

Non-Hydrolytic Sol-Gel

Film

Sol

Gel

Catalyst

Today

- Principle of sol-gel process
- Non-hydrolytic sol-gel process
- Mixed oxides
- Mesoporous mixed-oxide catalysts
- Nanoparticles by NHSG

Sol-Gel Process

Low-temperature route to oxide materials

"Hydrolytic" Sol-Gel Process

H₂O Polycondensation 译译 Sol Shaping

MX_n

Xerogel

Precursors

Densification

MO_{n/2} Oxide glass

Hydrolysis of alkoxides

 $M-OR + H_2O \longrightarrow M-OH + ROH$

Condensation

 $\mathsf{M}\text{-}\mathsf{OH} + \mathsf{M}\text{-}\mathsf{OR} \longrightarrow \mathsf{M}\text{-}\mathsf{O}\text{-}\mathsf{M} + \mathsf{ROH}$

 $M-OH + M-OH \longrightarrow M-O-M + H_2O$

 \Rightarrow Oxides, Hybrid Xerogels

Porous oxide materials Monodisperse powders Coatings, Fibers, etc. Dense glass

"Hydrolytic" Sol-Gel Process

$$SiO_{2} \quad Si(OEt)_{4} \quad \xrightarrow{H_{2}O} \quad "SiO_{2} gel"$$
$$-EtOH$$

Silicon alkoxides: low reactivity (catalysis, H⁺, OH⁻, F⁻), easy

 \Rightarrow Simple routes to silica and hybrid materials

Metal alkoxides: too reactive

- \rightarrow Precipitates (amorphous, hydrated oxo-hydroxides)
- \rightarrow Inhomogeneous mixed oxides

Reactivity modifiers

chelating ligands: carboxylic acids, β -diketonates...

Nonhydrolytic Condensations

completely different condensation reactions

Conventional Sol-Gel process

Expensive alkoxide precursors

\bigotimes Disparity of hydrolysis-condensation rates: e.g. M(OR)n >> Si(OR)₄

 \rightarrow Precipitates, heterogeneous mixed oxides

Contensation:

 \rightarrow Amorphous oxo-hydroxides, microporous materials

\Rightarrow Complicated, expensive multi-step procedures...

- prehydrolysis, modified precursors, multi-step acid-base procedures
- templates, supercritical drying

Why not try another reaction?

Non-hydrolytic Sol-Gel process

- Non-aqueous solvent, no water involved
- Based on non-hydrolytic M-CI/M-OR condensation

M-O-R + CI-M
$$\xrightarrow{T}$$
 M-O-M + RCI R = Me, Et, ⁱPr...

M = AI, B, Fe, Ti, Zr, Nb, V, W, Mo... T = 80 - 150 °C

M = Si: very slow \Rightarrow catalysis by Lewis acids : FeCl₃, ZrCl₄...

Fundamentals of Non-Hydrolytic Sol-Gel

M = AI, B, Fe, Ti, Zr, Nb, V, W, Mo... R = Me, Et, ⁱPr... T = 80 - 150 °C

M = Si: very slow \Rightarrow catalysis by Lewis acids : FeCl₃, ZrCl₄...

Non-Hydrolytic Sol-Gel Routes

In-situ formation of alkoxide groups:

 $\begin{array}{l} \text{M-CI} + \text{R-O-R} & \longrightarrow & \text{M-OR} + \text{RCI} \\ \\ \text{M-CI} + \text{R-OH} & \longrightarrow & \text{M-OR} + \text{HCI} (\text{R} = \text{Et}, \, {}^{\text{i}}\text{Pr}) \\ \\ & \longrightarrow & \text{M-OH} + \text{RCI} (\text{R} = {}^{\text{t}}\text{Bu}, \text{Bz}) \end{array}$

 Alkoxide route MCl_n + M(OR)_n T → 2 MO_{n/2} + n RCl

 Ether route MCl_n + n/2 ROR T → MO_{n/2} + n RCl

 Alcohol route MCl_n + n/2 ROH T → MO_{n/2} + n/2 HCl + n/2 RCl

Exchange and condensation reactions

\Rightarrow Precursors = mixture of chloroalkoxides

 $\text{TiCl}_{4} + \text{Ti}(\text{O}^{\text{i}}\text{Pr})_{4} \xrightarrow{\text{RT}} \text{TiCl}_{2}(\text{O}^{\text{i}}\text{Pr})_{2} + \text{TiCl}_{3}(\text{O}^{\text{i}}\text{Pr}) + \text{TiCl}(\text{O}^{\text{i}}\text{Pr})_{3} \xrightarrow{100 \text{°C}}_{-\text{i}\text{Pr}\text{Cl}} \text{TiO}_{2}$

