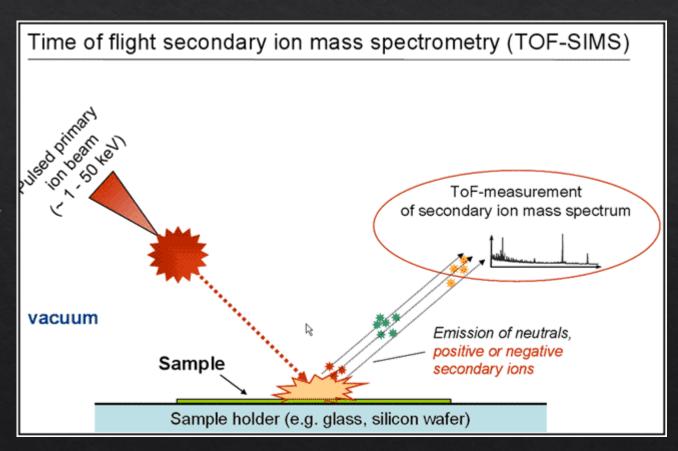
ToF-SIMS study of alternate polyelectrolyte thin films


Chemical surface characterization

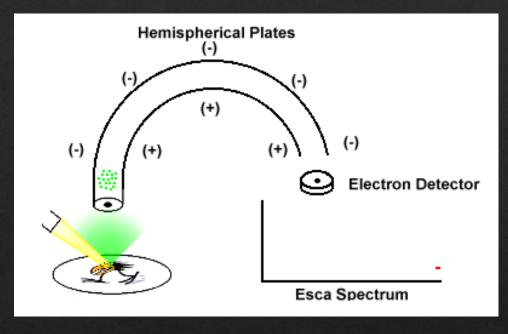
Polyelectrolytes

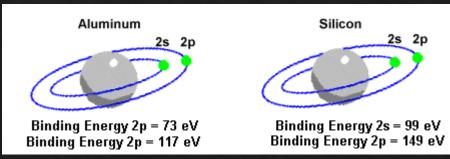
- ♦ Polymers contents an electrolyte group
- Dissociate in aqueous solution (water) form polycations, polyanions
- ♦ Elelectrolytical and polymer properties (polysalts)
- ♦ Solutions electrically conductive, viscous
- ♦ Strong polyelectrolytes dissociates completely in solution
- ♦ Weak polyelectrolytes dissociates partially not fully charged
- ♦ DNA, polypeptides, glycosaminglycans,...

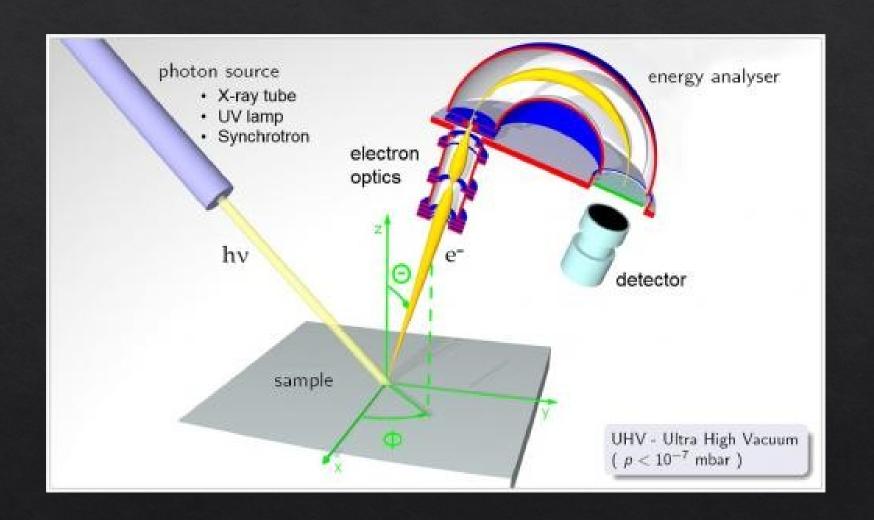
SIMS (Secondary Ion Mass Spectrometry)

