F7360 Characterization of thin films and surfaces

Katarína Bernátová Brno, 30.5.2016

Outline

Paper introduction

- Experimental details and coatings
- Characterization methods
- Appropriateness of the methods
- Achieved results

Introduction

- Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: From macro to the micro-scale
- J.C. Sánchez-López, D. Martínez-Martínez 1, C. López-Cartes, A. Fernández
 [1]
- Motivation of the study quality nanocomposite coatings (low friction and wear resistance, good toughness)

Experimental details and coatings

- DC (graphite target) and RF (Ti target) magnetron sputtering
- SPR (Sputtering power ratio) ~ P(C)/P(Ti)
- Argon gas, total pressure = 0.75 Pa
- TiC/a-C nanocomposite coatings

Characterization methods 1. X-ray diffraction

- Atomic and molecular structure of crystal
- Diffraction of X-ray beam on crystal lattice
- Bragg's law: $2d\sin heta=n\lambda$
- Structure factor [2]

$$F(h,k,l) = \sum_{n} f_n e^{-2\pi i (hu_n + kv_n + lw_n)}$$

d – spacing between diffracting planes

- Θ the incident angle (X-ray and planes)
- n integer
- λ wavelenght of the beam (0,01-10keV)

f_n - an atom's structure factor h, k, l - Millers index u, v, w – coordinates of an atom

Characterization methods 2. Transmission electron microscopy (TEM)

- Crystal structure, dislocations and grain boundaries in structure
- High energy beam of electrons (keV)
- Thin sample (nm)
- Absorption of el. in material [3]

Characterization methods 3. Electron energy-loss spectroscopy (EELS)

- Elemental compositions, chemical bonds
- The study of the vibrational motion of atoms and molecules
- On or near the surface
- Interaction between the electron beam (0.1-10keV) and the specimen [4]

Characterization methods 4. Micro-Raman spectroscopy

- The study of the interaction between light (inelastic scattered) and matter
- Photons of a single wavelength
- Stokes Raman scattering
- Functional group, the structure of the molecules
- Micro-Raman spectroscopy microscopic samples [5]

Appropriateness of the methods

- XRD crystal structure of the films
- EELS, Raman, XRD a-C/TiC rates, chemical composition, phases proportion inside the film
- Combination of TEM with EELS spectrometer
- Pin-on-disk tribometer tribological tests for friction coefficients, wear rates

Achieved results

Tribological properties

Film microstructure

Phase composition

Achieved results 1)TEM

- Fig.1: a) SPR = 1, TiC crystal (5-10nm) with random orientation
- Fig.1: b) SPR = 4, 1 nm sparticles, amorphous matrix

Fig. 1. HRTEM micrographs and corresponding electron diffraction patterns for nc-TiC/a-C nanocomposite coatings prepared at sputtering power ratios of 1 (a) and 4 (b) respectively.

Achieved results 2) EELS

- EELS spectra on the C K-edge core loss
- Shape and position of the spectra changed gradually (from TiC to a-C phases)
- The best tribological performance (low friction, low instabilities) – for the highest a-C contents

Film	% TiC	% a-C	H (GPa)	f
A	15	85	8	0.13
В	21	79	7	0.12
С	23	77	7	0.10
D	25	75	7	0.09
E	30	70	16	0.10
F	45	55	18	0.26
G	47	53	27	0.25
H	90	10	16	0.25
	95	5	22	0.31
J	>100*	0	11	0.6

Table 1: Summary of samples, phase contents and tribomechanical properties

Achieved results 3) XRD

- TiC phase crystal size is strongly reduced as the carbon content increases (5% to 85%)
- Sample J non-stochiometric Ti-enriched TiC phases

Fig. 3. XRD diffractograms for films A, I and J as representative examples of different type of friction behaviour (zoom 2Θ 50–70°). The database numbers for the identified crystalline phases are the following: TiC phase (database no. 32-1383), Ti₈C₅ (database no. 72-2496), Ti₆C_{3.65} (database no. 79-0971) and Ti_{5.73}C_{3.72} (database no. 77-1089).

4) Raman spectroscopy

a) sample A: a-C content 85%
 two bands: 1370 cm⁻¹ and 1565 cm⁻¹
 (sp2 content)

• b) sample I: a-C content 5%

- understochiometric TiC (active due to carbon vacancies)

- c) sample J: a-C content 0%
 - Iron oxides formation by tribochemical reaction of the steel ball with the atmosphere

Table 2

5

Summary of main phases detected on the counterfaces after friction testing of samples A, I and J

	Rama	Raman analysis			
	Film	Track	Ball		
ample A	a-C	a-C	a-C, nc-graphite+FeTiO ₃ /TiO _x		
ample I	TiC _x	TiC _x +Fe ₃ O ₄ +a-C (small)	$TiC_x + TiO_x + a-C$ (small)		
ample J	TiC _x	$\alpha\text{-}Fe_2O_3\text{+}Fe_3O_4\text{+}\gamma\text{-}Fe_2O_3$	a-Fe ₂ O ₃		

Conclusion a-C content > 60-65% Surface prevention from Mechanical wear and oxidation

References

[1] J.C. Sánchez-López
, D. Martínez-Martínez 1, C. López-Cartes, A. Fernández, Surface & Coatings Technology 202 (2008) 4011–4018

[2] *Rentgenová spektroskopie a difrakce* [online]. Univerzita Karlova v Praze, [cit. 2012-5-5]. Dostupné na http://physics.mff.cuni.cz/vyuka/zfp/.

[3] <u>http://www.britannica.com/technology/transmission-electron-microscope</u> <u>https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/techniques/structural/tem/</u>

[4] http://iopscience.iop.org/article/10.1088/0034-4885/72/1/016502/pdf

http://tpm.amc.anl.gov/Lectures/EELSAEMShortCourse.pdf

[5] <u>http://www.microspectra.com/support/technical-support/raman-science/35-technical-support/126-science-of-micro-raman-spectroscopy</u>

Thank you for your attention!