Organosilicon Plasma Polymers Prepared On Electrospun Polymer Nanofibers

Lenka Zajíčková¹, Eva Kedroňová¹, Dirk Hegemann², Miroslav Michlíček¹, Anton Manakhov¹, Miloš Klíma¹, Eliška Mikmeková³, Petr Klapetek⁴

¹ Masaryk University, Brno, Czech Republic ² EMPA, St Gallen, Switzerland

³ Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno ⁴ Czech Metrology Institute, Brno, Czech Republic

Czech Metrology Institute, Brito, Czech Republ

ISPC, 4. - 9. 8. 2013

Central European Institute of Technology BRNO | CZECH REPUBLIC

Organosilicon Polymers on Nanofibers	Lenka Zajíčková	
Outline		

Outline

- Electrospining of Polymer Fibers
- PECVD of Organosilicon Films
- Plasma Sources Used
- Low Pressure CCP
- Atmospheric Pressure Plasma Jet
- Summary

Principle of Electrospinning

Electrospinning of polymer fibers:

NanospiderTM technology developed by ELMARCO

- High DC voltage between electrodes
- If the electrostatic repelling force overcomes the surface tension of polymer solution or melt, the polymer formed a Taylor cone and is ejected from the surface of electrode and forms a continuous filament.

Electrospinning of PVA and PA6

Polyvinylalcohol (PVA)

- cylindrical electrode,
- solvent water,
- ► U = 64 66 kV (unstable),
- ► *I* = 0.05*A*,
- v = 12 mm/min, spin 3 r/min

Polyamide (PA6)

- wired electrode,
- solvent acetic acid/formic acid (problems of solvent volatility),
- U = 64 kV
- I = 0.04A,
- v = 12 mm/min, spin 2 r/min

Electrospun polymers - highly porous network of micro/nanofibers

- smart textiles
- filtration of liquids/gases
- tissue engineering
- battery separators

Example of functional coating on complex substrate - hydrophobic/oleophobic surfaces of plasma treated Nomex-based textiles:

M. Klíma et al. - cold atmospheric pressure plasma jet

Organosilicon Plasma Polymers and SiO_x Films

Hybrid character of monomers: source of Si-O and C-H groups

hexamethyldisiloxane (HMDSO) $Si_2OC_6H_{12}$

atomic percentage

Example for low pressure CCP in HMDSO/O₂ Functional coatings:

- transparent protective films on plastics
- (ultra)hydrophobic / (ultra)hydrophilic coatings
- intermediate adhesive layers on metals

Zajíčková et al. Plasma Sources Sci. Technol. 16 (2007) S123

Low and Atmospheric Pressure Discharges

 RF capacitively coupled discharge (13.56 MHz) at EMPA

 cold atmospheric pressure RF plasma multijets (13.56 MHz) at MU Brno

Low Pressure CCP - Variation of Deposition Parameters

- Ar + HMDSO 1:1 mixture
- total flow rate 6 sccm
- pressure p 7–30 Pa
- power W 5–150 W
- dc bias-voltage at RF (substrate) electrode U_b varied with W and p

Sheath voltage at substrate electrode $V_{\rm sh} = 0.39 V_0 + 0.73 U_{\rm b}$

- Gas phase processes
 - energy input $W/F|_{dep}$
- Effect of ion bombardment:

Energy dissipated per deposition rate R

$$\varepsilon_{\rm surf} = \frac{\Gamma_i E_{\rm mean}}{R} \tag{1}$$

 $\Gamma_{\it i}$ ion flux, $E_{\rm mean}$ mean ion energy

D. Hegemann et al. Appl. Phys. Lett. 101 (2012) 211603

(2)

Lenka Zajíčková

Understanding Deposition Process

$$\frac{W}{F}|_{\rm dep} = \frac{W}{F} \frac{d_{\rm act}}{d_{\rm gas}} \tag{3}$$

mass deposition rate $R_{\rm m}$, apparent activation energy $E_{\rm a}$, absorbed power density W, gas flow F

D. Hegemann et al. Plasma Process Polym 7 (2010) 889

Lenka Zajíčková

10/17

Chemical Structure of Films by XPS

- no obvious difference for different pressures for few selected samples
- oxidation of products from Ar/HMDSO mixture with increased power, i.e. dissociation of monomer
- occurance of C=O, COOR due to oxidation of CH groups and incorporation of the products into films