- Chemical surface characterization
- ♦ Compared with AES, XPS, ...
- Secondary particles : electrons, neutrals, ions...
- ♦ The ionization probability is strongly affected by the electronic properties of the sample matrix
- ♦ Only a small portion of secondary particles (~ 1% of total secondary particles) are ionized

ToF (Time of Flight)


- Mass analyser the most widely used analyser in static SIMS
- Parameter for measurement: the flight time of ion
- ♦ When ions are obtained with a constant kinetic energy from an acceleration potential (V) of 3 8 kV, the flight time of ions through a distance (L) of flight tube to reach a detector is calculated.


$$t = L(2V)^{-1/2} \left(\frac{m}{z}\right)^{1/2}$$


- Pulsed primary ions are used for precisely measure
- ♦ Initial kinetic energy of secondary ions will affect the resolution of mass analysis

XPS (X-ray photoelectron spectroscopy)

- Surface-sensitive quantitative spectroscopic technique
- Can be applied to a broad range of materials and provides valuable quantitative and chemical state information from the surface of the material
- Irradiates the sample surface with a soft (low energy) X-ray
- ♦ X-ray excites the electrons of the sample atoms
- if their binding energy is lower than the X-ray energy, they will be emitted from the parent atom as a photoelectron
- ♦ The kinetic energy of the electron is the incident energy (1486 eV from the X-ray) minus the binding energy

Experiment

- ♦ 3 types of multilayers with different thicknesses
- Synthesize by dipping charged silicon wafers into solutions of polyelectrolytes of opposite charge

Table 2
Different characterization techniques used for the analysis of the multilayered assemblies

Multilayer assembly	ToF-SIMS	XPS/ARXPS*	XR reflectivity	AFM
bare silicon	X	X*	X	
(6)	X	X		
(6)/(7)	X	X	X	
(6)/(7)/(1)	X	X		
(6)/(7)/(2)	X	X	X	
$(6)/(7)/(2)_2$	X	X/X*	X	
$(6)/(7)/(2)_3$	X	X*		
$(6)/(7)/(2)_4$	X	X		
(6)/(7)/(3)	X	X	X	
$(6)/(7)/(3)_2$	X	X/X*	X	
$(6)/(7)/(3)_3$	X	X	X	
$(6)/(7)/(3)_4$	X	X	X	
(6)/(7)/(4)	X			
$(6)/(7)/(4)_2$	X			X

Table 1 Formulae of the polyelectrolytes used for the multilayered assemblies

Polyelectrolyte	Chemical Formula
(1)	B-0 B-0 (CH ₂) ₁₀ (CH ₂) ₁₀
(<u>2</u>)	NO2 SO3 Na (CH ₂) ₁₀ (CH ₂) ₁₀
(<u>3</u>)	BP BP (CH ₂) ₁₀ (CH ₂) ₁₀
(<u>4</u>)	(CH ₂) ₃
(<u>5</u>)	NO2 SO3 Na (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃
(<u>6</u>)	NHT (branched)
(Z)	O ⊕ ⊕ SO3 K

The positive secondary ion mass spectrum

- The most intense peak in the spectrum corresponds to (28 D)
- Sillicon substrate is not completely covered
- The thickness of multilayer assembly is not sufficient to mask the substrate ion emission
- 2 main series of ions:
 - Main chain (MC)- peaks of N (58 D, 84 D, 98 D, 104 D, 120
 D, 132 D)
 - Pedant group (PG) phenyl (carbohydrate) (41 D, 55 D, 77
 D)

The negative secondary ion mass spectrum

- (2 isotopes 79 D, 80 D) polyelectrolyte (1)
- (64 D, 80 D, 97 D) from PG polyelectrolyte (7)

