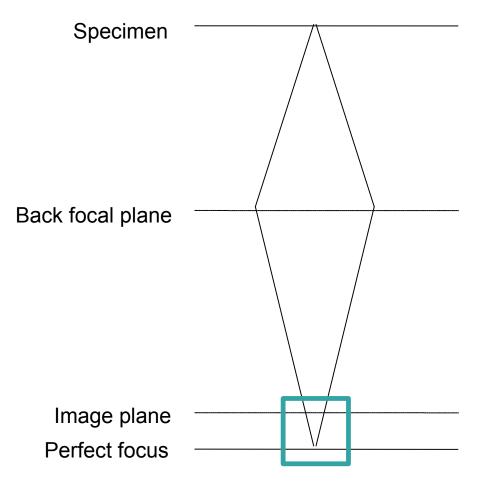
Signal-to-noise ratio for cryoEM typically given to be between 0.07 and 0.10.

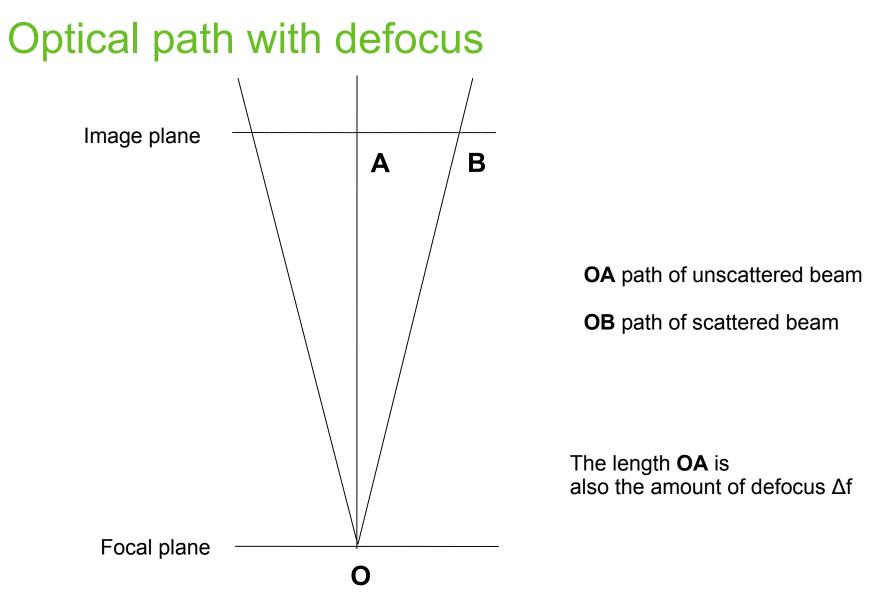
Optical path



At focus, all we would see is amplitude contrast.

