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http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html





A quiz:
A problem I had with my first attempt



QUESTION: Where did that cross come from?



Apodization: Smoothly bring the signal to zero near an edge
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Why are electrons useful?



Wavelengths of various radiation types

 Visible light: >380nm

 X-rays (copper K): 0.154nm (1.54Å)

 Electrons (300kV): 0.002nm (0.02Å)



How wavelength limits resolution

1/λ

S O

S: specimen origin
O: diffraction origin



1/λ

http://en.wikipedia.org



NOTE: Not to scale.
EM wavelength is ~80 smaller, 
and therefore 1/λ would be 80X bigger.

X-ray

EM



X-ray

NOTE 2: For practical purposes, 
the radius of the Ewald sphere is so large that we ignore its curvature.

EM



1/λ

NOTE 3: Electron lenses are terrible, and biological samples are fragile, 
so in practice we'll see on a tiny fraction of the data we could theoretically get.

Resolution



1/λ

NOTE 4: For more information, see
DeRosier (2000) “Correction of high-resolution data for curvature of the Ewald sphere.”

What
we

assume



Preview:
3D reconstruction



Preview: reconstruction
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origin

spatial frequency

From Wikipedia

From last week...

This is an example of aliasing.



An example using SPIDER



https://youtu.be/6LzaPARy3uA?t=51
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QUESTION:
Why do we need to average the 

signal from many images?



ANSWER: Our signal-to-noise is poor

200200ÅÅ



aligned images 1-4 of 4096 total 

unaligned images 1-4 of 4096 total

This is a simple 2D case, but the effects are analogous in 3D.

What happens if we don't align our images?



n=1 n=4 n=16 n=256 n=1024 n=4096

Signal-to-noise ratio increases with √n

What happens as we include more particles?



(P)review of 3D reconstruction: 
The parameters required

Two translational:
 Δx
 Δy

Three orientational 
(Euler angles):

 phi (about z axis)
 theta (about y)
 psi (about new z)

http://www.wadsworth.org

These are determined in 2D. 
We'll concentrate on these 1st.



How do find the relative translations 
between two images?



Cross-correlation coefficient:

Cross-correlation

Image f Image g

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

constant
“normalization”



Cross-correlation
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Cross-correlation coefficient

Cross-correlation coefficient:

If the alignment is perfect, the correlation value will be 1.

What if the correlation isn't perfect?



Cross-correlation

Image f Image g

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

What if the correlation isn't perfect?

ANSWER: You try other shifts (perhaps all).



1 2 3 4

5 6 7 8
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(2, 2)

Cross-correlation map

(2, 0)

We would need to repeat this for all combinations of shifts.



Cross-correlation function (CCF)
Brute-force translational search is CPU-intensive

BUT

Fourier transforms can help us.

Real space f(x) g(x)

Some notation:

Fourier space F(X) G(X)



Cross-correlation function (CCF)
Brute-force translational search is CPU-intensive

BUT

Fourier transforms can help us.

Complex conjugate:
If a Fourier coefficient F(X) has the form: a + bi
The complex conjugate F*(X) has the form: a - bi

F*(X) G(X) = F.T.(CCF)
This gives us a map of all possible shifts.



Cross-correlation function (CCF)

Image f(x) Image g(x)

F.T. F*(X)
(complex conjugate)

F.T. G(X)

x =

F.T. (CCF)

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

(8,-6)



Well, that was an easy case.
We only needed to do translational alignment.

What about orientation alignment?



Orientation alignment

Image 1 Image 2

We take a series of rings from each image, unravel them, 
and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.



N
oise added

Reference image



0 3600 360

Polar representation

Orientation alignment

Image 1 Image 2

radius 1
radius 2
radius 3
radius 4



radius 1
radius 2
radius 3
radius 4

0 360 0 360

Orientation alignment



radius 1
radius 2
radius 3
radius 4

0 360 0 360

Orientation alignment: After rotation



Which do you perform first?
Translational or orientation alignment?



Translational and orientation alignment 
are interdependent

SuperimposedImage 1 Image 2

SOLUTION: You try a set of reasonable shifts, 
and perform separate orientation alignments for each.