Lenka Zajíčková

Chemical Structure of Films by FTIR

(cm ⁻	¹) Mode	Comment			
CH _x correlated peaks					
2960	$\nu^{\mathrm{a}}_{\mathrm{CH}_3}$				
2900	$\nu_{\rm CH_2}^{\rm s}$				
2925	$\nu_{\rm CH_2}^{\rm a}$				
2855	$\nu_{\rm CH_2}^{\rm s}$				
1460	$\delta^{a}_{CH_2}$				
	Si – CH ₂ correlate	d peaks			
1360	δ_{CH_2}	in Si-CH ₂ -Si			
1400	$\delta_{\rm CH_2}$	in Si-(CH ₂) ₂ -Si			
$Si - CH_3$ correlated peaks					
1410	$\delta^{\mathrm{a}}_{\mathrm{CH}_3}$	in Si-Me $_{\rm x}$			
1260	$\delta^{\rm s}_{\rm CH_2}$	in Si-Me $_{\rm x}$			
845	$\rho_{\rm CH_3}, \nu_{\rm SiC}$	in Si-Me ₃			
760	$\rho_{\rm CH_3}, \nu_{\rm SiC}$	in Si-Me ₃			
885	$\rho_{\rm CH_3}, \nu_{\rm SiC}$	in Si-Me ₂			
805	$\rho_{\mathrm{CH}_3}, \nu_{\mathrm{SiC}}$	in Si-Me ₂			
775	$\rho_{\mathrm{CH}_3}, \nu_{\mathrm{SiC}}$	in Si-Me ₁			
Si – H correlated peaks					
2140	$ u_{ m SiH}$				

Lenka Zajíčková

Chemical Structure of Films by FTIR

- higher retention of monomer structure (Si-CH₃ groups) at lower power and higher pressure
- general trends are in agreement with XPS
- more details for pressure changes (due to higher amount of samples?)

Lenka Zajíčková

13/17

Smooth Films by Low Pressure PECVD

with 5 nm of sputtered Au film

Typical example for 20Pa and 100W

Rms roughness on Si - 0.50 nm

Film thickness on Si substrate 493 nm, on PVA 140 \pm 60 nm (PVA diameter 210 \pm 40 nm).

Organosilicon Polymers on Nanofibers	Low Pressure CCP	Lenka Zajíčková	
Water Contact Angle			

Water Contact Angle

- hydrophobic films
- decrease of water contact angle due to increased oxidation
- nanostructure of electrospun fibers causes an increase of CA
- fibers are well protected by the films because water CA could be measured on PVA (normally dissolved in water)

Films Deposited by RF Jets

- atmospheric pressures,
- 20 moving nozzles,
- 10 W per nozzle,
- 3.2 slm of Ar,
- 0.8–1.2 sccm of HMDSO per nozzle (Ar bubbler),
- speed of sample movement 60 cm/min,
- 4 or 10 passages over substrate

water contact angle on coated nanofibers: 141 – 149 $^{\circ}$

 higher value than 130° for low pressure although the film chemistry is similar

36 nm

0 nm

Nanostructured Organosilicon Films

Typical example for 0.8 sccm HMDSO and 4 passages

Rms roughness on Si - 5.15 nm

with 10 nm of sputtered Au film

Maximum film thickness on Si 280 nm.

Thickness of coated PVA nanofibers 210 \pm 40 nm (PVA diameter 210 \pm 40 nm)

Organosilicon Polymers on Nanofibers

Summary

Summary

- PVA and PA6 nanofibrous textiles can be plasma-coated in Ar/HMDSO without their damage using both
 - Iow pressure CCP discharge, fibers on RF electrode (ion bombardment)
 - atmospheric pressure plasma jet (thermal load)
- Organosilicon coatings protected PVA fibers against water even for the nanostructured films made by RF multijets.
- Variable surface structure achieved due to different discharges used
 - Iow pressure coatings very low roughness (Rms around 0.5 nm)
 - ▶ atmospheric pressure coatings Rms of 5 nm on flat Si, nanoparticles on polymer fibers.
- Variation of water contact angle achieved by surface chemistry and morphology
 - Iow pressure coatings shift from about 102° to 75° (on flat substrate) due to decrease of -CH₃ groups and increase of OH
 - WCA on low pressure plasma-coated nanofibers increased to 130–115°
 - 141–149° was achieved for nanostructured coatings on nanofibers deposited by RF plasma multijets.

Full texts of our publications:

http://publications/physics.muni.cz/ceitec login: guest, passwd: guest

Our webpage:

http://www.ceitec.eu/programs/advanced-nano-and-microtechnologies/plasma-technologies