

Central European Institute of Technology BRNO | CZECH REPUBLIC

Image analysis II

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

April 4, 2016

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

A quiz: A problem I had with my first attempt

QUESTION: Where did that cross come from? Ø⊂≡IT≡⊂

Apodization: Smoothly bring the signal to zero near an edge

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

Why are electrons useful?

Wavelengths of various radiation types

- Visible light: >380nm
- X-rays (copper K): 0.154nm (1.54Å)
- Electrons (300kV): 0.002nm (0.02Å)

How wavelength limits resolution

S: specimen origin **O**: diffraction origin

http://en.wikipedia.org

NOTE 2: For practical purposes, the radius of the Ewald sphere is so large that we ignore its curvature.

NOTE 3: Electron lenses are terrible, and biological samples are fragile, so in practice we'll see on a tiny fraction of the data we could theoretically get.

NOTE 4: For more information, see DeRosier (2000) "Correction of high-resolution data for curvature of the Ewald sphere."

Preview: 3D reconstruction

Preview: reconstruction

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

From last week...

From Wikipedia

This is an example of aliasing.

An example using SPIDER

https://youtu.be/6LzaPARy3uA?t=51

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

QUESTION: Why do we need to average the signal from many images?

ANSWER: Our signal-to-noise is poor

What happens if we don't align our images?

unaligned images 1-4 of 4096 total

This is a simple 2D case, but the effects are analogous in 3D.

What happens as we include more particles?

n=1 *n*=4 *n*=16 *n*=256 *n*=1024 *n*=4096

Signal-to-noise ratio increases with \sqrt{n}

(P)review of 3D reconstruction: The parameters required

Two_translational: ✓ Δx ✓ Δy Three orientational (Euler angles): ✓ phi (about z axis) ✓ theta (about y)

(psi about new z)

These are determined in 2D. We'll concentrate on these 1st.

http://www.wadsworth.org

How do find the relative translations between two images?

Image f

Cross-correlation coefficient:

Image f

Image g

Unnormalized CCC = $f_1g_1 + f_2g_2 + f_3g_3 + f_4g_4 + f_5g_5 + f_6g_6 + f_7g_7 + f_8g_8$ + $f_9g_9 + f_{10}g_{10} + f_{11}g_{11} + f_{12}g_{12} + f_{13}g_{13} + f_{14}g_{14} + f_{15}g_{15} + f_{16}g_{16}$

Image f

Image g

Unnormalized CCC = $f_1g_1 + f_2g_2 + f_3g_3 + f_4g_4 + f_5g_5 + f_6g_6 + f_7g_7 + f_8g_8$ + $f_9g_9 + f_{10}g_{10} + f_{11}g_{11} + f_{12}g_{12} + f_{13}g_{13} + f_{14}g_{14} + f_{15}g_{15} + f_{16}g_{16}$

Cross-correlation coefficient

If the alignment is perfect, the correlation value will be 1.

What if the correlation isn't perfect?

Image f

Image g

What if the correlation isn't perfect? ANSWER: You try other shifts (perhaps all).

We would need to repeat this for all combinations of shifts.

Cross-correlation function (CCF)

Brute-force translational search is CPU-intensive BUT

Fourier transforms can help us.

Cross-correlation function (CCF)

Brute-force translational search is CPU-intensive BUT

Fourier transforms can help us.

Complex conjugate: If a Fourier coefficient F(X) has the form: a + biThe complex conjugate $F^*(X)$ has the form: a - bi

 $F^*(X) G(X) = F.T.(CCF)$ This gives us a map of all possible shifts.

Cross-correlation function (CCF)

Image *f*(*x*)

Image g(x)

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

Well, that was an easy case. We only needed to do translational alignment. What about orientation alignment?

Orientation alignment

We take a series of rings from each image, unravel them, and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.

Reference image

Noise added

Orientation alignment

Image 2

360

Polar representation

Orientation alignment

2 \$? 雦 LA. 12

Orientation alignment: After rotation

2 # \$? radius=15 12 radius=23 radius=31 10 radius=39 8 Intensity 6 4 2 0 -2 135 270 315 0 45 90 180 225 360 Angle 372.357, -3.21418

Which do you perform first? Translational or orientation alignment?