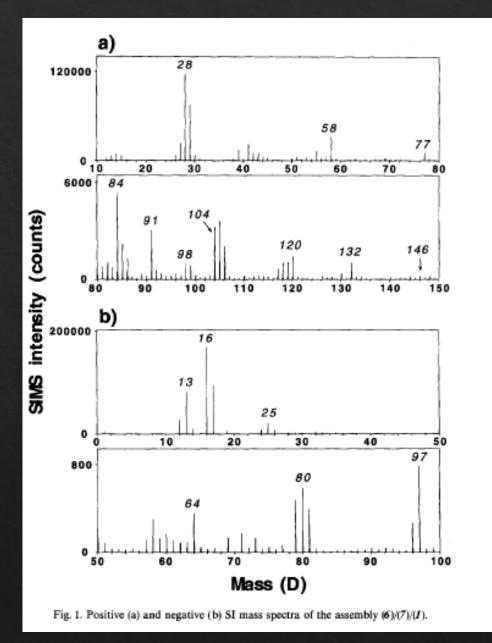


Table 3

Formulae of the main characteristic ions observed in the positive SI mass spectrum of polyelectrolyte (I). The ion mass is indicated in daltons (D)

Main Chain (MC)		Pendant Group (PG)	
√NH .	M = 58 D	·<	M = 77 D
NH NH	M = 84 D	·/_n_	M = 104 D
NH NH	M = 98 D		M = 10+ D
NH NH	$M=112\mathrm{D}$	+ ⟨ }–×<	M = 120 D
NH.	M = 126 D	- N-N	M = 132 D
NH NH	M = 140 D	~ ">	M = 132 D

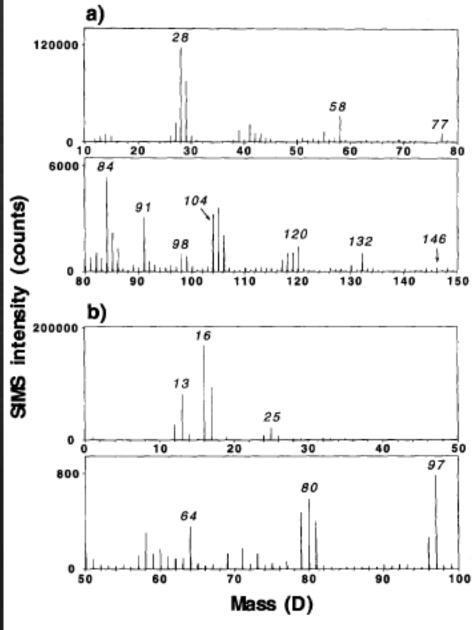


Fig. 1. Positive (a) and negative (b) SI mass spectra of the assembly (6)/(7)/(1).

The sensitivity of ToF-SIMS

- Sensitivity to the PG (pendant group)
- $\Rightarrow \sum PG$ decreasing from (1) to (3) Lower abillity to produce ions from polyelectrolytes (2,3)
- Difference of the polyelectrolytes only in PG groups
 but not constant MC peaks
 - Main chain is mask by the pendant group
- Activation of polyelectrolytes
 - ♦ Characteristic fragments of functional group (46,137, 216 D)

$$M = 46 D: NO_2^-; M = 137 D: \begin{bmatrix} NO_2 \\ NH_2 \end{bmatrix}^-; M = 216 D: \begin{bmatrix} NO_2 \\ NH_2 \end{bmatrix}^-$$

	(6)/(7)/(I)	(6)/(7)/(2)	(6)/(7)/(3)
Positive ions			
∑MC	2.0	1.24	1.39
Σ̈́PG	79×10^{-2}	28×10^{-2}	7.9×10^{-2}
$\sum PG/\sum MC$	40×10^{-2}	23×10^{-2}	5.7×10^{-2}
peak 78 D/peak 77 D	0.20	0.21	1.27
Negative ions			
peak 46 D (NO ₂ ⁻)	3.0×10^{-3}	29×10^{-3}	9.6×10^{-3}
peak 137 D	1.4×10^{-4}	10×10^{-4}	1.4×10^{-4}
peak 216 D	2.0×10^{-8}	83×10^{-5}	15×10^{-5}
peak 80 D (SO ₃ ⁻)	9.1×10^{-3}	15×10^{-3}	12×10^{-3}
peak 97 D (SO ₄ H ⁻)	16×10^{-3}	6.1×10^{-3}	7.4×10^{-3}

