

Přírodovědecká fakulta MU 17. března 2016

Interakce elektronů s látkou

Luděk Frank

Ústav přístrojové techniky AV ČR, v.v.i.

Vymezení problému

Cílem je poskytnout přehled jednotlivých typů interakcí mezi dopadajícím elektronem a pevnou látkou charakterizovanou svým chemickým složením a krystalickou a elektronickou strukturou. Budou popsány jednotlivé typy rozptylových událostí a jejich produkty, statistické parametry rozptylu a mechanismy ovlivnění vzorku bombardovaného elektrony. Jev emise elektronů ze vzorku bude prezentován se svými parametry jakožto nositeli experimentální informace.

Rozptylové události

Pohyb elektronu v poli krystalu je aproximován sledem jednotlivých interakcí mezi "téměř volným" primárním elektronem a mezi částicemi a poli ve vzorku. Vztahuje se i na částice uvolněné předchozími interakcemi.

1 – pružný odraz na jádrech
 2 – emise plasmonu
 3 - "Comptonův" rozptyl
 4 – emise kvanta brzdného záření
 5 – vnitro- nebo mezipásový přechod
 6 – ionizace vnitřní hladiny

Rozptylové události

Základní pojmy:

 pružný rozptyl - interakce, při níž rozptylovaná částice nemění energii, ale mění směr pohybu
 nepružný rozptyl – rozptylovaná částice ztrácí energii excitací záření nebo uvolněním jiné částice; obvykle jen málo mění směr pohybu

Za pružný bývá prohlašován pouze rozptyl na jádrech (atomech, iontech), a to v přiblížení nekonečné hmotnosti terče v pojetí klasické fyziky, resp. nulové pravděpodobnosti přechodu do excitovaného stavu v kvantově mechanickém pojetí. Navíc však při rozptylu na jádrech existují "nepružné jevy" emise a absorpce fononů a emise brzdného záření. Rozptyl na elektronech naopak není vždy nepružný – viz nepřímá úměrnost pružného odrazu velmi pomalých elektronů lokální hustotě stavů, tedy elektronické struktuře terče.

Pružný rozptyl v klasické mechanice

Základní pojmy:

Diferenciální účinný průřez dσ/dΩ – pravděpodobnost, že elektron přibližující se k atomu bude rozptýlen do prostorového úhlu dΩ; je funkcí úhlu θ. **Účinný průřez** σ – celková pravděpodobnost rozptylu v plošných jednotkách, efektivní plocha terče

V souřadném systému jádra jde o pohyb v centrálním poli bez ztráty energie (viz pohyb planet). **Aproximace:** pohybový stav jádra se nezmění (zůstane v klidu), zanedbává se pole elektronů atomu - nestíněné jádro.

Pro energii projektilu E mnohem menší než mc² = 511 keV platí $d\sigma_{el} = e^4 Z^2 = 1$

 $\overline{16(4\pi\varepsilon_0)^2 E^2} \sin^4(\theta/2)$

(Rutherfordův rozptyl na nestíněném jádře)

 $d\Omega$

Pružný rozptyl v kvantové mechanice

V dostatečně velké vzdálenosti od rozptylového centra je výsledkem rozptylu superpozice dopadající a rozptýlené vlny a

 $d\sigma_{el}/d\Omega = |f(\theta)|^2$

TEM : $f(\theta)$ pro $\theta \le 50$ mrad SEM: $f(\theta)$ pro $\theta \in (0, \pi)$

Rozptylová amplituda f (θ) je řešením Schrödingerovy popř. Pauli-Diracovy rovnice.

Pružný rozptyl v kvantové mechanice

Nerelativistický přístup:

Atom se Z elektrony v základním kvantovém stavu + dopadající elektron \Rightarrow potenciální energie V ve Schrödingerově rovnici $\nabla^2 \psi = \frac{2m(V-E)}{\hbar^2} \psi$

$$V(r) = -\frac{e^2 Z}{4\pi\varepsilon_0 r} e^{-r/R_s}, \quad R_s = a_H Z^{-1/3}, \quad a_H = 0.057 \, nm$$