Condensation \Rightarrow cleavage of O-C bonds instead of O-H bonds

Oxides by Non-Hydrolytic Sol-Gel

Crystalline metal oxide nanoparticles:

Colvin et al, *J. Am. Chem. Soc.* **1999,** *121,* 1613. Niederberger et al *J. Am. Chem. Soc* **2002,** *124,* 13642. Hyeon et al, *J. Am. Chem. Soc.,* **2003,** *125,* 6553. Mutin et al, *Chem. Mater.* **2010**, *22,* 4519.

Metal oxide thin films:

Ritala et al, *Science*, **2000**, *288*, 319. Mutin et al, *Chem. Mater.* **2009**, *21*, 2577.

Mesoporous mixed oxides:

Devillers et al, *Catal. Today* **2003**, *81*, 77 Mutin et al, *Chem. Mater.* **2009**, *21*, 2817 Ricci et al, *Appl. Catal. A* **2010**, 389, 147 Mutin et al, *Chem. Commun.* **2011**, 10728

Metal oxide foams:

Grader et al. *Ceram. Trans.*, **1998**, *95*, 161. US Patent **2004**, Cellaris Ltd., Israel

Mixed Oxides by Non-Hydrolytic Sol-Gel

1-step reactions, no reactivity modifier:

Alkoxide route:
$$MCI_n + z M'CI_{n'} + t M'(OR)_{n'} \xrightarrow{T} M_xO_{n/2} . M'_{(z+t)}O_{n'(z+t)/2}$$

Ether route: $MCI_n + z M'CI_{n'} + (n+n'z)/2 ROR \xrightarrow{T} MO_{n/2} . z M'O_{n/2}$

Exchanges \Rightarrow mixture of chloroalkoxides $MCl_x(OR)_{n-x} + M'Cl_{x'}(OR)_{n'-x'}$

$$\Rightarrow$$
 M—O—M' + M—O—M + M'—O—M'

SiO₂-MO_x systems: condensations around Si catalyzed by M species:

- $\rightarrow\,$ levelling of reactivities around Si and M
- \rightarrow Highly homogeneous xerogels

Nonhydrolytic SiO₂ – ZrO₂

J. Mater. Chem. 1996 6, 10

Structure of nonhydrolytic TiO₂-SiO₂

10 SiCl₄ + 9 Si(OⁱPr)₄ + Ti(OⁱPr)₄ $\frac{110^{\circ}C}{110^{\circ}C}$

J. Mater. Chem. 1996 6, 10

calcination

Solid solution

Single phase cristobalite

Random subst. of Si by Ti

Tetragonal unit

a = 5.00 Å (SiO₂: 4.97 Å)

$$c = 6.98 \text{ Å}$$
 (SiO₂: 6.93 Å)

$AI_{2}O_{3} - TiO_{2} \text{ system}$ $2 \text{ AICI}_{3} + \text{TiCI}_{4} + 5 \text{ }^{i}\text{Pr}_{2}O \xrightarrow{110^{\circ}\text{C}}_{\text{CH}_{2}\text{CI}_{2}} \xrightarrow{\text{T} }^{\circ}\text{C}, 5h}_{\text{CH}_{2}\text{CI}_{2}}$

SiO₂-TiO₂ mild oxidation catalysts

Hydrolytic sol-gel:

simultaneous control of Ti dispersion and texture difficult

 \rightarrow complicated, multi-step procedures

Ti dispersion: reaction rates around Ti >> Si

- \rightarrow Ti precursor modification, pre-hydrolysis, acidic conditions
- Texture: evaporative drying
 - → high capillary pressure Pc

acidic conditions \rightarrow low degree of condensation

→ pore collapse → microporous xerogels

Brinker, C. J.; Scherer, G. W. Sol-gel Science1990.
Hutter, R.; Mallat, T.; Baiker, A. J. Catal. 1995, 157, 665.
Klein, S.; Thorimbert, S.; Maier, W. F. J. Catal. 1996, 163, 476.