Set of all new shifts of up to 2 pixels
Set of all shifts of up to 1 pixel

Translational and orientation alignment 
are interdependent

Shifts of (0, +/-1, +/-2) pixels results in 25 orientation searches.
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How to apply the best shift and rotation?



Shifts

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Suppose we shift the image in x & y.

The new pixels will be weighted averages of the old pixels.

The more the mix the pixels, the worse the result will be.



original Δx=Δy=0.05px Δx=Δy=0.10px Δx=Δy=0.15px Δx=Δy=0.20px

Δx=Δy=0.25px Δx=Δy=0.30px Δx=Δy=0.35px Δx=Δy=0.40px Δx=Δy=0.45px

Effect of shifts



Two more properties of Fourier transforms: Noise

 The Fourier transform of noise is noise

 “White” noise is evenly distributed in Fourier space

• “White” means that each pixel is independent

White noise Power spectrum

origin

Nyquist frequency

spatial frequencyspatial frequency



Effects of interpolation are resolution-dependent

Image Power spectrum Profile

O
riginal

S
hifted by (0.5,0.5) px



Rotation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Suppose we rotate the image.

The new pixels will be weighted averages of the old pixels.



Rotation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Suppose we rotate the image.

New pixel #9 will be a weighted sum of old pixels 99, 1010, 1313, and 1414.



Image Power spectrum Power spectrum profile

O
riginal

S
hifted by (0.5,0.5) px

R
otated by 45º



The degradation of the images means that we 
should minimize the number of interpolations.



From two weeks ago...

http://www.en.wikipedia.org

Typical magnification: 50,000X 
Typical detector element: 15μm 
(pixel size on the camera scale)

Pixel size on the specimen scale: 
15 x 10-6 m/px / 50000 = 
3.0 x 10-10 m/px = 3.0 Å/px

In other words, 
the best resolution we 
can achieve (or, the 
finest oscillation we 
can detect) at 3.0 Å/px 
is 6.0 Å.

It will be worse due to interpolation, 
so to be safe, a pixel should be 3X 
smaller than your target resolution.



Different alignment strategies



Reference-based alignment



There's a problem with reference-based alignment:

Model bias



Model bias

Reference Images of pure noise



Averages of images of pure noise

N = 128 N = 256 N = 512

N = 1024 N = 2048 original



There are reference-free alignment schemes



Reference-free alignment 
(SPIDER command AP SR)

Single image picked randomly as reference

Disadvantage: Alignment depends on the choice of random seed.



Pyramidal/pairwise alignment

Marco... Carrascosa (1996) Ultramicroscopy



You have aligned images, 
but they don't all look the same.
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A one-pixel image

1

1-pixel image

http://isomorphism.es

#Im
ages

Intensity



A two-pixel image

1

2-pixel image

2

P
ixel 2

Pixel 1



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

A 16-pixel image

Now, we have a 16-dimensional problem.



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Suppose pixel 6 coincided with pixel 11, 
And pixel 7 coincided with pixel 10.
Then, we're back to two variables, and a 2D problem.



1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.

Covariance of measurements x and y: 
<xy> - <x><y>,

where <x> is the mean of x.

A high covariance is a measure of the correlation between two variables.



MDA: An example

8 classes of faces, 64x64 pixels

With noise added

From http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

Average:



Principal component analysis (PCA)
or Correspondence analysis (CA)

 For a 4096-pixel image, we will have a 4096x4096 covariance 
matrix.

 Row-reduction of the covariance matrix gives us “eigenvectors.”

• The eigenvectors describe correlated variations in the 
data.

• The eigenvectors have 4096 elements and can be 
converted back into images, called “eigenimages.” 

• The first eigenvectors will account for the most variation.  
The later eigenvectors may only describe noise.

• Linear combinations of these images will give us 
approximations of the classes that make up the data.

Eigenimages



Reconstituted images

Linear combinations of these images will give us 
approximations of the classes that make up the data.

Average Eigenimage #1 Eigenimage #2 Eigenimage #3

c
0 + c

1
+ c

2
+ c

3
+ ...

A reminder of what our original images looked like



Another example: worm hemoglobin

Phantom images of worm hemoglobin



PCA of worm hemoglobin
Average:
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Next week:
Classification & 3D Reconstruction
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