

Introduction to Physiology V - Coupling and Propagation

J. P. [Ke](http://www.math.utah.edu/~keener)ener

Mathematics Department

University of Utah

Spatially Extended Excitable Media

Neurons and axons

Spatially Extended Excitable Media

Mechanically stimulated Calcium waves

Conduction system of the heart

Conduction system of the heart

 \bullet Electrical signal originates in the SA node.

Conduction system of the heart

- •Electrical signal originates in the SA node.
- • The signal propagates across the atria (2D sheet), through the AV node, along Purkinje fibers (1D cables), and throughout the ventricles (3D tissue).

Spatially Extended Excitable Media

The forest fire analogy $\sum_{\text{Coupling and Propagation - p.5/33}}$

Spatial Coupling

Conservation Law:

becomes

 $\frac{d}{dt}(\text{stuff in }\Omega) = \text{rate of transport} + \text{rate of production}$

$$
\frac{d}{dt} \int_{\Omega} u dV = \int_{\partial \Omega} J \cdot n ds + \int_{\Omega} f dv
$$
\n
$$
\frac{\partial u}{\partial t} = \nabla \cdot (D \nabla u) + f(u)
$$
\nproduction
\n $f(u)$

Question: Can anything interesting happen with coupled cells that does not happen with ^a single cell?

Normal cell and cell with slightly elevated potassium - uncoupled

Normal cell and cell with slightly elevated potassium - coupled

Normal cell and cell with moderately elevated potassium uncoupled

Normal cell and cell with moderately elevated potassium coupled

Who could have guessed? – p.8/33

Normal cell and cell with greatly elevated potassium - uncoupled

Normal cell and cell with greatly elevated potassium - coupled

Axons and Fibers

From Ohm's law

 $V_i(x+dx) - V_i(x) = -I_i(x)r_i dx$, $V_e(x+dx) - V_e(x) = -I_e(x)r_e dx$,

In the limit as $dx\rightarrow 0,$

$$
I_i = -\frac{1}{r_i} \frac{dV_i}{dx}, \qquad I_e = -\frac{1}{r_e} \frac{dV_e}{dx}.
$$

Coupling and Propagation – p.9/33

The Cable Equation

From Kirchhoff's laws

$$
I_i(x) - I_i(x + dx) = I_t dx = I_e(x + dx) - I_e(x)
$$

In the limit as $dx \rightarrow 0,$ this becomes

$$
I_t = -\frac{\partial I_i}{\partial x} = \frac{\partial I_e}{\partial x}.
$$

The Cable Equation

Combining these

$$
I_t = \frac{\partial}{\partial x} \left(\frac{1}{r_i + r_e} \frac{\partial V}{\partial x} \right),
$$

and, thus,

$$
C_m \frac{\partial V}{\partial t} + I_{ion} = I_t = \frac{\partial}{\partial x} \left(\frac{1}{r_i + r_e} \frac{\partial V}{\partial x} \right).
$$

This equation is referred to as the cable equation.

Modelling Cardiac Tissue

Cardiac Tissue - The Bidomain Model:

• At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i - \phi_e.$

Modelling Cardiac Tissue

Cardiac Tissue - The Bidomain Model:

- • At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i - \phi_e.$
- These potentials drive currents, $i_e = -\sigma_e \nabla \phi_e, \, i_i = -\sigma_i \nabla \phi_i,$ where σ_e and σ_i are conductivity tensors.

Modelling Cardiac Tissue

Cardiac Tissue - The Bidomain Model:

- • At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i - \phi_e.$
- These potentials drive currents, $i_e = -\sigma_e \nabla \phi_e, \, i_i = -\sigma_i \nabla \phi_i,$ where σ_e and σ_i are conductivity tensors.
- •Total current is

$$
i_T = i_e + i_i = -\sigma_e \nabla \phi_e - \sigma_i \nabla \phi_i.
$$

Kirchhoff's laws:

• Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$

Kirchhoff's laws:

- Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$
- •• Transmembrane current is balanced:

φ

Kirchhoff's laws:

- Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$
- •• Transmembrane current is balanced:

surface to volume ratio,

φ

- Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$
- •• Transmembrane current is balanced:

surface to volume ratio, capacitive current,

φ

- Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$
- •• Transmembrane current is balanced:

surface to volume ratio, capacitive current, ionic current,

- Total current is conserved: $\nabla\cdot(\sigma_i\nabla\phi_i+\sigma_e\nabla\phi_e)=0$
- •• Transmembrane current is balanced:

^χ (^C^m ∂φ∂τ ⁺ ^Iion) ⁼ [∇] · (^σi∇φi) ^e Extracellular Space Intracellular Space φ ioneCmⁱ φ = φ − φ

surface to volume ratio, capacitive current, ionic current, and current from intracellular space.