SiO₂-TiO₂ mild oxidation catalysts

> Avoiding pore collapse

 \Rightarrow templates, supercritical drying: *expensive...*

 \Rightarrow solvent exchange with **hexane + silylation**:

 $Pc = -2\gamma cos\theta/r$ γ : surface tension; θ : contact angle; r: pore radius

 γ_{hexane} 18.4 mN/m < γ_{water} 72.8 mN/m \rightarrow decreases Pc

silylation: OH surface groups replaced by OSiMe₃

 \rightarrow no H-bonding, no condensation \rightarrow reversible shrinkage

Prakash et al. Nature 1995, 439

"Non-hydrolytic" SiO₂-TiO₂

M = Ti: easily controllable kinetics, condensation at 80-150 °C

M = Si: very slow but condensations catalyzed by Ti species

→ homogeneous mixed oxide xerogels even for SiO₂-MO_x systems no need for multi-step procedures or complicated precursors

Irreversible condensation \rightarrow very high condensation degrees up to 90%

Chem. Mater. 2004, 16, 5380

"Non-hydrolytic" SiO₂-TiO₂

Liquid phase: ⁱPrCl + CH₂Cl₂

 γ^{i} PrCI : 24 mN/m γ^{i} CH₂CI₂ : 26.5 mN/m < γ^{i} H₂O : 72.8 mN/m

 \rightarrow low capillary pressure

Surface groups: no OH, only CI and OiPr no H-bonds, no condensation at ambient T: → reversible shrinkage

No need for solvent exchange and silylation

→ mesoporous xerogels if the degree of condensation is high enough

NH SiO₂-TiO₂: control of texture

Control of texture: Si/Ti ratio and reaction temperature Si/Ti=7.5 7.5 SiCl₄ + TiCl₄ + 17 i Pr₂O Si/Ti=17 17 SiCl₄ + TiCl₄ + 35 i Pr₂O Si/Ti=17 17 SiCl₄ + TiCl₄ + 35 i Pr₂O V_{ads} / cm³ g⁻¹ 1000 1030 m²/g 1.5 cm³/g 61 Å

NH SiO₂-TiO₂ : control of texture

From 590 m²/g, 0.3 cm³/g to 980 m²/g, 1.5 cm³/g

Chem. Mater. 2004 16 5380

Application as oxidation catalysts

Collaboration Vasile Hulea (MACS-ICGM), Emil Dumitriu (Iasi, Romania)

3.3 wt%Ti, outstanding texture, good Ti dispersion Chem. Commun., 2008, 5357

SiO₂-TiO₂ oxidation catalysts

Oxidation of bulky compounds by aq. H_2O_2 (0.1 M)

AQ>95% 92% conv. in 6 h 91% H₂O₂ efficiency

- accomodates very bulky substrates
- good activity, excellent H_2O_2 efficiency, reusable (>>Ti-MCM41)

Chem. Comm. 2008, 5357; Appl. Catal., B 2010, 97, 407

Hybrid SiO₂-TiO₂ epoxidation catalysts

WO2005049626; Chem. Mater. 2006, 18, 4707

- Selective Catalytic Reduction of NOx by NH₃
- Selective oxidation of H₂S
- Total oxidation of Volatile Organic Compounds
- Oxidative dehydrogenation of propane

Conventional catalysts:

impregnation of TiO_2 -anatase supports

 \rightarrow monolayer of vanadate species

Nonhydrolytic synthesis: ether route, chloride and oxychloride precursors

Ex.: 10 TiCl₄ + VOCl₃ + 21.5 i Pr₂O $\frac{110 ^{\circ}$ C, 3d}{CH₂Cl₂} $\frac{Vacuum drying}{110 ^{\circ}$ C, 3h $\frac{Calcination}{Air, 500 ^{\circ}$ C, 5h

Mesoporous, ca 80 m²/g, narrow pore size distribution

SEM

Aggregates of spherical particles $(2 - 7 \ \mu m)$

built of uniform nanoparticles (10 – 20 nm)

Hierarchichal texture, self-assembly of nanoparticles

ToF-SIMS

Polymeric and monomeric V species dispersed on anatase

Surface species similar to catalysts prepared by impregnation

• Selective Catalytic Reduction of NOx by NH₃: Collaboration G. Delahay, B. Coq, ICG Montpellier

 $4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \xrightarrow{250 - 350^{\circ}\text{C}} 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ Catalyst $4 \text{ N}_2 + 6 \text{ H}_2\text{O}$

Chem. Commun. 2004, 2214; Appl. Catal. B 2006, 69, 49.