Výsledkem je diferenciální účinný průřez

$$\frac{d\sigma_{el}}{d\Omega} = \frac{e^4 Z^2}{16(4\pi\varepsilon_0)^2 E^2} \frac{1}{\left[\sin^2\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right)\right]^2}$$

s charakteristickým úhlem $\theta_0 \cong 2^\circ \div 9^\circ$ pro 10 keV a $Z \in 1 \div 90$

Pružný rozptyl v kvantové mechanice

Relativistický přístup: Stíněný potenciál krystalu, tzv. muffin-tin model,

$$V_{MT}(r) = V(r) + V(2a - r) - 2V(a)$$
 pro $r \le a$, $V_{MT}(r) = 0$ pro $r > a$

a Pauli-Diracova rovnice

$$H - V - c \sum_{i} \alpha_{i} \left(p_{i} - eA_{i} \right) - \beta E_{0} \psi = 0$$

 p_i , A_i – složky impulsu resp. magn. vektorového potenciálu, E_0 -klidová energie elektronu (511 keV), α_i a β – Diracovy matice 4×4

Řešení pro spinově nepolarizovaný svazek elektronů (tzv. Mottův účinný průřez):

$$d\sigma_{el}/d\Omega = |f(\theta)|^2 + |g(\theta)|^2$$

 $f(\theta)$ a g (θ) odpovídají orientaci spinu ve resp. proti směru pohybu; je možné je vyjádřit nekonečnou řadou Legendrových polynomů P_1^0 (cos θ) a P_1^1 (cos θ) (tzv. rozklad do parciálních vln)

 Pro velmi malé úhly "nestíněný" Rutherfordův účinný průřez σ_{Rn} diverguje, "stíněný" průřez vyhovuje. Pro velké úhly je nutné použít Mottův účinný průřez σ_{M} .

Poměr

 $\sigma_{_{\!M}}/\sigma_{_{\!Rn}}$:

Mottův účinný průřez

7.0 keV

180

Pro nízké energie a těžké prvky se objevují oscilace v úhlovém rozdělení! V oblasti jednotek eV Mottovy průřezy (relativistický rozptyl volných elektronů) nadhodnocují intenzitu rozptylu (střední volná dráha v desetinách nm); je třeba je nahradit rozptylem Blochových elektronů na akustických fononech.

Pružný rozptyl – odraz velmi pomalých elektronů

Dopadá-li elektron s energií pod cca 30 eV a "narazí" na zakázaný pás, dojde k pružnému odrazu. Odrazivost je tedy nepřímo úměrná lokální hustotě stavů navázaných na dopadající vlnu. Navázané stavy (coupled states): $\boldsymbol{k}_{\parallel} = \boldsymbol{K}_{\parallel} + \boldsymbol{g}_{\parallel}$ k - Blochův stav ve vzorku K - dopadající elektron g – libovolný povrchový vektor reciproké mříže, tedy hlavní Fourierova složka navázaného stavu odpovídá dopadající vlně.

(Viz oblast energiových pásů na I-V křivce stopy (00) LEED obrazce pod energií vynoření se první nenulové difrakční stopy.)

Koeficient pružného odrazu elektronů od různě orientovaných povrchů wolframu

Nepružný rozptyl – základní typy

- ionizace vnitřní hladiny atomu
- excitace plasmonu, tj. energiového kvanta vln nábojové hustoty valenčních nebo vodivostních elektronů
- srážka mezi kvazi-volnými elektrony ("Comptonův" rozptyl)
- vybuzení elektronu uvnitř částečně obsazeného pásu
 - vybuzení mezipásového přechodu
- emise kvanta brzdného záření
- emise resp. anihilace fononu

Rozptyl na kvazi-volných elektronech ("Comptonův" rozptyl)

V přiblížení nehybného elektronu vzorku je (E – energie elektronu, W – předaná energie)

Úhel rozptylu : $\sin^2 \theta =$

 $\sin^2\theta = W/E$

Tedy: $W \in (0, E/2), \theta \in (0, \pi/4),$ jev je pravděpodobnější pro nízké energie, malé změny energie a malý rozptylový úhel, pro $E \rightarrow 0$ přiblížení neplatí. Po kolizi se elektrony pohybují v navzájem kolmých směrech.

