KORK ERKER ADAM ADA

Correlation between chemical structure and functional properties of organosilicon plasma polymers and SiO2**-like films**

Lenka Zajíčková 1 , Vilma Buršíková 1 , David Trunec 1 , Václav Pekař 1 , Vratislav Peřina 2, Romana Mikšová², Daniel Franta¹

> ¹ *Department of Physical Electronics Masaryk University, Brno, Czech Republic*

2 *Institute of Physics, AS CR, Praha, Czech Republic*

lenkaz@physics.muni.cz

KO K K Ø K K E K K E K Y S K Y K K K K K

- **•** [Motivation](#page-2-0)
- **•** [Experimental](#page-3-0)
- [Variety of materials](#page-5-0)
- [Temperature Induced Changes](#page-8-0)
- [Conclusion](#page-19-0)

[Experimental](#page-3-0) **Experimental [Conclusion](#page-19-0) Conclusion** [Temperature Induced Changes](#page-8-0) Conclusion

Motivation

Hexamethyldisiloxane (HMDSO)

- versatile starting material for PECVD:
	- Source of Si-O-Si bonds (especially for $HMDSO/O₂$)
	- \blacktriangleright source of Si-C bonds

PECVD in low pressure rf capacitively coupled discharges (CCP)

- variety of different materials can be prepared when using the mixture of $HMDSO/O₂$ in varying deposition conditions:

- **Percentage of HMDSO in HMDSO/O₂**
- **P** pressure *p*
- \blacktriangleright rf power *P*
- \triangleright dc self-bias $U_{\rm b}$ (in relation with *P* and *p*)

How these materials react to annealing? PECVD using HMDSO at atmospheric

pressure: competition with low pressure process in achievement of silica-hard coatings Will help an increased deposition temperature?

È

 2990

PECVD in low pressure rf CCP from HMDSO/O²

- \blacktriangleright frequency of 13.56 MHz
- \blacktriangleright capacitive ac coupling
- \blacktriangleright asymmetric arrangement

$$
\xi = \frac{A_{\rm rf}}{A_{\rm g}} \approx 0.6
$$

$$
U_{\rm b} = 0.83 V_{\rm rf} \frac{\xi^q - 1}{\xi^q + 1}, \quad q = 1.25 - 4
$$

for

$$
q=2.5 \Longrightarrow \xi=-0.55
$$

- \triangleright $c_{\text{hmdso}} = 5 100\%$
- $p = 1 40 Pa$
- $P = 100 450 W$
- $U_{\rm b} =$ from -20 to -335 V

Relation between power, self-bias and pressure

variation of HMDSO % in the mixture \iff variation of Q_{O2} at the fixed $Q_{\text{HMDSO}} = 4$ sccm

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \end{array} \right. \square \end{array} \right. \right. \end{array} \right. \end{array} \right.$ 299 Þ

Mechanical and optical properties

Zajíčková et al. Plasma Sources Sci. Technol. 16 (2007) S123

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ \Rightarrow $2Q$

Composition and density

Zajíčková et al. Surf. Coat. Technol. 142–144 (2001) 449, Zajíčková et al. Plasma Sources Sci. Technol. 16 (2007) S123

5 % HMDSO, effect of pressure

Temperature Induced Changes

- Annealing induced changes in $SiO₂$ -like films deposited in low pressure (2.5 Pa) CCP from 5% HMDSO/O₂
- Improvement of mechanical properties of $SiO₂$ -like films deposited in atmospheric pressure dielectric barrier discharge (DBD) by slight increase of deposition temperature
- Improvement of mechanical properties of $SiO_xC_vH_z$ film deposited in CCP from 8% HMDSO/O₂ at 450 W by annealing

KOD CONTRACT A BOAR KOD A CO

 \blacktriangleright Annealing experiments for the films deposited in CCP from HMDSO-rich mixtures (17, 44 and 100 % of HMDSO)

5 % HMDSO, 2.5 Pa / SiO2**-like film in CCP**

Originally:

 \triangleright compressively stressed film with good fracture toughness

Annealing:

- slight stress relaxation due to annealing
- decrease of hardness induced by stress relaxation compensated by creation of new Si-O-Si bonds instead of Si-OH
	- 2990 B

5 % HMDSO, 2.5 Pa / SiO2**-like film in CCP**

As deposited film:

 \triangleright Si 23%, O 56%, C 1%, H 20%

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ ÷. 299

 $2Q$

SiO2**-like films in atmospheric pressure DBD**

- \triangleright Townsend-like (homogeneous) discharge at 6 kHz
- \blacktriangleright max. power 10 W/cm³
- \blacktriangleright discharge gap of 0.5 mm
- por electrode covered by Simax (1.5 mm) thick)
- \triangleright bottom covered by glass substrate or glass plate (1mm thick) with Si substrate
- ► substrate temperature 23-150 °C
- \blacktriangleright HMDSO / synthetic air / nitrogen
- \triangleright 6 sccm of N₂
- \triangleright 6 slm of synthetic air
- \triangleright 6 or 16 sccm of air through liquid HMDSO
	- **► 6 sccm** \Rightarrow **70 ppm of HMDSO, 200 ppm of O₂** in $N₂$
	- 16 sccm \Rightarrow 173 ppm of HMDSO, 532 ppm of $O₂$ in $N₂$

4 ロ > 4 何 > 4 ヨ > 4 ヨ > 1

SiO2**-like films in atmospheric pressure DBD**

Trunec et al. J. Phys. D 43 (2010) 225403

CCP 450 W, 8 and 17 % HMDSO

Critical depth for indentation induced crack initiation in μ m:

K ロ ト K 何 ト K ヨ ト K ヨ ト \mathbb{R}^+ 2990

CCP 450 W, 8 and 17 % HMDSO

CCP 450 W, 44 and 100 % HMDSO

- \blacktriangleright 100 and 44% films are compressively stressed but the hardness does not decreases with annealing temperature
- \triangleright fracture toughness is not as good as for 8 and 17 % films and does not improve with annealing

CCP 450 W, 44 and 100 % HMDSO

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

CCP 100 and 300 W, 44 and 100 % HMDSO

Self-bias U_b for 44 and 100 % HMDSO/O₂ (2 and 1 Pa) at different rf powers:

 \blacktriangleright 100 % HMDSO film is soft polymeric material which hardness can be slightly increased by annealing and significantly improved by increased rf power.

 QQ

CCP 100 W, 44 and 100 % HMDSO

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \end{array} \right. \square \end{array} \right. \right. \end{array} \right. \end{array} \right.$ \Rightarrow 2990

- \triangleright Understanding of the changes in film mechanical properties (because of different deposition parameters or annealing) requires complete study of the film composition, chemical bonds and film density. Thermal desorption spectroscopy is advantageous.
- \triangleright Molar density increased with increased deposition temperature of APTD films and decreased with annealing temperature of CCP films.
- \triangleright Significant hydrocarbon desorption observed only for increased deposition temperature of APTD-SiO*x*C*y*H*z* films.
- For CCP films, carbon desorption detected only for annealing of $SiO₂$ -like film (5%) HMDSO, 2.5 Pa) - rather decrease of CO₂ than CH_x. Desorption of -OH and -H more important.
- \triangleright Annealing of compressively stressed CCP films led to their stabilization due to stress relaxation.
- **Example 1** Annealing of hard compressively stressed films (either $SiO_X:H$ or $SiO_XC_YH_Z$) did not decrease but increase the hardness - stress relaxation is compensated by cross-linking of material, i.e. replacing the end-groups (Si-OH, Si-H, C=O) by new strong bonds.