■ ^ ^ %kA Departement de Chimie Moleculaire l'^Oil et Macromoleculaire CHEMISTRY: MOLECULES TO MATERIALS Institut Charles Gerhardt Matiaiellier CMOS surfaces with phosphonate coupling molecules May 12, 2016 - Czech Chemical Society Lectures • Molecular thickness: 1-2 nm, < 1 nmol/cm2 • Control of surface and interface chemical and physical properties: - charge, surface energy, reactivity, tribological properties... - electronic, mechanical, thermal properties... • Applications: sensors, lab-on-a chip, hydrophobation, lubrication, catalysis, corrosion resistance, (nano)composite materials, photovoltaics,... Binding to the inorganic surface Functional group Anchoring group Anchoring groups: • Thiols R-SH : coinage metals Au, Ft, Ag, Cu..., M-S bonds • Silanes R-Si(OEt)3, R-SiCI3: silica, metal oxides, M-O-Si + Si-O-Si bonds • Carboxylic acids R-C02H : metal oxides, phosphates, carbonates..., M-O-C bonds • Phosphonic acids R-P03H2: metals, metal oxides, phosphates, carbonates, sulfides.., M-O-P bonds Today Focus on: (native) oxide surfaces and phosphonic acids • Background: Reactivity, comparison between silanes and phosphonic acids • Examples: Surface modification of "flat" substrates, nanoparticles, layered materials Organosilane monolayers OEt CI SjOg. Zr02, Al203, Ti02... R-SHOEt R-Sh-CI SiC, Si3N4 OEt NCI J , Ca10(PO^fOH). Hydrolysis: H20 + Si-X HX + Si-OH X = CI, OR Heterocondensation: M-OH + Si-OH -> Si-O-M + H20 Homocondensation: Si-OH + Si-OH -> Si-O-Si + H20 Competition heterocondensation / homocondensation: governs layer structure MOLECULES TO MATERIALS iCGM Organosilane monolayers Balance heterocondensation / homocondensation: depends on the nature of the support and water content R R'O-Si-OR" l OR' no H20 i R sr0Et 6 OH OHO7 X0 OH i i i i i i R EtO-Si-OEt X only Si-O-M, partial monolayer OH OH OH OH OH OH I I I I _|_I H,0 R R R I I i O-Si-O—Si-O-Si i i i \ O OHO OH 0 0 =LLI R HOJ R /Si- HO-SHO °^Si 0 OH OHO7 X0 OH 1 i i i i i Si-O-M + Si-O-Si dense monolayer few Si-0-M: multilayer Phosphonic acid monolayers Ti, Al, Stainless steel, Mg, Ag, Ti02, Al203, Zr02, Si02... CaC03, Ca10(PO4)6(OH)2, GaAs, CdS... R Binding to oxide surfaces: formation of P-O-M bonds I OH k \ ^OH OH K OH OH ° i OH OH O7 O OH I "H20 r r M M M M -► M M M M -► M M M M ^^^^^^^^^^^^^^^^^^^^^^^^^ I Condensation Coordination Phosphonic acids stable in water No need to control the water content Surface modification in water No homocondensation P-OH + P-OH * P-O-P + H20 easy access to monolayers Growth of C18H37P03H2 SAMs on titanium in situ multireflexion ATR FTIR ex situ water contact angle Substrate: 20 nm Ti on a silicon ATR crystal 1 mM C18H37P03H2in CD3CD2OD, 15 °C FTIR peaks area VasCHw vsCH2 1 week T 1 ^y^y 1 h^_/ 1 min r i i i 3000 2900 2800 Wavenumber (cm") Water contact angle / 12 24 36 Time / h • No need to control the water content, simple and reproducible! Surface Modification of TiOo Particles Ti02 + PhP03H2 H2Q, pH 2.5 washing 50 m2/g 22 P / nm2 3d j > drying > 31PMAS-NMR PhP03H2 grafted specie^ P-O-P i 100°C Ti(PhP03)2 100 50 0 -50 -100 8 (ppm) 20°C, 2.8 mM: no P-O-P => monolayer 100°C, 40 mM =^>Ti(PhP03)2 phase P^h P^h P^h \ .o/KQ /0/KQ /0/KQ ^ TK T\ T\ JTi 0-p'U 0-p'U 0-p'U \ \ \ Ph Ph Ph P^h P^h P^h \ /0/KQ /0/KQ „ JTi JTi JTi JTi 0-p'u 0-p'u 0-p"u \ \ \ Ph Ph Ph Chem. Mater. 2001, i3, 4367 iC or hrnu ;i»Ih Gff t*s Hond»Hf Collaboration F. Babonneau, C. Gervais (UPMC) 170-enriched • phosphonic acids • model compounds OH OH O'Pr DMSON | yGPr Ph^ 0 \ xPh _ I Ph 'PrO' •0" I ipr "O'Pr C/?em. Mater. 