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Random walks:
Why signal-to-noise improves with √N



The “Drunkard's walk”

Let's conduct an experiment.



The “Drunkard's walk”

0 1 2 3 4-1-2-3-4

We're going to assume that each step is random and independent of previous steps.



The “Drunkard's walk”

0 1 2 3 4-1-2-3-4

t=1

t=2

t=3

t=4

t=5

t=6



The teetotaler's walk

0 1 2 3 4-1-2-3-4

t=1

t=2

t=3

t=4



Expectation value

The expected distance that “noise” travels increases with √N.
However, it is not as fast as the distance that “signal” travels.
Thus, as we collect more data, the SNR increase by N/√N = √N



Random walks: more information



Expectation values
and how they related to resolution criteria



images

“odd” reconstruction

“even” reconstruction

We split the data set into halves and compare them.

Review:
How do we evaluate the quality of a reconstruction?



Review: Fourier Shell Correlation (FSC)

Properties:
- Fourier terms have amplitude + phase.
- Correlation values range from -1 to +1.
- Noise should give an average of 0.
- The comparison is done as a function of spatial frequency (or “resolution”)

R
econstruction 1

R
econstruction 2

term 1 term 2



Review: Fourier Shell Correlation curve



FSC curve with expectation value of noise



Why does σ vary with spatial frequency?



With small N, behavior is more unpredictable

One resolution criterion was to compare the FSC to, say, 3*σ.
BUT:
The σ value describes the behavior of unaligned noise.



Review: model bias

N = 128 N = 256 N = 512

N = 1024 N = 2048 original

The model bias can yields false correlations in real space 
is equivalent to false correlations in Fourier space.



images

“odd” reconstruction

“even” reconstruction

Refinement: classical and “gold standard”

+

OLD STRATEGY

merge & refine orientations

“GOLD STANDARD”

refinement1 refinement2



Different resolution criteria

FSC=0.5

FSC=0.143

FSC=0.333



Outline
Image analysis III

More on last week's material

Dependence of SNR on √N

Oversampling

Classification 

3D Reconstruction
Principles

Tomography

Reference-based alignment 

Common lines

RCT

CTF-correction

3D classification 



Sampling: 
Oversampling an already-sampled image



Shifts: worst-case scenario

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



original Δx=Δy=0.05px Δx=Δy=0.10px Δx=Δy=0.15px Δx=Δy=0.20px

Δx=Δy=0.25px Δx=Δy=0.30px Δx=Δy=0.35px Δx=Δy=0.40px Δx=Δy=0.45px

Effect of shifts



1 2 43

5 6 87

9 10 1211

13 14 1615

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Oversampling



1 2 43

5 6 87

9 10 1211

13 14 1615

Worst-case scenario after oversampling



White noise Power spectrum

Upscaled

300px

origin

Nyquist
 frequency

spatial frequencyspatial frequency

1/6Å

origin

Old
Nyquist

 frequency

spatial frequencyspatial frequency

1/6Å

New
Nyquist

 frequency

1/4Å

200px



Image Power spectrum Power spectrum profile

O
riginal

S
hifted by (0.5,0.5)

U
pscaled

+
S

hifted



1 2 43

5 6 87

9 10 1211

13 14 1615



Image Power spectrum Power spectrum profile

O
riginal

R
otated by 45º

U
pscaled

+
R

otated



You can do a little better by oversampling.
Bammes... Chiu (2012) J. Struct. Biol.

Oversampling: Conclusion
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Classification



Reiteration of the problem

8 classes of faces, 64x64 pixels

With noise added

Before we can average the data, we first should find homogeneous subsets.

Average:



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Multivariate data analysis (MDA)



1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.



MDA: Reconstituted images

Linear combinations of these images will give us 
approximations of the images that make up the data.

Average Eigenimage #1 Eigenimage #2 Eigenimage #3

c
0 + c

1
+ c

2
+ c

3
+ ...



Phantom images of worm hemoglobin



MDA of worm hemoglobin
Average:

+c
0
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1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

Classification

How do we categorize/classify the images?



K-means classification
A number K of images are chosen as seeds.

BAD: Some clusters may be overrepresented/underrepresented.



Diday's method of moving centers



Diday's method of moving centers



Diday's method of moving centers



Diday's method of moving centers

We will note the images that always “travel” together, and will call them a class.



Dendrogram



Dendrogram



Hierarchical ascendant classification

“Images”



Hierarchical Ascendant Classification

All images are represented. 
The dendrogram will be too heavily branched to interpret without truncation.