Experiment: jev se projevuje jen v oblasti velmi malých ztrát energie

 $\frac{d\sigma_{in}}{dW} = \frac{\pi e^4}{\left(4\pi \varepsilon_0\right)^2} \frac{1}{EW^2}$

lonizace vnitřní hladiny (nejvýznamnější příspěvek k rozptylu)

Atom s jedním elektronem + dopadající elektron \Rightarrow Schrödingerova rovnice pro základní i vybuzené stavy. Příklad: účinný průřez pro ionizaci K-hladiny

$$\sigma_K = \frac{\pi e^4}{\left(4\pi\varepsilon_0\right)^2} \frac{z_K b_K}{E_K^2} \frac{\ln u}{u}$$

(z_K = 2, b_K = 0.35, u = E/E_K, <u>maximum σ_K pro u ≈ 3</u>) Diferenciální účinný průřez v téže aproximaci:

$$\frac{d \sigma_{in}}{d \Omega} = \frac{e^4 Z}{\left(4 \pi \varepsilon_0\right)^2 E^2} \left[1 - \left(\frac{1}{1 + \left(\theta^2 + \theta_E^2\right)/\theta_0^2}\right)^2 \right] \frac{1}{\left(\theta^2 + \theta_E^2\right)^2}$$

s charakteristickým úhlem $\theta_E = J/4E$, kde J [eV] $\simeq 10Z$ je střední ionizační potenciál.

Poměr diferenciálního i totálního účinného průřezu nepružného rozptylu k pružnému je úměrný 1/Z !

Charakteristické úhly rozptylu

Porovnání hodnot θ_0 ze vztahu pro stíněný Rutherfordův průřez a θ_E ve vztahu pro rozptyl ionizací:

 $\theta_0 / \theta_E \cong 1.37 \ E^{1/2} \ Z^{-2/3}$

Pro 1 keV je tento poměr mezi 15 a 1.6 pro Z = 3 až 90, pro 100 keV mezi 150 a 15 \Rightarrow relativně malé změny směru trajektorie při nepružném rozptylu pro lehké prvky a vysoké energie (???).

Publikovaná data:

Střední úhly rozptylů jsou podobné, spíše vyšší pro nepružný rozptyl

> V. Hulínský, K. Jurek: Zkoumání látek elektronovým paprskem, SNTL 1982

vzorek	keV	$<\theta_{cl}>$ deg	< enclosed e
C	10	2,05	7,16
J. S. Star	40	0,98	1,78
	100	0,63	0,71
AI	10	1,39	4,29
	40	0,68	1,07
	100	0,41	0,43
Au	10	2,38	7,16
	40	1,18	1,78
Z CON	100	0,72	0,71

Totální účinný průřez

Všechny mechanismy rozptylu na elektronech kulminují kolem 50-100 eV a pro nižší energie strmě vymizí. Od nejnižších energií nastupuje napřed rozptyl na kvazivolných elektronech, pak ionizace a nakonec excitace plasmonů. Důsledek: oblast kolem 100 eV vykazuje nejvyšší povrchovou citlivost, nejintenzivnější kontaminaci, největší hustotu poškození.

Porovnání účinných průřezů

 $1/\Lambda = N\sigma$ (N – počet atomů v jednotkovém objemu)

Nepružný rozptyl – emise brzdného záření

Při průletu elektronu kolem jádra po zakřivené dráze se časově mění elektrické pole a jsou vyzařovány elektromagnetické vlny – brzdné záření (bremsstrahlung)

Účinnost emise pro tlustý vzorek = = poměr energie rtg záření k energii el. svazku = kZE $(k \approx 1 \times 10^{-9}, E - energie elektronu v eV, Z - atomové číslo terče)$ SEM: účinnost v řádu 10⁻⁴

Poměr mezi energiovými ztrátami (na jednotku dráhy) srážkami s elektrony a brzdným zářením je

$$\frac{S_{rad}}{S_{e-e}} \cong \frac{Z}{160} \frac{E}{511 \, keV}$$

Maximální intenzita v energiovém spektru spojitého záření: přibližně 2/3 energie elektronů

BISI CAS

Nepružný rozptyl – rozptyl na fononech

Fonony: různé mody elastických kmitů krystalové mříže; charakterizovány disperzní relací ω(q), tj. závislostí frekvence na vlnovém vektoru.