• Total oxidation of Volatile Organic Compounds : Collaboration Damien Debecker, Eric Gaigneaux, UCL

$$\bigcup \frac{O_2}{Catalyst} \rightarrow CO_2 + H_2O$$

Appl. Catal. B 2010, 94, 38; Catal. Today 2010

Activity comparable to the best conventional catalysts

• Selective Catalytic Reduction of NOx by NH₃: Collaboration G. Delahay, B. Coq, ICG Montpellier

 $4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \xrightarrow{250 - 350^{\circ}\text{C}} 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ Catalyst

Chem. Commun. 2004, 2214; Appl. Catal. B 2006, 69, 49.

Comparison of: NH V2O5-TiO2 vs. Eurocat catalyst **Conditions:**

Continuous flow, 20 mg cata., Gas flow: 138 cm3/min Feed: 0.2 % NO, 0.2 % NH3, 3 % O2 in He

Highly active:

- at 500 K: 50 % conversion 8 ppm N2O
- No loss of activity after 100 h at 573 K.
- No SO2 poisoning (25 ppm)

TiO₂-V₂O₅ catalysts Collaboration D. Debecker, E. Gaigneaux, UCL

Comparison: impregnated vs. nonhydrolytic catalysts:

ToF-SIMS: Similar surface species

- xerogel: V/Ti =0.05
- calcined xerogel: V/Ti =0.13
- impregnated catalyst: V/Ti =0.17

 \Rightarrow Migration of VO_x species toward the surface during calcination

Appl. Catal. B 2010, 94, 38.

SiO₂-Al₂O₃-MoO₃ metathesis catalysts

Collaboration: D. Debecker, E. Gaigneaux (Louvain la Neuve) M. Stoyanova, U. Rodemerck (Rostock)

• Olefin metathesis: propene synthesis

Conventional catalysts:

- Molybdate species grafted to an alumina or acidic silica-alumina support
- •Most active species: isolated molybdates

SiO₂-Al₂O₃

SiO₂-Al₂O₃-MoO₃ metathesis catalysts

Chem. Mater. 2009, 21, 2819

SiO₂-Al₂O₃-MoO₃ catalysts

Si/Al/Mo: Acidic sites, mixed SiO₂-Al₂O₃ "support"

Calcination: Migration of MO_x species toward the surface

SiO_2 - AI_2O_3 - MoO_3 catalysts

TOF-SIMS: Surface species, comparison between NHSG and Wet Impregnation

TOF-SIMS WI 8% MoO MoO_{3 144} 148 15958 16062 165 124 127 130 132 137 **NH 10% MoO** 146 140 ¹⁴³ **NH catalyst:** 124 128³⁰ |126| |13 148 105108 111 ¹¹⁴ 116 ¹²⁰ 132 101 16**0**62 only monomeric MoO_x 150 170 110 130 100 120 140 160 species at the surface. 289 WI 8% MoO Mo₂O₆ $Mo_3O_9^-$ 182331 1, 361377391 409423144⁵¹ 47480 1 636 676 626 10% MoO 569⁵⁸⁴ 60312⁶²⁸ 486 460 67**6**86 522537 Chem. Mater. 2009, 21, 2819 300 400 500 **600**

SiO₂-Al₂O₃-MoO₃ catalysts

•Specific activity increases with MoO₃ loading

•TOF \approx constant

 \Rightarrow Similar active species

Catal. Sci. Technol. 2012, 2, 1157-1164

SiO₂-Al₂O₃-MoO₃ metathesis catalysts

Self-metathesis of propene (LIKAT: M. Stoyanova, U. Rodemerck)

Comparison with catalysts prepared by ≠ methods: NHSG: up to twice higher specific activity

Non-hydrolytic routes to nanoparticles

Extremely successful in the synthesis of metal oxide nanocrystals

N. Pinna, M. Niederberger, Angew. Chem., 2008, 47, 5292.

Surfactant-assisted syntheses:

e.g.
$$TiCl_4 + Ti(O'Pr)_4 \xrightarrow{300 \circ C} TiO_2$$

V. L. Colvin et al, J. Am. Chem. Soc. 1999, 121, 1613

• Benzyl alcohol route:

e.g.
$$WCl_6 \xrightarrow{100 \circ C} WO_3$$

M. Niederberger et al J. Am. Chem. Soc 2002, 124, 13642

- Silica-based amorphous nanoparticles?
- Ether route? in the absence of surfactant?