Polyelectrolyte	Chemical Formula
(1)	BP BP (CH2)10 (CH2)10 10
(<u>2</u>)	NO2 No3 Na
(<u>3</u>)	HP HP CCP

Sensitivity to the length of the alkyl chain contained in the polymer backbone.

- ◆ Compare (1) and (4) very similar from ther chemical viewpoint different MC peak intesities
- Difference:
- (1) produce $(C_xH_vN^+)$ with 14 carbon atoms
- (4) produce $(C_xH_vN^+)$ with 7 carbon atoms
- Small changes in the chain structure
 of the polyelectrolytes give rise marked
 effect in their organization within coating

Main Chain (MC)		Pendant Group (PG)	
∕v‡н	M = 58 D	·<	M = 77 D
~~~NH ↓	M = 84 D	· ( )-N-	M = 104 D
NH ,t.	M = 98 D		
NH NH	M = 112 D	-<_>~<	M = 120 D
NH NH	M = 126 D M = 140 D	·\N	M = 132 D
	2.10.00		

(1)	Br   Br   CH ₂ ) ₁₀   CH ₂ ) ₁₀   (CH ₂ ) ₁₀
( <u>4</u> )	Br. Br. CH2); CH2);

MC peaks	A:(6)/(7)/(I)	B:(6)/(7)/(4)	A/B
peak 58 D	1.0	1.0	1.0
peak 84 D	$1.7 \times 10^{-1}$	$1.7 \times 10^{-1}$	1.05
peak 98 D	$3.1 \times 10^{-2}$	$1.7 \times 10^{-2}$	0.56
peak 112 D	$1.0 \times 10^{-2}$	$0.56 \times 10^{-2}$	0.53
peak 126 D	$0.69 \times 10^{-2}$	$0.29 \times 10^{-2}$	0.43
peak 140 D	$0.61 \times 10^{-2}$	$0.20 \times 10^{-2}$	0.33

## Chemical mapping of the surface

- looks homogeneous
- ( ) (substrate ion) strongly inhomogeneous
- Inhomogenities (
  - counterions of (3)
  - counterion of substrate

Contrast is weak – different emission depth

#### Conclusion:

(3) covers the whole area but thickness of layer varies from place to place

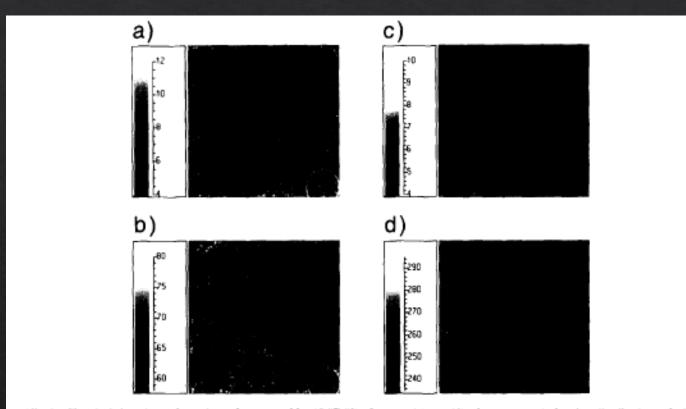



Fig. 2. Chemical imaging of an imperfect assembly (6)/(7)/(3). Images (a) to (d) show respectively the distribution of the  $C_3H_8N^+$ ,  $Si^+$ ,  $Cl^-$  and  $O^-$  ions on the surface. The field of view is approximately  $50 \times 50 \ \mu m^3$ . The bright circle indicates the same defect in the four images.

## Effect of the multilayer build-up

b