Je-li v elementární buňce <u>s</u> neekvivalentních iontů, má kmitavé spektrum 3 <u>s</u> větví. Z nich 3 vykazují $\omega \rightarrow 0$ pro q $\rightarrow 0$ (akustické fonony, jeden podélný a dva příčné), zatímco pro zbývajících 3(<u>s</u>-1) větví je $\omega > 0$ pro q $\rightarrow 0$ (optické fonony, podélné a příčné).

Akustické fonony ~ šíření zvukových vln

Optické fonony ~ kmity atomů v elementární buňce vůči sobě navzájem, v iontových krystalech je to kmitání elektrického dipólu, které může interagovat s elektromagnetickým polem

Energie fononů: desítky až stovky meV

Rozptyl elektronů: nejíntenzivnější na podélných optických fononech. Důležité hlavně v izolátorech a polovodičích. Hustota kolizí: maximální při energii rovné trojnásobku energie fononu, cca 1014 až 1015 s^{-1.}

Nepružný rozptyl – rozptyl na fononech

Příklad: rozptyl na SiO2

ac – akustické fonony, ii – ionizace, LO⁺ - emise fononu, LO⁻ - anihilace fononu V oblasti pod 10 eV je rozptyl na fononech převažujícím mechanismem rozptylu !

ISI CAS

Nepružný rozptyl – dielektrická teorie

Dielektrická teorie:

Popisuje pevnou látku komplexní dielektrickou konstantou ε a staví na analogii mezi nepružným rozptylem elektronů a prostorovým tlumením elektromagnetických vln, úměrným imaginární složce ε . Skupiny elektronů, podobně silně vázané v dané struktuře energiových pásů, jsou považovány za oscilátory definované frekvencí a amplitudou. Alternativou je formalismus považující dopadající elektron za kvazičástici s energií, jejíž imaginární část udává dobu života kvazičástice a reálná část vyjadřuje změnu hodnot vlastní energie vůči neinteragujícímu systému. Do třetice: korelační potenciál elektron-jellium, jehož imaginární složka určuje tlumení dielektrické odezvy jellia na dopad elektronu.

Diferenciální účinný průřez:

$$\frac{d^2 \sigma_{in}}{d W d \Omega} = \frac{1}{\pi^2 a_H E N} \operatorname{Im} \left[-\frac{1}{\varepsilon (W, \theta)} \right] \frac{1}{\theta^2 + \theta_D^2}$$

kde $\theta_D = W/2E$.

 ε (W, θ) bývá vyjadřována i v proměnných W, q resp. ω , q (pro W = h ω / 2 π)

Nepružný rozptyl – dielektrická teorie

Stanovení ɛ (ω, q):

Ztrátová funkce $Im [-1/\varepsilon (q, \omega)]$ z experimentálníchdat EELS pro q = 0:

+ disperzní relace

$$\omega(\boldsymbol{q}) = \omega(0) + \frac{h}{4\pi m} q^2$$

Ashley-ho model:

$$\operatorname{Im}\left\{-\frac{1}{\varepsilon(\vec{q},\omega)}\right\} = \int_{0}^{\infty} d\omega' \left(\frac{\omega'}{\omega}\right) \operatorname{Im}\left\{-\frac{1}{\varepsilon(0,\omega')}\right\} \delta\left(\omega-\omega'-\frac{h}{4\pi m}q^{2}\right)$$

Základní pojmy:

Střední volná dráha λ_t – průměrná vzdálenost mezi dvěma rozptylovými událostmi

Pružná (nepružná) střední volná dráha λ_e (λ_i) – průměrná vzdálenost mezi dvěma pružnými (nepružnými) kolizemi Brzdná síla S [eV Å⁻¹] - průměrná ztráta energie na jednotku délky trajektorie Elektronový dolet R – celková délka trajektorie elektronu ve vzorku (několik variant podle způsobu stanovování)

Další charakteristiky:

- úhlové rozdělení elektronů prošlých vrstvou
- příčné rozšíření svazku po průchodu vrstvou
- rozdělení energiových ztrát po průchodu vrstvou
- hloubkové rozdělení energie rozptýlené ve vzorku
- ohřátí a poškození vzorku

Totální účinný průřez:

$$\sigma_t = \sigma_{el} + \sigma_{in} = 2\pi \int_0^\pi \left(\frac{d\sigma_{el}}{d\Omega} + \frac{d\sigma_{in}}{d\Omega} \right) \sin\theta \, d\theta$$