Translational and orientation alignment are interdependent

SOLUTION: You try a set of reasonable shifts, and perform separate orientation alignments for each.

Translational and orientation alignment are interdependent

Set of all shifts of up to 1 pixel Set of all new shifts of up to 2 pixels Shifts of (0, +/-1, +/-2) pixels results in 25 orientation searches.

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

How to apply the best shift and rotation?

Shifts

Suppose we shift the image in *x* & *y*.

The new pixels will be weighted averages of the old pixels.

Effect of shifts

Two more properties of Fourier transforms: Noise

- The Fourier transform of noise is noise
- "White" noise is evenly distributed in Fourier space
 - "White" means that each pixel is independent

White noise

Power spectrum

Effects of interpolation are resolution-dependent

Suppose we rotate the image.

The new pixels will be weighted averages of the old pixels.

Suppose we rotate the image.

New pixel #9 will be a weighted sum of old pixels 9, 10, 13, and 14.

EITEC

2.00

The degradation of the images means that we should minimize the number of interpolations.

From two weeks ago...

Typical magnification: 50,000X Typical detector element: 15µm (pixel size on the camera scale)

Pixel size on the specimen scale: 15 x 10⁻⁶ m/px / 50000 = $3.0 x 10^{-10}$ m/px = **3.0 Å/px**

In other words, the best resolution we can achieve (or, the finest oscillation we can detect) at 3.0 Å/px is **6.0 Å**.

Transmission Electron Microscope

http://www.en.wikipedia.org

It will be worse due to interpolation, so to be safe, a pixel should be 3X smaller than your target resolution.

Different alignment strategies

Reference-based alignment

There's a problem with reference-based alignment:

Model bias

Model bias

Reference

Images of pure noise

Averages of images of pure noise

N = 128

N = 256

N = 512

N = 1024

N = 2048

original

There are reference-free alignment schemes

Reference-free alignment (SPIDER command AP SR)

Disadvantage: Alignment depends on the choice of random seed.

Pyramidal/pairwise alignment

Marco... Carrascosa (1996) Ultramicroscopy

You have aligned images, but they don't all look the same.

Outline

Image analysis II

- Fourier transforms revisited
 - Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

A one-pixel image

http://isomorphism.es

A two-pixel image

A 16-pixel image

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

Now, we have a 16-dimensional problem.

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

1	2	3	4	1	2	3	4
5	6	7	8	5	6	7	8
9	10	11	12	9	10	11	12
13	14	15	16	13	14	15	16

Suppose pixel 6 coincided with pixel 11, And pixel 7 coincided with pixel 10. Then, we're back to two variables, and a 2D problem.

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.

Covariance of measurements *x* and *y*: <*xy*> - <*x*><*y*>, where <*x*> is the mean of *x*.

A high covariance is a measure of the correlation between two variables.

MDA: An example

8 classes of faces, 64x64 pixels

With noise added

Average:

From http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

Principal component analysis (PCA) or Correspondence analysis (CA)

- For a 4096-pixel image, we will have a 4096x4096 covariance matrix.
- Row-reduction of the covariance matrix gives us "eigenvectors."
 - The eigenvectors describe correlated variations in the data.
 - The eigenvectors have 4096 elements and can be converted back into images, called "eigenimages."
 - The first eigenvectors will account for the most variation. The later eigenvectors may only describe noise.
 - Linear combinations of these images will give us approximations of the classes that make up the data.

Reconstituted images

Linear combinations of these images will give us approximations of the classes that make up the data.

A reminder of what our original images looked like

Another example: worm hemoglobin

start key: 1 Select class 1 Display

Phantom images of worm hemoglobin

PCA of worm hemoglobin

 $-C_1$

 $-C_0$

 $-C_{\gamma}$

Average:

 $-C_3$

-C₄

 $-C_5$

Next week: Classification & 3D Reconstruction

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