2003, 2008 C12H25P03H2 monolayer on TiO2(100 m2/g) 170 MAS-NMR 60% P-O-Ti 20% P=0 20% P-O-H 400 200 0 5 / ppm R p OH OH -200 Ti T "Ti 1 xp-o 0 0 _l_l_ /^OH O O j_i 9 9 9 TiQ2 I Mechanism Surface species Collaboration Ph. Tordjeman LAIN Applications of SAMs: corrosion protection non-volatile lubricants hard-disks MEMS electrical contacts C18H37P03H2 SAMs as lubricant coatings stable in alkaline media Substrates: 20 nm Ti on Si grafting with C18H37P03H2 in EtOH, 2d. Friction: stainless steel ball D = 2 mm, 260 HV, normal force up to 60 N Ti/Si untreated Contact angle 11° Friction coeff. 0.6 ODPA/Ti/Si Contact angle 102° Friction coeff. 0.1 MRS Symp. Proc. 2004 Lubrication maintained after 100 min pH 14, 65 °C ICGM Antibacterial phosphonate monolayers Collaboration J.-Ph. Lavigne CHU; Daniele Noel INM Bacterial adhesion / biofilm formation: major cause of nosocomial infections Biofilm formation Stainless steel, Cr/Co or zirconia HAP TA6V, stainless steel Inorganic biomaterials: metals, metal oxides, phosphates. Phosphonate monolayers as coatings for medical devices: • high affinity for most inorganic biomaterials • good thermal and hydrolytic stability iCGM Strategy: grafting of silver thiolate groups Ag+: good bactericidal activity over a wide range of bacteria Ag thiolates: very high hydrolytic stability OH OH 9H OH I I I I I g HO-^0 HO EtOH Titanium 48h rt Stainless steel -\ m|\/| SH SH o o ° o o o _L_L _L_L .....I Ti-SH AgN03 1 mM 2h, r.t. AgS AgS .....E Ti-SAg J. Mater. Chem. 2009, 19, 141 - 1 WO 2007080291 iC o. Bacterial adhesion and biofilm assays: 106n E 105- m 104- o 103- c er 102 JZ T3 < 101- J E. coli S. epidermidis Ti Ti EO Ti-SAg Ti-SAg EO Sample huge decrease of bacterial adhesion after 2-h incubation Ti EO + S. epidermidis Ti -SAg EO+ S. epidermidis inhibition of biofilm growth after 3-day incubation • good antibacterial activity in vitro and in vivo with less than 1 nmol Ag/cm2 • maintained after ethylene oxide sterilization • excellent biocompatibility in vitro (MCT3T3 cells) and in vivo Acta Biomaterialia, 2015, 154, 266-277 iCGM tautiil '1»ih t/ftwS Hontmi** Dielectric / metal interfaces Collaboration Ganpati Ramanath RPI Tuning interface mechanical and thermal properties Modification of the interface by a MDPA monolayer: • interfacial toughness: x3 • thermal conductance: x3 Nature Mater-2013 iCGS Selective surface modification Ti-O-P : stable / hydrolysis Si-O-P : fast hydrolysis P12H25 TiO. SiO. Patterned support H01h° HoO SEM 100 SAES line scan TiO. m 0 5 10 15 Distance (urn) Repartition of organic groups controlled by the inorganic support Chem. Mater. 2004 16, 5670 iC o. collaboration Rhodia, MACS (ICGM) Compatibilization of silica nanofillers with hydrophobic polymers Surface modification in aqueous medium? Organotrialkoxysilanes: not stable in water Phosphonic acids: stable in water but Si-O-P not stable in water =^> Si-O-AI-O-P SiO; AICU C8H17P03H2 «7AI/nm2 1-8P/nm2 30' pH 6.5 30' pH 6.5 31PMAS-NMR 4.1 P/nm2 100 50 0 5 / ppm • fast, one-pot method • no organic solvent: "green" • no precipitation of Al phosphonate • controlled surface coverage J. Mater. Chem. 2011 iCGM Grafting oxide NPs in aqueous colloidal solutions collaboration J. Oberdisse, C. Genix L2C Silica colloids: used in ceramics, composite materials, cements, catalysts, polishing pastes, paper, textile... e e Levasil® 200S/30: "cationic