Střední volná dráha:

$$\lambda_t = \frac{1}{N\sigma_t}, \ \lambda_{el} = \frac{1}{N\sigma_{el}}, \ \lambda_{in} = \frac{1}{N\sigma_{in}}, \ N = \frac{N_A \rho}{A}$$

 $(N_A - Avogadrovo číslo, A - atomové číslo, <math>\rho$ - hustota)

Brzdná síla (Bethe, Reimer):

$$S = \frac{2\pi e^4 \rho Z}{(4\pi\varepsilon_0)^2 E} \frac{N_A}{A} \ln\left(1.166\frac{E}{J}\right)$$

Střední ionizační potenciál: $J = 9,76 Z + 58,8 Z^{-0,19}$, J = 11,5 Z (pro $Z \le 6$) (Berger a Seltzer) $J \rightarrow J' = J/(1+kJ/E)$ s $k \approx 0,8$ pro $E \le 1$ keV (Joy) $S \sim E^{1/2}$ pro $E \le 1$ keV (Rao-Sahib a Wittry) ??? $S \sim E^{5/2}$ pro $E \le 100$ eV (Tung) !!!

Brzdná síla (Joy a Luo): (pro čisté prvky)

$$S = -7850 \frac{\rho Z}{AE} \sum_{i} \frac{Z_i}{Z} \ln \frac{E}{E_i} \qquad \text{[eV/nm]}$$

 $(Z_i - obsazení hladiny i, E_i - vazebná energie hladiny, <math>\rho v g cm^{-3}$)

Data:

Brzdná síla

Experiment

Pružná střední volná dráha (výpočet, Ding 1990):

Mottovy účinné průřezy, nemonotonní chování při velmi nízkých energiích

Nepružná střední volná dráha (sebraná experimentální data pro různé prvky a sloučeniny, Seah a Dench 1979):

Přibližně lze proložit univerzální křivku !!

Nepružná střední volná dráha (výpočet, Schreiber a Fitting 2002):

ii – ionizace, ac – rozptyl na akustických resp. LO – na optických fononech, at – hloubka úniku elektronu (bez ztráty energie)

Porovnání středních volných drah a hloubky úniku (výpočet, Fitting et al. 2001):

Elektronový dolet: (experiment)

 $R \cong a E^n$ [µg cm⁻², keV], $a \approx 10$, $n \approx 1,3 \div 1,7$ (dolní hodnota pro nižší energie)

10 μg cm⁻² ~ 45 nm pro C 37 nm pro Al 5 nm pro Au

Joy, výpočet numerickou integrací brzdné síly

BISI CAS

Mnohonásobný rozptyl – statistika

Pronikání elektronů pevnou látkou:

Pokles počtu nerozptýlených elektronů ve vrstvě dz : $dl/l = -\sigma_t N dz$ Nerozptýlený tok po průchodu tloušťkou <u>t</u> : $l = l_0 \exp(-t/\lambda)$ Střední počet srážek ve vrstvě : $p = t/\lambda$ Pravděpodobnost <u>n</u> srážek pro 1 elektron ve vrstvě : $P_n = p^n e^{-p} / n!$ Funguje do $p \approx 25$ srážek, tj. délka trajektorie v řádu 10¹ nm. Pro delší úseky trajektorie je třeba použít aparát difuse elektronů (transportní rovnice, simulace algoritmem Monte Carlo).

Rozšiřování průřezu svazku: pro malé energiové ztráty a malé úhly rozptylu je úměrné t ^{3/2} :

$$r_{rms} = 1.05 \times 10^5 \left(\frac{\rho}{A}\right)^{1/2} \frac{Z}{E} t^{3/2}$$

(r, t ~ cm, ρ ~ g cm⁻³, E ~ eV) Pro t = 200 nm a E = 100 keV je r = 10 nm v Cu a 23 nm v Au.