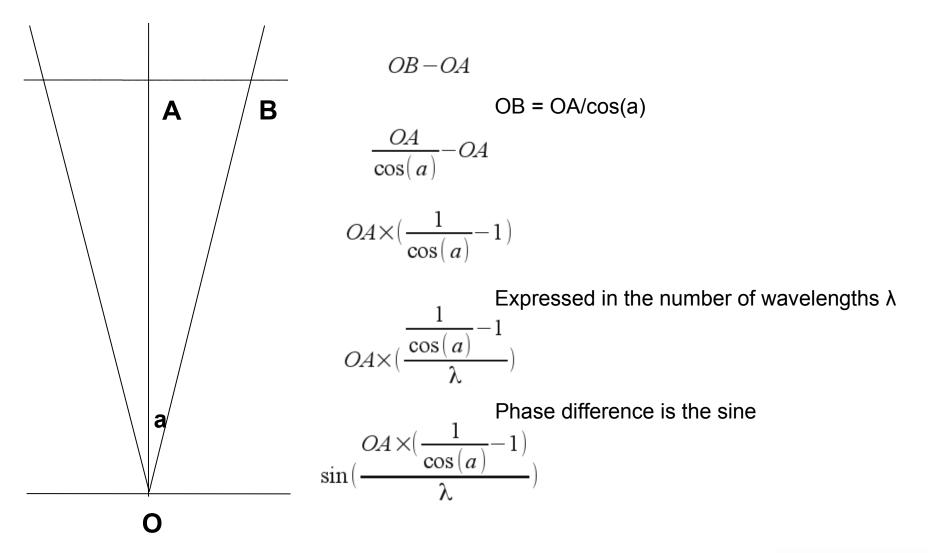
Optical path with defocus



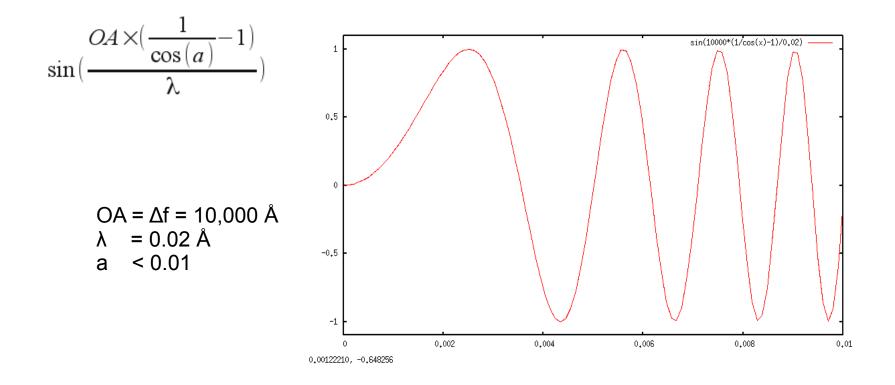


What is the path difference between the scattered and unscattered beams?

Path difference as a function of Δf



Some typical values



A more precise formulation of the CTF can be found in Erickson & Klug A (1970). Philosophical Transactions of the Royal Society B. 261:105.

Proper form the CTF

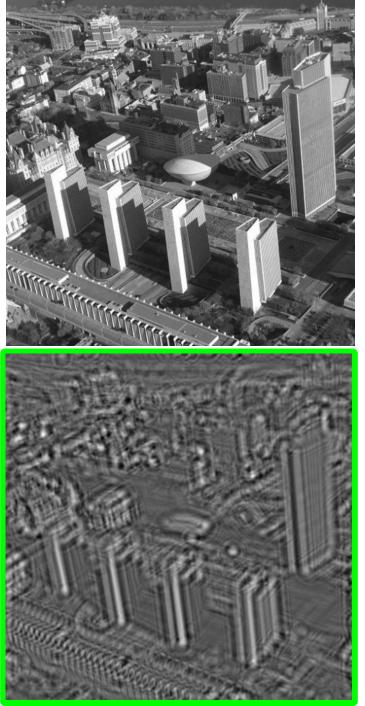
 $-\sin\left(\frac{\pi}{2}C_{s}k^{4}+\pi\Delta f\lambda k^{2}\right)$

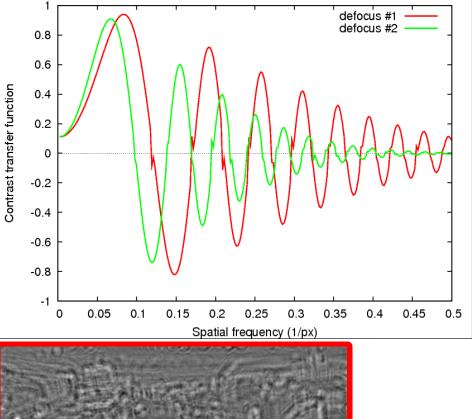
where:

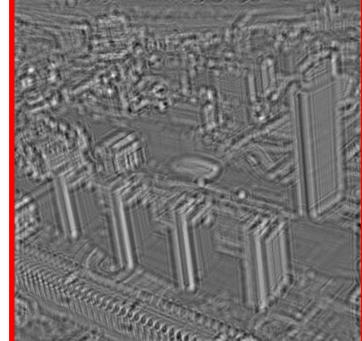
- C_s: spherical aberration
- k: spatial frequency (resolution)

How does the CTF affect an image?