SiO₂-TiO₂ nanoparticles

Stöber synthesis:

does not lead to homogeneous SiO₂-TiO₂ nanoparticles (precipitation of TiO₂)

Homogeneous SiO₂-TiO₂ unaggregated nanoparticles

Chem. Mater. 2009, 21, 2577.

SiO₂-TiO₂ nanoparticles: influence of Si/Ti ratio

From homogeneous to core-shell SiO₂-TiO₂ nanoparticles

Stability of SiO₂-TiO₂ sols

Nanoparticle sols:

- stable at RT (in the absence of water)
- can be concentrated and redispersed in organic solvents

in the absence of surfactants or electrostatic repulsions!

Stabilization mechanism of SiO₂-TiO₂ sols

Application: polymer nanocomposites

Solution of NP and PMMA in CH₂Cl₂

Transparent PMMA-SiO₂ nanocomposite

TEM image of a microtome cut: (70 nm thick)

Perfect dispersion, no need to modify the NP surface

Application: nanoparticle monolayers

No surfactant, Si-CI and Si-OiPr surface groups \Rightarrow reactive surface

Monolayer of NP, whatever the immersion time \Rightarrow self-limiting grafting of NP

T / °C	S _{BET} (m ² g ⁻¹)	D _{BET} (nm)	D _{XRD} (nm)
80	430	3.6	3.8
110	170	9.1	9.5
150	105	14.7	16.3

Chem. Mater. 2010, 22, 4519-4521

TiO₂ nanoparticles

wafer immersed in a sol of TiO_280 nanoparticles in THF (0.3 wt% TiO_2) for 2 hours at 25 °C

Silica and Siloxane Organic-Inorganic Hybrids by NHSG

Hydrolytic Sol-Gel: mild conditions

introduction of organic groups via Si-C bonds

Applications: protective coatings, optics, electronics, catalysis, chromatography, membranes...

Silica xerogels by Non-Hydrolytic Sol-Gel

Catalysis of condensations around Si

FeCl₃: 0.1 mol% is sufficient to form SiO₂

 \Rightarrow 1 FeCl₃ catalyzes the formation of 2000 Si-OSi bonds!

Competition between catalysis and incorporation in the SiO₂ network

Silica and siloxane hybrids by NHSG

Non-Hydrolytic Sol-Gel: $\approx 100^{\circ}$ C, Lewis acids, alkyl chlorides mild conditions ?

> Friedel-Crafts reactions? Exchange or cleavage of Si-C bonds? Si-H bonds?

Synthesis of model silsesquioxanes (T resins)

 $R-SiO_{1.5}$ R = Me, $C_{18}H_{35}$, Vi, Ph

Silsesquioxanes by NHSG: Reaction Conditions

$MeSiCI_{3} + MeSiOEt_{3} \xrightarrow{1\% \text{ Lewis acid}} 2 MeSiO_{1.5} + 3 Et-CI$ 110 °C									
	Lewis acid	FeC	$I_3 > ZrC$	$I_4 > AICI_3$	> TiCl	4			
	Gel times	0.5	h 10 h	n 60h	140) h			
$\frac{0.1\% \text{ FeCl}_3}{110 \text{ °C}} \xrightarrow{\text{MeSiO}_{1.5} + 3 \text{ R'-Cl}}$									
	Oxygen do	onor	MeSi(C	DEt) ₃ ⁱ P	r ₂ O	Et ₂ O	-		
	Gel time	es	5 h	10) h	60 h			
	Condensa	ation	>95%	/o >9	95%	90%			