Binary-tree viewer

BAD: Information about the height of the branch is lost.
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John O'Brien, 1991, The New Yorker

How do you go from 2D to 3D?



What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

3. many particles 



Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

good
missing
views

sparse
sampling

sparse
sampling

+
missing
views

What happens when we're missing views?

Your sample isn't guaranteed to adopt different orientations,
in which case you many need to explicitly tilt the microscope stage.

(more later...)



What information do we need for 3D reconstruction?

1. different orientations

2. known orientations

3. many particles 

I have all of this information.
Now what?



There are two general categories of 3D reconstruction

1. Real space

2. Fourier space



Reconstruction in real space

We are going to reconstruct a 2D object from 1D projections.
The principle is the similar to, but simpler than, reconstructing 
a 3D object from 2D projections.



Projection of our 2D object



Now, project in several directions



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



Reconstruction is the inversion of projection



The reconstruction doesn't agree well with the projections.
What can we do?

(one) ANSWER: 
Simultaneous Iterative Reconstruction Technique



Simultaneous Iterative Reconstruction Technique

The idea:
You compute re-projections of your model.

Compare the re-projections to your experimental data.

There will be differences.

You weight the differences by a fudge factor, λ.

You adjust the model by the difference weighted by λ.

Repeat.



Simultaneous Iterative Reconstruction Technique



Simultaneous Iterative Reconstruction Technique

Here, the differences (which will be down-weighted by λ) 
are the ripples in the background.

If we didn't down-weight by λ, we would overcompensate, 
and would amplify noise.

ModelExperimental projection



Reconstruction in Fourier space



Projection theorem
(or Central Section Theorem)

A central section through the 
3D Fourier transform is 

the Fourier transform of the 
projection in that direction.



Projection theorem
(or Central Section Theorem)

The disadvantage is that you have 
To resample your central sections 

from polar coordinates to 
Cartesian space, i.e. interpolate.
There are new methods to better 

Interpolate in Fourier space.



Converting from polar to Cartesian coordinates

X

Y

SOLUTION:
A simple weighting scheme is to divide the weight by the radius:

r* weighting, or “r-weighted backprojection”



Adapted from Pawel Penczek

If you know the orientation angles for each image, 
you can compute a back-projection.

Going from 2D to 3D



How do we determine the last two Euler angles?



Parameters required for 3D reconstruction

Two translational:
 Δx
 Δy

Three orientational 
(Euler angles):

 phi (about z axis)
 theta (about y)
 psi (about new z)

http://www.wadsworth.org

These are determined in 2D.

These are determined in 3D.



Adapted from Pawel Penczek

If you know the orientation angles for each image, 
you can compute a back-projection.

Going from 2D to 3D
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From Ken Downing

BUT...

Tomography

We have:
  known orientations
  different views



“bubbling”

10 e-/Å2 20e-/Å2

30e-/Å2 40e-/Å2

40e-/Å2

Baker et al. (1999) Microbiol. Mol. Biol. Rev. 63: 862

We are destroying the sample as we image it.

What happens when we image the sample?



From Ken Downing

Solution:

If we have many identical molecules, 
and if we can determine the orientations,
we can use one exposure per molecule 
and use these images in the reconstruction.

Consequences of repeated exposure

  Accumulated beam damage
  If number of views is limited,  

then distortions

“Single-particle reconstruction”



If we have many identical molecules, 
and if we can determine the orientations,
we can use one exposure per molecule 
and use these images in the reconstruction.

BUT:
Unlike in the tomographic case, 
we don't know how the orientations 
between the different images are related.
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Reference-based alignment

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

You will record the direction of projection (the Euler angles), such that 
if you encounter an experimental image that resembles a reference projection, 
you will assign that reference projection's Euler angles to the experimental image.

Assumption: reference is similar enough to the sample that it can be used to determine orientation.



The model

(The extra features helped determine handedness in noisy reconstructions.)







Reference-based alignment

Steps:

1.  Compare the experimental image to all of the reference projections.

2.  Find the reference projection with which the experimental image matches best.

3.  Assign the Euler angles of that reference projection to the experimental image.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.
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Common lines
(or Angular Reconstitution)

Summary:
 A central section through the 3D 

Fourier transform is the Fourier 
transform of the projection in 
that direction

 Two central sections will 
intersect along a line through 
the origin of the 3D Fourier 
transform

 With two central sections, there 
is still one degree of freedom to 
relate the orientations, but a 
third projection (i.e., central 
section) will fix the relative 
orientations of all three.