 ϕ_i

- •• Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- •• Transmembrane current is balanced:

^χ (^C^m ∂φ∂τ ⁺ ^Iion) ⁼ [∇] · (^σi∇φi) ^e Extracellular Space Intracellular Space φ ioneCmⁱ φ = φ − φ

surface to volume ratio, capacitive current, ionic current, and current from intracellular space.

•Boundary conditions:

$$
\begin{array}{ll}\n\mathbf{n} \cdot \sigma_i \nabla \phi_i = 0, & \mathbf{n} \cdot \sigma_e \nabla \phi_e = I(t, x) \\
\text{and } \int_{\partial \Omega} I(t, x) dx = 0 \text{ on } \partial \Omega.\n\end{array}
$$

 ϕ_i

Consequences of the Bidomain Model-I:

With current applied at the boundary of the domain, there is depolarization and hyperpolarization at the boundaries. For ^a homogeneous medium, in the interior (several space constants from the boundary), the transmembrane potential is unaffected.

Consequences of the Bidomain Model-II:

Resistive inhomogeneities lead to sources and sinks of transmembrane current (virtual electrodes) in the interior of the tissue domain:

Consequences of the Bidomain Model-II:

Resistive inhomogeneities lead to sources and sinks of transmembrane current (virtual electrodes) in the interior of the tissue domain:

With large scale resistive inhomogeneities:

Consequences of the Bidomain Model-II:

Resistive inhomogeneities lead to sources and sinks of transmembrane current (virtual electrodes) in the interior of the tissue domain:

With small scale resistive inhomogeneities:

Consequences of the Bidomain Model-III:

Response to ^a point stimulus in tissue with unequal anisotropy

Virtual Electrodes

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u)
$$

with $f(0) = f(a) = f(1) = 0, \, 0 < a < 1.$

- There is a unique traveling wave solution $u = U(x ct)$,
- The solution is stable up to phase shifts,
- The speed scales as $c=c_0\sqrt{D},$
- $\bullet\;\; U$ is a homoclinic trajectory of $DU''+cU'+f(U)=0$

Discreteness

Calcium Release through CICR Receptors

Discrete Effects

Discrete Cells

$$
\frac{dv_n}{dt} = f(v_n) + d(v_{n-1} - 2v_n + v_{n-1})
$$

Discrete Calcium Release Discrete Release Sites

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + g(x) f(u)
$$

Fire-Diffuse-Fire Model

Suppose a diffusible chemical u is released from

- •• a long line of evenly spaced release sites;
- •• Release of full contents C occurs when concentration u reaches threshold $\theta.$

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \sum_n Source(x - nh)\delta(t - t_n)
$$

Fire-Diffuse-Fire-II

Recall that the solution of the heat equation with δ -function initial data at $x=x_0$ and at $t=t_0$ is

$$
u(x,t) = \frac{1}{\sqrt{4\pi(t - t_0)}} \exp(-\frac{(x - x_0)^2}{4D(t - t_0)})
$$

Fire-Diffuse-Fire-III

Suppose known firing times are t_j at position $x_j = jh$, $j = -\infty, \cdots, n-1$. Find t_n . At $x = x_n = nh$,

$$
u(nh, t) = \sum_{j=-\infty}^{n-1} \frac{C}{\sqrt{4\pi(t-t_j)}} \exp(-\frac{(nh-jh)^2}{4D(t-t_j)})
$$

$$
\approx \frac{C}{\sqrt{4\pi(t-t_{n-1})}} \exp(-\frac{h^2}{4D(t-t_{n-1})}) = \frac{C}{h} f(\frac{D\Delta t}{h^2})
$$

Fire-Diffuse-Fire-IV

θ *h/C*

Solve the equation θh $C \$ = $f(\frac{D\Delta t}{h^2})$ This is easy to do graphically: 1 2 3 4 5 6 7 8 9 10 0.060.080.10.120.140.16 0.18 *F(D*∆ *t/h ²)* 0.20.22 0.240.260.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 2345678910 *vh/D*

^D∆ *t/h²*

Conclusion: Propagation fails for $\frac{\theta h}{C} > \theta^* \approx 0.25$ (i.e. if h is too large, θ is too large, or C is too small.)