(6)(7)(2) – thickness 30 Å (6)(7)(3) – thickness 20 Å

#### Conclusion:

layers (2) are either less complete or that the arrangement is such that the pendant groups are not perpendicular to the surface – slower decay of the

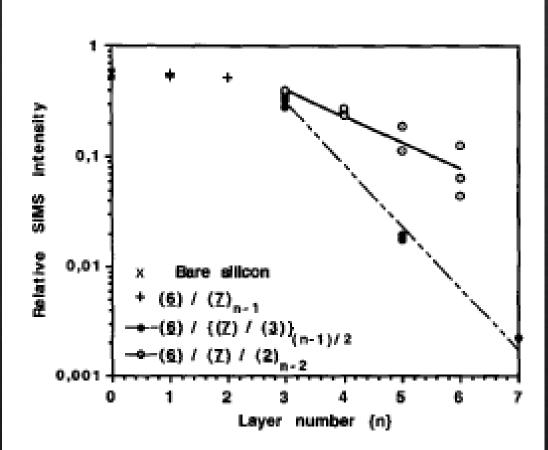



Fig. 3. Relative intensity of the Si^{*} substrate ion as a function of the layer number (n) for two types of assembly,  $(6)/((7)/(3))_x$  and  $(6)/(7)/(2)_x$ .

## Information depth in SIMS

- ♦ Emission depth in static SIMS 1nm organic materials?
- Knowledge of the emission depth of the substrate ions seemed of great interest for the evaluation of the layer quality
- $\diamond$  If depth was similar for atomic (Si⁺, Si⁻) and molecular ions (SiO₃H⁻, SO₃⁻)
- For deeper understanding of results
- Two methods have been used
  - SIMS XRR correlation between SI intensities and the thickness of the multilayer assamblies
  - ◆ SIMS XPS correlation

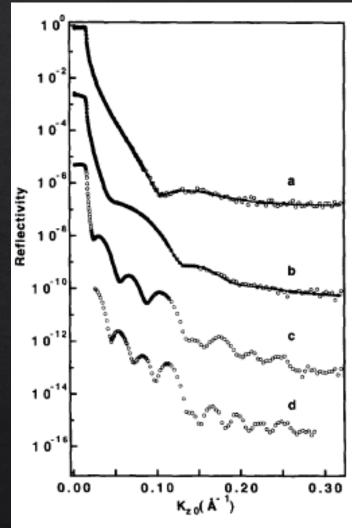



Fig. 4. X-ray reflectivity versus the component of the photon wavevector perpendicular to the interfaces  $(K_{z0})$ , and best fits to the data. The points are shifted vertically for clarity. The formulations of the assemblies analyzed are (a):  $(6)/(7)/(2)_1$ , (b):  $(6)/(7)/(2)_2$ , (c):  $(6)/(7)/(3)_2$ , and (d):  $(6)/(7)/(3)_3$ .

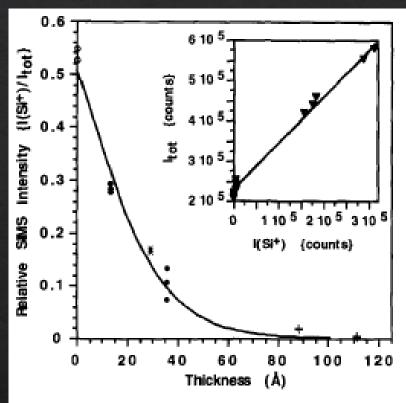



Fig. 6. Relative intensity of the Si⁺ substrate ion as a function of the film thickness for three types of assemblies and for a cleaned silicon wafer. The open circle  $(\bigcirc)$  refers to the clean silicon wafer, the full circle  $(\bullet)$  to the assemblies  $(6)/(7)/(2)_x$  (x = 1,2), the cross (x) to the assembly  $(6)/(7)/(5)_2$  and the plus (+) to the assemblies  $(6)/((7)/(3))_x$  (x = 2,3). The thickness is measured by XRR, except in the case of the assembly  $(6)/(7)/(5)_2$ , where it is measured by AFM. The inset shows the linear relation between the Si⁺ signal and the total intensity.