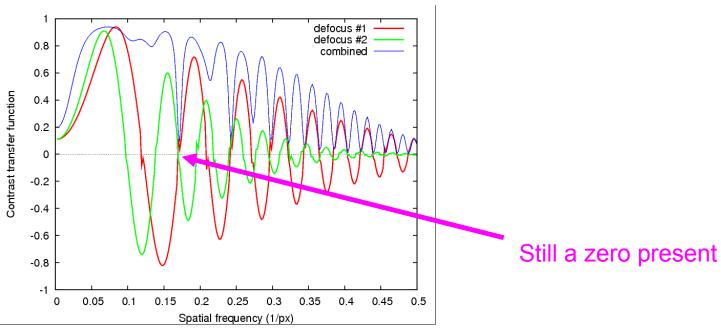
original







combined



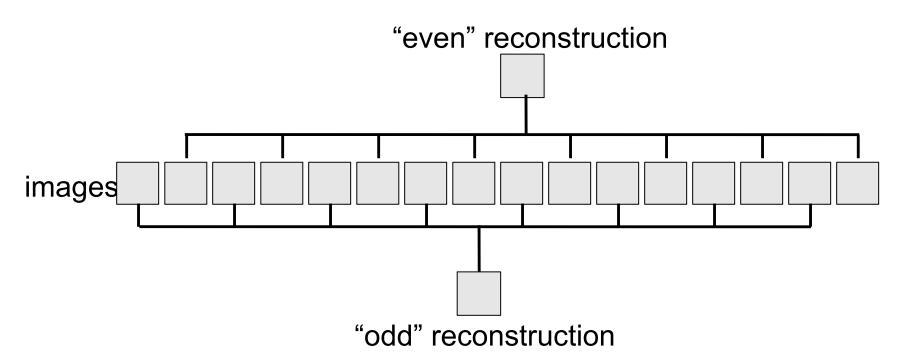
Outline

Image analysis I

- Fourier transforms
 - Relationship between imaging and diffraction
 - Theory
 - Examples in 1D
 - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

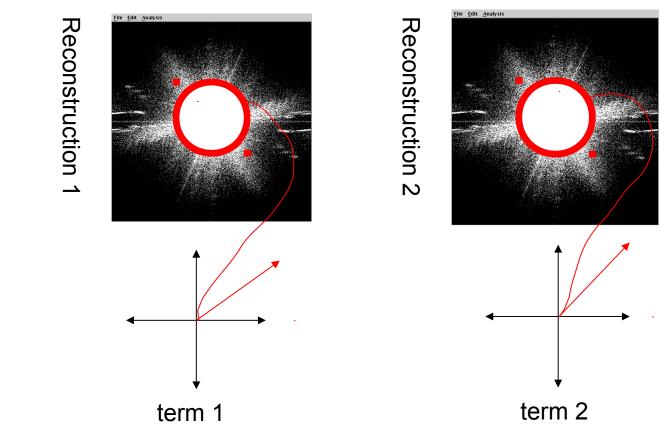
How do we evaluate the quality of a reconstruction?

We split the data set into halves and compare them.



Now, <u>how</u> do we compare the two half-set reconstructions?

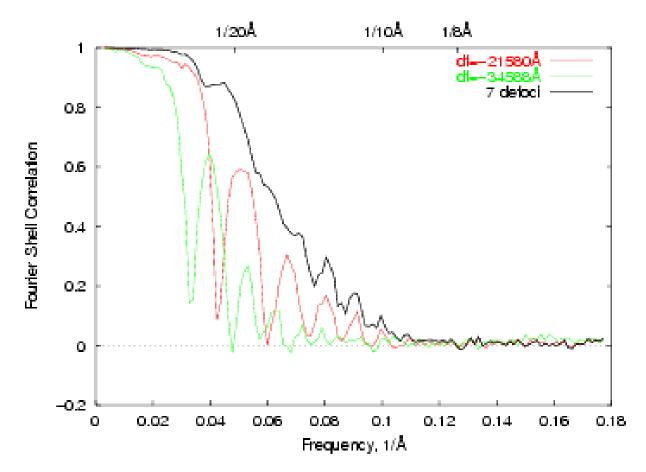
Fourier Shell Correlation (FSC)



Properties:

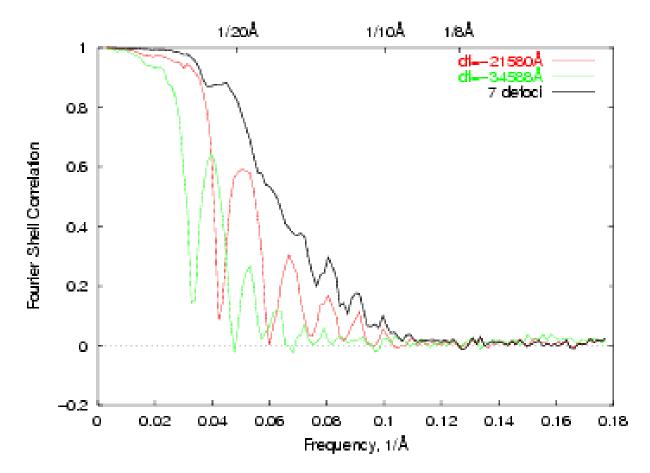
- Fourier terms have amplitude + phase.
- Correlation values range from -1 to +1.
- Noise <u>should</u> give an average of 0.
- The comparison is done as a function of spatial frequency (or "resolution")

Fourier Shell Correlation; A better example



It is controversial what single number to use to describe this curve, but a common practice is to report the value where the FSC=0.5 as the nominal resolution.

Fourier Shell Correlation; A better example



The FSC is not a foolproof metric. You can "fool" your data, or be fooled, into an artifactually good FSC.

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