Úhlové rozdělení svazku: zanedbáme-li energiové ztráty a rozptyl pod velkými úhly, je N (θ) ~ exp (- $\theta^2/<\theta^2$ >), kde střední úhel je

$$<\theta^2> = 1,2\times 10^7 \frac{\rho}{AE} Z^{3/2} t$$

 $(\theta \sim rad, t \sim cm, \rho \sim g cm^{-3}, E \sim eV).$ Např. pro Al při 1 keV je $\langle \theta^2 \rangle = 5,6$ mrad $\times t$ [nm]

Hloubkové rozdělení energie rozptýlené ve vzorku:

Výpočet hloubkového rozdělení ionizační energie za použití Mottových průřezů (Reimer a Senkel 1995)

ISI CAS

Mnohonásobný rozptyl – statistika

Rozdělení energií elektronů po průchodu vrstvou:

 E_p – nejpravděpodobnější energie E_m – střední energie (výpočet + experiment)

100 μg cm⁻² ~ 370 nm pro Al 50 nm pro Au

E [keV]			5	10	20	30	50	
C $Z = 6$ $\rho = 2 \text{ g cm}^{-3}$ $V \cong 3$	σ_{el}	0,65	0,11	0,055	0,027	0,018	0,012	$\times 10^{-16} \text{cm}^2$
	λ_{el}	1,5	9	18	37	55	83	nm
	λ_t	0,4	2,3	4,5	9	14	20	nm
	R	0,033	0,49	1,55	4,9	9,7	22,6	μm
Al Z = I3 $\rho = 2.7 \text{ gcm}^3$ $\nu \approx 1.5$	$\sigma_{\rm el}$	1,26	0,31	0,16	0,08	0,053	0,034	$\times 10^{-16} \text{cm}^2$
	λ _{el}	1,3	5	10	1 21 1	31_	49	nm
		0,5	2	4	8	12	20	nm
	R	0,025	0,36	1,14	3,6	7,1	16,7	μm
Cu 7 20	σ_{el}	1,84	0,64	0,37	0,21	0,15	0,11	$\times 10^{-16} \text{cm}^2$
$\rho = 8.9 \text{ gcm}^{-3}$	λ_{el}	0,64	1,8	3,2	5,6	7,8	10,7	m
v ≅ 0,6	λ_t	0,4	1,1	2,0	- 3,5	4,9	6,7	nm
	R	0,007	0,11	0,35	1,10	2,26	5,1	μm
Ag Z = 47 $\rho = 10.5 \text{ gcm}^3$ $\nu \equiv 0.4$	σ _{el}	3,09	1,15	0,71	0,43	0,32	0,22	$\times 10^{-16} \mathrm{cm}^2$
	λ _{el}	0,5	1,5	2,4	4,0	5,3	7,7	nm
	λ_t	0,4	1,0	1,7	2,8	3,8	5,5	nm
A Producer	A A	0,006	0,09	0,29	0,93	1,8	4,3	<u>µm</u>
Au $Z = 79$	σ_{el}	3,93	1,60	1,05	0,67	0,52	0,37	$\times 10^{-16} \mathrm{cm}^2$
$\rho = 19,3 \text{ gcm}^{-3}$	X _{el}	0,43	1,0	1,0	2,5	3,3	4,0	nm
	R = -	0.003	0.05	0.17	0.51	1.0	2.3	um
			NGC SCRATZ					
and the second	and the state of the	19 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			The second s	State She may a	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the state was the

Zahřívání a poškozování vzorku

Pro stacionární svazek a polokulový interakční objem o poloměru R v objemném materiálu je ohřátí osvětleného bodu

 $\frac{3dUI}{2\pi cR}$ (d – podíl absorbovaného proudu svazku, U a I – urychlovací napětí a proud svazku, c v Js⁻¹m⁻¹K⁻¹ je tepelná vodivost)

<u>Příklad:</u> Cu, 20 keV, 1 nA, $d = 0.7 \Rightarrow \Delta T = 0,02^{\circ}C$ Polymery - tepelná vodivost o cca 2 řády nižší, tj. ΔT v jednotkách stupňů Poměr U/R a tedy i <u>ohřátí roste při snižování energie elektronů</u> ! (Růst emise SE do cca 2 keV \Rightarrow stačí nižší primární proud \Rightarrow menší ohřev)

Ostrůvek vrstvy s nízkou tepelnou vodivostí na kovu:

 ΔT_{obi}

$$\Delta T_{ost} = \frac{d \, j U}{c} \left(l - R \,/\, 4 \right)$$

(j = I/S_A je proudová hustota, S_A – plocha ostrůvku, $l \ge R/2$ je tloušťka vrstvy) Je-li ostrůvek menší než zorné pole, pak ΔT s energií elektronů klesá, jinak může opět růst.