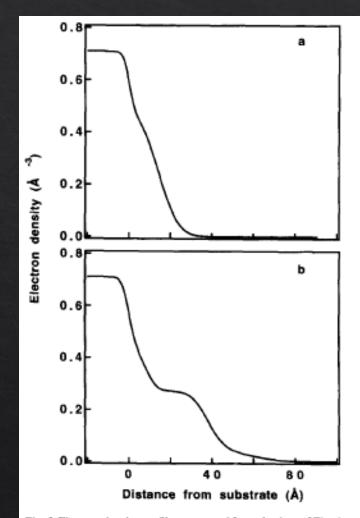



Fig. 5. Electron density profiles computed from the data of Fig. 4 for the assemblies (a):  $(6)/(7)/(2)_1$  and (b):  $(6)/(7)/(2)_2$ .

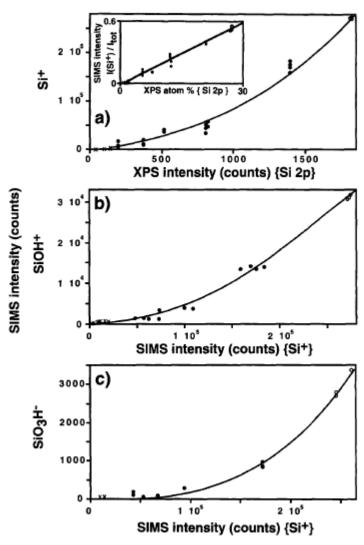



Fig. 7. (a) Correlation between the absolute Si⁺ SI intensity and XPS Si 2p intensity (Si–Si). The open circle ( $\bigcirc$ ) refers to the assemblies (6) and (6)/(7), the full circle ( $\bullet$ ) to the assemblies (6)/(7)/(1) and (6)/(7)/(2)_x (x = 1,2), and the cross (x) to the assemblies (6)/((7)/(3))_x (x = 2-4). The inset shows the linear correlation between the relative intensity of Si⁺ and the XPS atom percentage of Si. (b) Correlation between the absolute SiO₁H⁻ and Si⁺ SI intensities.

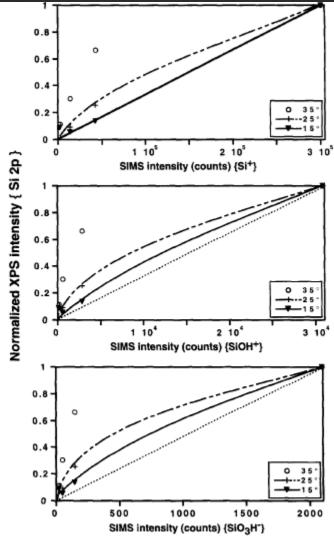



Fig. 8. (a) Correlation between the XPS Si 2p absolute intensity at different angles  $(15^{\circ}, 25^{\circ}, 35^{\circ})$  and the Si⁺ SI absolute intensity for 4 samples {cleaned silicon, assembly  $(6)(7)/(2)_x$  (x=2,3), assembly  $(6)(7)/(3))_2$ }. The SI intensities are mean values (3 values at least). (b) Correlation between the XPS Si 2p absolute intensity at different angles and the SiO₃H⁺ SI absolute intensity. (c) Correlation between the XPS Si 2p absolute intensity at different angles and the SiO₃H⁻ SI absolute intensity.

### Conclusion

- ToF SIMS offers valuable information about polyelectrolyte multilayeres assemblies
- The sensitivity to the sample thickness in the case of very thin films another tool to evaluate the sample quality
- From correlation SIMS XRR, XPS atomic or small molecular ions are less surface sensitive than large molecular ions
- Combination of several complementary techniques leading to a more fundamental understanding

## THE END

Thank you for your attention