With Recovery

Including recovery variables

$$
\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} + f(v, w), \qquad \frac{\partial w}{\partial t} = g(v, w)
$$

Solitary Pulse Periodic Waves Skipped Beats

Periodic Ring

The APD Instability in 1D

Stable Pulse on ^a Ring

Unstable Pulse on ^a Ring

Collapse of Unstable Pulse

The APD Instability in 1D

Stable Pulse on ^a Ring

Unstable Pulse on ^a Ring

Collapse of Unstable Pulse

Dimension 2: Spirals

Atrial Flutter

Dimension 2: Spirals

Atrial Flutter

Spiral instability - Meander:

montan month rammunimummy mannement $\sqrt[12]{10}$ mmmmmmmmmin menummentus France Mille $\frac{AVF}{k^2}$

Torsade de Pointe

Dimension 2: Spirals

Atrial Flutter

Spiral instability - Meander:

montan month nommune mannement $\sqrt[12]{10}$ mmmmmmmmmin menummentus Francumulallysigning

Torsahd duh Pwahn

The APD Instability in 2D

Spiral Breakup

Imagine the

Dimension 3: Ventricular Reentrant Activity

Ventricular Monomorphic Tachycardia

Dimension 3: Cardiac Scroll Wave

3 D structure of ^a single scroll wave

Ventricular Fibrillation

Ventricular Fibrillation

Surface View Movie 3D View Movie

Still unresolved: What is the mechanism for maintenance of fibrillation? (APD instability? Mother rotor hypothesis?)

How is ^a dynamical system moved from one state (the normal heartbeat) to another (reentry)? Remark: This is ^a spatio-temporal system; Single cell explanations are not sufficient.

How is ^a dynamical system moved from one state (the normal heartbeat) to another (reentry)? Remark: This is ^a spatio-temporal system; Single cell explanations are not sufficient.

• Anatomical - One way block on a closed 1D loop. (movie)

How is ^a dynamical system moved from one state (the normal heartbeat) to another (reentry)? Remark: This is ^a spatio-temporal system; Single cell explanations are not sufficient.

• Anatomical - One way block on a closed 1D loop. (movie)

• Vulnerable Period - Winfree (S1-S2) mechanism (1D) (2D)

How is ^a dynamical system moved from one state (the normal heartbeat) to another (reentry)? Remark: This is ^a spatio-temporal system; Single cell explanations are not sufficient.

• Anatomical - One way block on a closed 1D loop. (movie)

- Vulnerable Period Winfree (S1-S2) mechanism (1D) (2D)
- •Early After Depolarizations during Vulnerable Period.

How is ^a dynamical system moved from one state (the normal heartbeat) to another (reentry)? Remark: This is ^a spatio-temporal system; Single cell explanations are not sufficient.

• Anatomical - One way block on a closed 1D loop. (movie)

- Vulnerable Period Winfree (S1-S2) mechanism (1D) (2D)
- •Early After Depolarizations during Vulnerable Period.
- \bullet Dispersion (i.e. spatial/temporal inhomogeneity) of refractoriness.

• Why is calcium overload arrhythmogenic?

- •Why is calcium overload arrhythmogenic?
- •Why is long QT syndrome arrhythmogenic?

- •Why is calcium overload arrhythmogenic?
- •Why is long QT syndrome arrhythmogenic?
- •Why are most anti-arrhythmic drugs actually proarrhythmic?

- •Why is calcium overload arrhythmogenic?
- •Why is long QT syndrome arrhythmogenic?
- •Why are most anti-arrhythmic drugs actually proarrhythmic?
- • What is the mechanism of EAD's and are they truly proarrhythmic?