Silsesquioxanes by NHSG

 $R-SiCl_3 + {}^{i}Pr_2O$

R = Alkyl, Vinyl

- high degree of condensation
- No Si-C redistribution
- No Si-C cleavage

R = Phenyl

- Sealed tube: cleavage of Si-Ph bonds by iPrCl
- Open system: no cleavage

J. Sol-Gel Sci. Tech. 14, 137 (1999) J. Mater. Chem, 10, 1811 (2000)

- terminated by Si-OMe functions (curing by hydrolysis)

Application: adhesives for silica fibers

Hydrolytic syntheses: no control on the viscosity \Rightarrow NH synthesis

$$0.4 \operatorname{Me}_{2}\operatorname{SiCl}_{2} + 0.6 \operatorname{Si(OMe)}_{4} \xrightarrow{\operatorname{Cata}} (\operatorname{SiMe}_{2})_{0.4} (\operatorname{Si})_{0.6} O_{0.8} (\operatorname{OMe})_{1.6} + 0.8 \operatorname{MeCl}_{\Delta}$$

No solvent, 1-step, MeCI: recycled in the synthesis of methylchlorosilanes

EP 728793 A1 1996; J. Polym. Sci. Part A 1998, 36, 2415.

D/Q^{OMe} Resins: Choice of Reaction Conditions

 \Rightarrow Reaction in sealed NMR tubes, monitoring by ¹H NMR

Formation of Me₂O

2 Si-OMe \longrightarrow Si-O-Si + Me₂O

↑ degree of condensation (Si-O-Si)

Other catalysts???

Looking for a Selective Catalyst

Influence of Reaction Temperature

Synthesis of D/Q^{OMe} Resins

Conditions:	 Me₂SiCl₂ and Si(OMe)₄ 1% ZrCl₄ 130 to 150°C, autoclave or sealed tube 						
Orange liquids, well-controlled viscosity							
	Samples	5		Viscosity (cP)			
$0.3 \text{ Me}_2 \text{SiCl}_2 + 0.7$	⁷ Si(OMe) ₄	>	D/Q 30/70	2.5			
$0.4 \text{ Me}_2 \text{SiCl}_2 + 0.6$	Si(OMe) ₄	>	D/Q 40/60	7.3			
$0.5 \text{ Me}_2 \text{SiCl}_2 + 0.5$	5 Si(OMe) ₄	>	D/Q 50/50	53			
Chara	cterization:	GC/M	S, ²⁹ Si NMR				

Structural units in D/Q^{OMe} Resins

Quantitative ²⁹Si NMR (D/Q 40/60)

Good control of the composition: D/Q = 39/61 O/Si = 0.85 (th. 0.80) \Rightarrow Controlled viscosity of the resins

²⁹Si NMR (D/Q 40/60)

Good homogeneity: High level of D-Q bonding

Statistics: random distribution of Si-OMe and Si-OSi bonds

High T, Lewis acid: Condensation and Redistribution of Si-OX bonds

 \Rightarrow Excellent reproducibility and stability of the resins

Conclusions: Non-Hydrolytic Sol-Gel:

Changing reactions, changing reaction medium:

- Impacts reaction kinetics, condensation degree
- facilitates control of composition, homogeneity, texture
- Avoids using alkoxide precursors, reactivity modifiers, multi-step procedures, templating, supercritical drying...

Importance of thermal treatment of the xerogel

- Removal of residual OR and CI groups
- Migration of the less refractory oxide species

\Rightarrow Attractive one-step routes to efficient mixed oxide catalysts

Collaborations

Damien Debecker, Eric Gaigneaux (Louvain-la-Neuve, Belgium)

Vasile Hulea (MACS-ICGM) Emil Dumitriu (Iasi, Romania)

Gérard Delahay, Bernard Coq (MACS-ICGM)

Recent reviews: Uwe Rodemerck, Mariana Stoyanova (LIKAT, *Chem. Mater.* **2009**, 21, 582-596. Rostock, Germany) *Chem. Soc. Rev.* **2012**, 2624-2654.

Perspectives: Hierarchical oxides using cellulosic materials

Cellulose: 50 wt% O, in alcohol and ether groups. O-donor? template?

Titania from cotton wool

CTiO₂ calcined at 400 °C

Nice hierarchical fibrillar structure.

Titania from ferula pith

FTiO₂ calcined at 400 °C

Hierarchical cellular structure.