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Aim of the work

Preparation of catalyts for methanol fuel cells

Vertically oriented graphene substrate covered by Pt-Ru nanoparticles
acting as catalyst for methanol oxidation reaction

Comparison of electrocatalytic performance (mass loading; size of
nanoparticles; catalytic stability) of Pt-Ru/VG products with the Pt-Ru/CP




Preparation of Pt-Ru/VG catalyst

Substrate CP

1. VG grown via PECVD

Microwave source

5 min pretreatment, 350 W, 50 sccm of hydrogen

2 min deposition, 50 V bias, 50 sccm of hydrogen + 10 sccm of methane
2. Co-electrodeposition of Pt-Ru

Electrolyte: H,PtCl..6H,O (1-9 mM)+RuCl,.xH,0 (9-1 mM)+H,SO, (0.5 M)

Three-electrode system (Pt foil = counter electrode; saturated calomel
electrode = reference electrode; substrate = working electrode)

Pulse potentials approach; 300 cycles; -0.40 V for 100 ms (deposition);
0.60V for 300 ms (diffusion of metal cations in electrolyte)



Characterization

1. Electrochemical measurement

Cyclic voltammetry — catalytic activity
Chronoamperometry — stability of catalyst
2. Material characterization

Scanning electron microscopy — surface morphology; size and dispersion
of Pt-Ru particles

High resolution transmission electron microscopy
X-ray diffraction — crystalline structures of Pt, Ru
X-ray photoelectron spectroscopy — chemical states of Pt and Ru

Inductively coupled plasma mass spectrometry — catalyst loading mass
on substrate



Used instrumentation

SEM: SU-70 scanning electronic microscopy (SEM, Hitachi)

TEM: Tecnai G2 F30 STwin transmission electron microscopy (TEM,
Philips-FEl)

XRD: XRD-6000 Diffractometer with Cu Ka source (A = 0.15425 nm,
Shimadzu)

XPS: VG Escalab Mark Il with a monochromatic Mg Ka X-ray source
(1253.6 eV, West Sussex)

ICP: XSENIES, Thermo Electron Corporation



Scanning electron microscopy (SEM)
High resolution transmission electron microscopy
(HRTEM)

 Interaction of electrons with surface
e Source of electrons — cathode — thermoemission, field-emission
* Focusing lens for electron beam
1. SEM
e Electron beam energy: 0.2 — 40 keV, scanning the surface

« Detection of secondary electrons + Dbackscattered electrons
(topography); photons of characteristic x-ray (chemical composition);
light (luminiscence — special phases)

« Penetration depth vs. substrate and layer thickness
e High vacuum vs. ESEM

e Resolution = tens of nm



2. TEM
* Energy of electron beam

 Detection of transmitted electrons — CCD cameral/fluorescence screen;
bright field + dark field; diffraction; electron energy loss (chemical
composition); 3D imaging

* Thin specimen; high vacuum
 Resolution = A

« HRTEM: higher energy of beam; thin specimen; UHV; resolution 0.05nm
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« SEM images of Pt—Ru/CP and Pt-Ru/VG
obtained from three typical electrolyte
compositions. (a) and (b) [H2PtCI6]:
[RuClI3] = 3.7, average catalyst diameter:
103.5+3.1nm and 46.3x1.5nm; (c) and
(d) [H2PtCI6]:[RuClI3] = 1:1, average catalyst
diameter: 111.1 £ 2.8 nm and 51.2 + 1.8 nm;
(e) and (f) [H2PtCI6]:[RuCI3] = 7:3, average
catalyst diameter: 98.3x1.9nm and
459 + 1.1 nm. Insets: SEM images with a
smaller magnification. (g) HRTEM image of
Pt—Ru/VG obtained from the electrolyte
composition of [H2PtCI6]:[RuCI3] = 1:1.

[H2PtCle] : [RuCls] = 3:7
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X-ray diffraction (XRD)

Interaction of X-rays with the specimen
Diffraction according to Bragg's law

Source of X-rays — termoemission + single crystal diffraction on Cu
(CuKa source with A = 0.15425nm)

Detection of diffracted X-rays

Sample rotates in a path of collimated incident X-ray beam at angle 0 +
detector collects the X-rays at 26

Observation of phases coexistence; crystallinity; lattice parameters
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« XRD patterns of Pt—Ru/VG obtained from
different electrolyte compositions



X-ray photoelectron spectroscopy (XPS)

Interaction of X-rays with specimen
X-ray sources: Ka Al (monochromatic); Ka Mg (non-monochromatic)

Detecting the ecsaped photoelectrons (amount + carrying the information
about binding energy)

Observation of chemical composition; chemical state; surface
contamination/ surface functionalization; empirical formula; depth
analysis (if equipped with ion beam etching)

HV/UHYV required; starting at Li; surface sensitive (few nm); difficult fitting
(overlapping peaks); limited size of samples



Principle of XPS
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» (c) Pt 4f XPS spectra and (d) Ru 3p XPS spectra of the catalyst Pt—-Ru/VG

with a precursor of [H2PtCI6]:[RuCI3] = 1:1



Inductively coupled plasma mass spectrometry
(ICP-MS)

Introduction of analyte to plasma (solid - laser ablation; gas — direct;
liquid — direct)

lonization of analyte in plasma (other methods: MALDI; electrospray;
thermospray; chemical ionization; field desorption )

Separation of ions based on m/z (quadrupole; octapole; sector separator,
TOF; ion trap)

Detection of ionized molecules/fragments/particles (induced charge;
produced current)

Qualitative and quantitative (if calibrated) technigue
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Results

1. Introducing VG — increasing of

Loading mass of Pt and Ru; catalytic stability; catalytic activity
2. Introducing VG — decreasing of

Size of Pt, Ru nanoparticles

3. analysis

SEM + HRTEM - size of graphene

XRD — Pt in fcc, however Ru absent

XPS — oxidation number for Pt, Ru unproven (non-monochromatic source
— lower resolution)

4. what to improve
Presentation of mass spectra
Evidence of presence of Ru

Hydrogen content/contamination of VG; Pt-Ru/VG
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