Frank, J. (2006) 3D Electron Microscopy of Macromolecular Assemblies



Common lines
(or Angular Reconstitution)

From Steve Fuller

Summary:
 A central section through the 3D 

Fourier transform is the Fourier 
transform of the projection in 
that direction

 Two central sections will 
intersect along a line through 
the origin of the 3D Fourier 
transform

 With two central sections, there 
is still one degree of freedom to 
relate the orientations, but a 
third projection (i.e., central 
section) will fix the relative 
orientations of all three.



Common lines: Problems

 Noise can lead to incorrect angles
Symmetry helps

 Handedness cannot be determined without 
additional information

Tilting

α-helices

 Assumes conformational homogeneity
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From Nicolas Boisset

This scenario describes a 
worst case, when there is 
exactly one orientation in 
the 0º image.  Since the 
in-plane angle varies, in 
the tilted image, we have 
different views available.

Random-conical tilt:
Determination of Euler angles



Two images are taken: one at 0° and one tilted at an angle 
of 45°.

0°

45°

1 2 876543

Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, 
J. Three-dimensional reconstruction from a single-
exposure, random conical tilt series applied to the 50S 
ribosomal subunit of Escherichia coli. J Microsc 146, 113-
36 (1987).

From Nicolas Boisset

1
2

5

43

678

Random-conical tilt: Geometry









One problem though:

We can't tilt the stage all the way to 90 degrees.



Review:

Projection theorem



Representation of the distribution of views, if we 
display a plane perpendicular to each projection 
direction

The missing information, in the shape of a cone, 
elongates features in the direction of the cone's axis.

From Nicolas Boisset

Random-conical tilt:
The “missing cone”



Random-conical tilt:
Filling the missing cone

+ =

+ =
Reconstruction

Distribution 
of orientations

From Nicolas Boisset

If there are multiple preferred orientations, or if there is symmetry 
that fills the missing cone, you can cover all orientations.



Phantom images of worm hemoglobin



We compute a separate reconstruction for each class

IF the classes simply correspond to different orientations, 
you can combine them, and boost the signal-to-noise.



Helicase G40P

If the classes correspond to different conformations, 
then you have to keep them as separate reconstructions.
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More properties of Fourier transforms: 
Convolutions



Why might two images in a data set look different?

 different sample

 different magnification

 different illumination

 different orientations

 different defocus

 different 
conformations

 better biochemistry

 better microscopy

 normalization

 determine angles

 CTF correction

 Classification



Molecule g(x)

lattice: f(x) Set a molecule down at every 
lattice point.

Notation: f(x)•g(x)
Adapted from David DeRosier

Convolution of a molecule with a lattice 
generates a crystal.



lattice: f(x)
http://www.photos-public-domain.com

Set a molecule down at every 
lattice point.

http://www.symbolicmessengers.com

Molecule: g(x)
http://en.wikipedia.org

Convolution in real life

Notation: f(x)•g(x)



Cross-correlation vs. convolution

Complex conjugate:
If a Fourier coefficient F(X) has the form: a + bi
The complex conjugate F*(X) has the form: a - bi

Cross-correlation: F*(X) G(X)

Convolution: F(X) G(X)

Remember:
f(x), g(x) are real-space functions
F(X), G(X) are Fourier-space functions



original



2D power spectrum
G(X)

CTF

1D profile



f(x)

F(X) F(X) G(X)

f(x)•g(x)

G(X)

g(x)



Point spread function

g(x) zoomed

An ideal point spread function would be an infinitely-sharp point.



Red: Power-spectrum profile calculated from experimental image
Green: Fitted, theoretical power-spectrum profile
Blue: Phase-only correction profile



Defocus groups: CTF correction in 3D

Assign micrographs to defocus groups

Separate reconstruction 
for each defocus group



CTF-correction of micrographs in 2D

CTF-correct each micrograph
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Why might two images in a data set look different?

 different molecule

 different magnification

 different illumination

 different orientations

 different defocus

 different 
conformations

 better biochemistry

 better microscopy

 normalization

 determine angles

 CTF correction

 Classification



Classification:
Reference-based classification vs. 
Maximum likelihood (ML3D)

Reference-based classification:

• Possible conformations must be 
known.

• The combination of parameters 
(shift, rotation, class) is chosen 
from the highest correlation 
value.

• Possible reference bias

 ML3D

• Possible conformations are 
not known.

• The probability of the 
occurrence of the 
parameters (shift, rotation, 
class) is maximized.

• Random, data-dependent

RELION is a variation of maximum likelihood.



Seeding ML3D classification

There will be slight differences in the reconstructions. 
We will iteratively maximize the likelihood of a 
particle belonging to a particular class.

images

We split the data set into K classes at random.
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