silica sol" = alumina-coated silica NPs e e OH Modification of the NPs in the aqueous sol : 0 Sl° ) e ( OPA 0=P Í/OH / DEPA o 0=P OH X)H OPA ; hydrophobic R group DEPA ; hydrophilic R group Tuning interactions between nanoparticles in aqueous solutions iC o. lisímu ;i»Ih G(f t*s HoniDtUf Grafting oxide NPs in aqueous colloidal solutions 50-i 1 OH J 1 f / 40- j 1 > E ^ j — 30- r o > j c UM OH a> o 20- Q. «J OPA DEPA d) N 10- Zeta potential Rapp (DLS) o 0,0 OPA Grafting density / P nm 0,3 P/nm2 0,5 P/nm2 3,2 P/nm2 Grafting density / P nm • OPA, DEPA: slight decrease of ZP • OPA: aggregation increases with grafting density hydrophobic interactions iC o; Oxide nanoparticles: cheap, "green" syntheses in aqueous media, sols stabilized by electrostatic repulsion Inks, paints, nanocomposites: need for organosoluble nanoparticles Langmuir 2015, 31, 10966-10974 iC o; Phase transfer of Ti02 particles Parameters influencing the transfer f rf rt f t ^ ^ ^ o* 0& oN% $r 3 0 0.8 1.7 2.4 PA concentration (mmol/g) 1 5 23 Sol concentration (wt%) Alkylphosphonic acids with chain > 5 Carbons ca 4-5 P/nm2 Works even for high sol concentration Langmuir 2015, 31, 10966-10974 r Transfer of aggregated nanoparticles Variation of NP dispersion pH variation salt addition 600 - 400 I CO Q 200 pH 2 pH 4 pH 5 600 - 400 P 200 0 4 5 6 NaCl content (wt%) 44 Transfer of aggregated nanoparticles r Variation of NP dispersion pH variation salt addition R(DLS) organic phase R(DLS) aq 600 - 400 CO p 200 1 0 pH 2 pH 4 pH 5 -1-1-1-1—i-1-1-1-1-1-1-1-1-1-1-1-1-1-1— 600 400 V CO P 200 V 0 R(DLS) organic phase R(DLS) aq 0 NaCl content (wt%) 6 44 Transfer of aggregated nanoparticles Deaggregation during phase transfer / surface modification R(DLS) organic phase R(DLS) aq 600 - 400 CO P 200 - 0 pH 2 pH 4 pH 5 -1-1-1-1—I-1-1-1-1-1-1-1-1-1-1-1-1-1-1— 600 400 - CO P 200 - 0 R(DLS) organic phase R(DLS) aq 0 NaCl content (wt%) 6 44 iCGS Interlayer grafting collaboration Y. Sugahara, Waseda, Tokyo HLaNb207.xH20 : ion-exchangeable layered perovskite AAAA ♦♦♦♦ n-propanol -> (10 mass% water) D-decanol (1 mass% water) organophosphonic acid -> 2-butanone (1 mass% water) XRD 0 5 10 15 20 Number of carbon atoms in alkylchain Chem. Mater. 2009, 21 4155 ■CG! collaboration Y. Sugahara Tokyo K4Nb6017-3H20 : two distinct interlayers, selective intercalation V * * * *s Hexaniobate layer NMe2(C18H37)2CI -> Intercalation X / / / / it tit O^^OH OH y 6 0 0 0 0 0 0 0 0 Grafting N(C12H25)H3CI \,,, AAA / / / / / / / / / / OH OH bo o""g"b XRD: selective grafting Langmuir 2014, 30, 1169 iCGM Selective interlayer grafting Exfoliation in CH3CN: leads selectively to hydrophobic mono- and bilayers AFM ö c ö ö 0 0 sonication CH,CN Exfoliation 2.9 nm ÓOOOŮ sonicaticTi O >0 CH3CN 2.1 nm Janus monolayers? Langmuir 2014, 30, 1169 Conclusions Phosphonate coupling molecules • complementary of silanes and thiols • anchoring to the surface by M-O-P bonds only • wide range of inorganic substrates and terminal groups Powerful tool for the control of surface and interface properties Acknowledgments A. Vioux, G. Guerrero, J. Alauzun PhDs / Post-docs Vincent Lafond Florence Brodard Stephanie Lassiaz Jeremie Soullier Julien Amalric Charlene Presti Celine Schmitt Collaborations C. Gervais, F. Babonneau (UPMC) J.-Ph. Lavigne, D. Noel (INSERM) J. Oberdisse, C. Genix (L2C) G. Ramanath (RPI) Y. Sugahara (Tokyo) Funding CNRS, MENRT Labex Chemisyst Institut Frangais du Petrole Arc International Rhodia