Atmospheric-pressure plasma deposited epoxy-rich thin films as platforms for biomolecule immobilization – application for anti-biofouling and xenobioticdegrading surfaces

G. Camporeale, M- Moreno-Couranjou, S. Bonot, R. Mauchauffé, N. D. Boscher, C. Bebrone, C Van de weerdt, H.-M. Cauchie, P. Favia and P. Choquet

Plasma Process. Polym., 2015, 12, 1208-1219

Introduction

- LP plasma processes have been used for deposition of thin films functionalized with groups such as amino, carboxylic, or epoxy for covalent bonding of peptides/proteins with biological activity
- APDBD used for fast deposition of epoxy-rich layers
- study of influence of plasma process parameters on the chemical and morphological properties of layer
- two enzymes with different activities (dispersin, laccase) have been used in order to explore the possibilities of the epoxy-containing layer as a platform for biomolecule immobilization

Experiment

two kinds of substrates

- mirror-polished stainless steel disks
- two face-polished silicon (III) wafers
- Ar + GMA (flow 10,5 ml/min)
- plasma was generating using corona source
 - CW and PW discharge mode
 - P = 50 W
 - in PW mode t_{on} fixed at 10 ms, t_{off} varied

from 10 ms to 80 ms

Obr 1: GMA structure and plasma source.

Used characterization methods

- Scanning electron microscopy (SEM)
 - thickness of ppGMA
 - film deposition rate
- Atomic force microcopy (AFM)
- Fourier-transform infrared spectroscopy (FTIR)
- X-ray photoelectron spectroscopy (XPS)

Scanning electron microscopy

- SEM is based on imaging of sample by scanning it with focused electron beam
- types of signal
 - secondary electrons (SE)
 - SE are emitted from very close to the sample surface (~ 100 nm)
 - SE used for topography imaging (emitted mostly from sharp edges)
 - > backscattered electrons (BSE)
 - BSE emerge from deeper locations ((~ I um)
 - intensity of BSE signal is related to atomic number
 - BSE provide information about the distirbution of different elements in the sample
 - > characteristic x-rays
 - used to identify the composition and measure the abundance of elements in the sample

Scanning electron microscopy

Obr 2: Principle od SEM.

D

Atomic force microcopy

- AFM is suitable technique for study of the surface of thin solid films
- the cantilever with a sharp tip scans the surface of the analyzed sample
- Iateral scanning ensures piezoelectric crystal which moves the probe over the sample
- three possible modes
 - contact
 - non-contact
 - tapping

Obr 3: Principle of AFM.

Atomic force microcopy

Obr 4: Principle of AFM.

SEM and AFM results

- PW mode leads to higher film rates FR
 - FR (CW) = 1,2 nm/s
 - FR (PVV, 10:80) = 1,8 nm/s
- pinhole free coating
- PW mode leads to smoother surface without aggregates

Obr 5: ppGMA layers deposited at 50 W in CW mode (a) and 10:10 ms (b) and 10:80 ms (c) PW modes.

Obr 6: ppGMA layers deposited at 50 W in CW mode (a) and 10:10 ms (b) and 10:80 ms (c) PW modes.

Deposition conditions	Average roughness [Ra, nm]			
50 W, CW	148 ± 13			
50 W, 10:10 ms	43 ± 8			
50 W, 10:80 ms	24 ± 11			

Fourier-transform infrared spectroscopy

- IR spectroscopy is based on absorption of IR radiation which influence vibrational and rotational states of chemical compound
- FTIR use Michelson interferometer includes beamsplitter
- interference signal measured by the detector as a function of the optical pathlength difference is called the interferogram
- IR spectrum is computed from the interferogram by performing a Fourier transform
- quantitative analysis Lambert-Beer law

$$I = I_0 \exp(-abC)$$

where I_0 is the intensity of incident light, I is intensity of the light transmitted by sample, a is absorption coefficient, b is thickness of the sample and C is the sample concentration.

Fourier-transform infrared spectroscopy

Obr 7: Principle of FTIR.

D

Fourier-transform infrared spectroscopy

- four characteristic epoxide peaks
 - 3060 cm⁻¹ C-H epoxide ring stretching
 - I 258 cm⁻¹ epoxide ring breathing
 - 910 cm⁻¹ epoxide ring asymmetric deformation
 - 852 cm⁻¹ epoxide ring symmetric deformation
- in CW mode, all peaks barely detectable
- increasing t_{off} leads to increasing the epoxide bands intensity
- in PW mode film with high monomer structure retention due to chemical reactions occurring during the t_{off} between intact monomer molecules and surface radical centers generated during the t_{on} period

Obr 7: Area evolution of the assymetric rign deformation band as function of the plasma-off time.

X-ray photoelectron spectroscopy

- XPS is based on irradiation of a material with a beam of Xrays that cause emission of the inner shell electron
- measurement of the kinetic energy E_k of the emitted electron and determination of elemental composition and chemical and electronic states of the elements

$$E_{\rm B}=hf-E_{\rm k}-\phi$$

where $E_{\rm B}$ is the binding energy, hf is energy of photon and ϕ is spectrometer work function.

Obr 8: Principle of XPS.

X-ray photoelectron spectroscopy

- PW mode allows a higher retention of the initial ester and epoxy groups
- increasing the t_{off} leads to an increase of the epoxy surface content

Samples			50 W, CW	50 W, 10:10 ms	50 W, 10:80 ms	50W, 10:80ms after 50 days at air	Poly(GMA)
XPS surface comp	osition [at. %]						
		с	77	75	72	73	73
		0	23	25	28	27	27
XPS C1s peak fitt	ing, [%]						
Contribution	Binding energy [eV]	Functional group					
C1	285.0	C—C	52	36	33	38	42
C2	285.7	C-CO-O	8	11	13	12	11
C3	286.7	C-O	25	25	22	25	8
C4	287.0	Ероху	0	7	18	9	27
C5	287.8	C=0/C-0-C	5	10	2	4	-
C6	289.1	0-C=0	8	11	13	12	11

What I like

- information about uncertainty related to the XPS measurement (2 at%)
- b thickness measurements were carried out on at least three samples for each condition

What I miss

- no information about layer thickness
- FTIR results could be discussed in more details
 - more details about manipulation with background which method was used?
 - area evolution of other epoxide peaks is there the same trend?

Thank you for attention!

Šárka Trochtová