Zahřívání a poškozování vzorku

Vlákno osvětlené na jednom konci; rozdíl teploty mezi oběma konci:

$$\Delta T_{vl} = \frac{4 dUI}{\pi c} \frac{L}{D^2}, \quad \frac{\Delta T_{vl}}{\Delta T_{obj}} = \frac{8}{3} \frac{LR}{D^2}$$

(L – délka vlákna, D – průměr vlákna). Intenzivní ohřátí u dlouhých tenkých vláken !

Vliv pokovení: pouze když součin průřezu a tepelné vodivosti je pro kovovou vrstvu vyšší než pro málo vodivé vlákno nebo vrstvu

Radiační poškození: (nejčastěji ionizační jevy)
Z brzdné síly : S ~ E^{-0,8}
Z objemové hustoty energie: dodaná energie ~ E, hloubka průniku ~ E^{4/3}, hustota ~ E^{-1/3} (odvod prostřednictvím BSE se málo mění)
Z účinných průřezů: ~ E⁻¹
Radiační poškození při nízkých energiích vesměs roste ! (Např. rozklad uhlovodíků a tvorba kontaminační uhlíkové vrstvy.)

Nabíjení vzorku

V oblasti mezi E_{C1} a E_{C2} redukované nabíjení, optimum pro $E = E_{C2}$

E > E_{C2} :

 $\sigma < 1$, záporný povrchový náboj a potenciál, posuv "pracovního bodu" do A pro konečnou vodivost resp. do A_{∞} pro nulovou vodivost

E < E_{C2} :

 $\sigma > 1$, kladný povrchový náboj a potenciál Pracovní bod A' : nabitý povrch přitahuje zpět SE $E < E_{c1}$:

metastabilní, spontánně buď zrcadlový obraz nebo $\rightarrow A'$

Nabíjení vzorku

2800 eV

3000 eV

Povrch hliníku pokrytý 11 μm Al₂O₃____ Při kritické energii získáme obraz s nízkým kontrastem, ale nezatížený nabíjecími artefakty

5 μ**m**

Nabíjení vzorku

Jednoduchý model nabíjení tenké desky na povrchu vzorku, časová konstanta nabíjení ovlivňujícího obraz:

(ε - permitivita vzorku, *a* – průměr zorného pole, I_P – primární proud, η - výtěžek BSE)

Příklad: SiO₂, 1 nA $\Rightarrow \tau_c$ mezi 200 μ s a 20 ms pro a mezi 1 a 100 μ m

Naměřené hodnoty pro vodivé chemické prvky

Základní signály : sekundární (SE) a zpětně odražené (BSE) elektrony. "Smluvní" rozhraní : 50 eV

Vzájemná kompenzace přesahů neúplná: pod 400 eV pomalé BSE (δ_{BE}) převyšují rychlé SE (η_{SE}), nad 400 eV naopak.

AE – Augerovy elektrony s definovanou energií, komplementární jev k emisi charakteristického rtg záření Plasmonové ztráty – důležité pro režim EELS v TEM

Augerovy elektrony

100 nm vrstva Cr na stříbrem pokrytém křemíku, tvarovaná elektronovým litografem

spektrum Cr

Kinetic Energy (e

C

mapa Cr

Emise elektronů – zpětně odražené elektrony

Výtěžek (v závislosti na energii):

"klasická" data

Signál úměrný Z ⇒ materiálový kontrast (nad 5 keV !!)

UHV data na površích čištěných iontovým bombardováním in-situ (M. Zadražil)

Pro 5 keV odpovídá atomovým číslům (odshora): 79, 78, 82, 73, 72, 74, 64, 50, 47, 41, 40, 30, 42, 29, 48, 32, 28, 24, 26, 23, 22, 14, 13 a 6

Emise elektronů – zpětně odražené elektrony

Citlivost vůči stavu povrchu:

Energiové rozdělení:

(M. Zadražil) ----- po vložení do UHV ----- po čištění ionty Málo známý jev !!!

Maximum ve spektru BSE se objevuje pro lehké prvky a závisí na sběrových úhlech Střední energie BSE: cca 0,7 až 0,9 E_P

UHV data na površích čištěných (N iontovým bombardováním in-situ

Pro 1 keV odpovídá atomovým číslům (odshora): 64, 13, 40, 78, 79, 72, 47, 30, 82, 50, 14, 29, 24, 48, 74, 73, 28, 32, 42, 26, 22, 41, 23 a 6

 (M. Zadražil) ------ po vložení do UHV po čištění ionty
 Závislost výtěžku na stavu povrchu se obecně předpokládá, ale málo se bere v úvahu při interpretaci obrazu

SISI CAS

Emise elektronů – sekundární elektrony

Výtěžek (v závislosti na energii):

Maximum výtěžku δ_m se dosahuje při energii E_m mezi 100 a 900 eV. Pro vodivé materiály se δ_m pohybuje mezi 0,5 a 2,5. U izolátorů je δ_m cca 3 až 20 díky větší hloubce úniku při absenci rozptylu na kvazivolných elektronech.

Semiempirický model:

$$\frac{\delta}{\delta_m} = 1.11 \left(\frac{E}{E_m}\right)^{-0.35} \left\{ 1 - \exp\left[-2.3 \left(\frac{E}{E_m}\right)^{1.35}\right] \right\}$$

Pro energie dostatečně vyšší než E_m klesá výtěžek úměrně E ^{-0,8}.

EISI CAS

Emise elektronů – sekundární elektrony

Energiové rozdělení:

Experiment: maximum při cca 1 až 5 eV (pro izolátory nižší hodnoty), pološířka mezi 3 a 15 eV

Jednoduchý model (pro kovy):

$$\frac{d N_{SE}}{d E_{SE}} = K \frac{1}{E} \frac{E_{SE}}{\left(E_{SE} + \psi\right)^4}$$

Maximum: $\psi/3$ Střední hodnota: 2 ψ Medián: ψ (ψ – výstupní práce)

Za typickou energii SE lze považovat 3 až 5 eV

Emise elektronů – sekundární elektrony

Závislost výtěžku na náklonu vzorku:

$$\delta(\phi) \propto \sec^n \phi$$
, $n = 1,3 \div 0,8$

Hranový jev: Přezáření kolmých hran a stěn povrchových stupňů

Závislost výtěžku na krystalové orientaci: Podobně jako u BSE, méně výrazná (jednotky procent). Může se projevit selektivní reaktivita krystalových ploch, např. oxidace.

Spodní detektor Horní detektor málo × hodně odsává elektrony od povrchu vzorku

To závisí na detektoru!

Úhlová selektivita detekce

Elektrony odražené do určitých polárních úhlů přenášejí specifické kontrasty

Ocel typu TRIP (TRansformation Induced Plasticity) složená z bainitu-ferritu spolu s martenzitem a zbytkovým austenitem

Mikrosnímky při 500 eV, BSE signál, potenciál na vzorku: **a** – 17° až 30°, reliéfní a materiálový kontrast **b** - 30° až 49°, materiálový kontrast a kontrast zrn **c** - 49° až 72°, kontrast zrn se stopami materiálového a reliefního kontrastu **d** – 72° až 90°, čistý reliefní kontrast **e** – konvenční obraz v BSE při 4 keV

Delaminovaná vrstva 200 nm CN_x, naprášená RF magnetronem na křemík (100): (a) BSE při 4 keV, (b) BSE při 500 eV (vzorek na potenciálu).

Energie elektronů "na míru"

Vzorek na brzdném potenciálu, energie dopadu elektron<u>ů (při</u> primární energii 6 keV): a) 6 keV, b) 5 keV, d) 3 keV, 4 keV, 2 keV, f) 1 keV, h) 100 eV 500 eV, 10 eV

Energiové okno pro krystalografický kontrast je vymezováno informační hloubkou a detekcí BSE emitovaných pod vysokými úhly a stažených polem nad vzorkem

Energiová závislost souhrnného signálu BSE

Ocel X210Cr12 zahřátá do polotekutého stavu při 1265°C a ochlazená, UHV, in-situ čištění ionty Ar

Odrazivost ani propustnost nevykazují významné fluktuace

Děkuji za pozornost!