

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

J. P. Keener

Mathematics Department

University of Utah

Basic Problem

- The cell is full of stuff: Proteins, ions, fats, etc.
- The cell membrane is semipermeable, and these substances create osmotic pressures, sucking water into the cell.
- The cell membrane is like soap film, has no structural strength to resist bursting.

- Carefully regulate the intracellular ionic concentrations so that there are no net osmotic pressures.
- As a result, the major ions (Na⁺, K⁺, Cl⁻ and Ca⁺⁺) have different intracellular and extracellular concentrations.
- Consequently, there is an electrical potential difference across the cell membrane, the membrane potential.

• transmembrane diffusion - carbon dioxide, oxygen

- transmembrane diffusion carbon dioxide, oxygen
- transporters glucose, sodium-calcium exchanger

- transmembrane diffusion carbon dioxide, oxygen
- transporters glucose, sodium-calcium exchanger
- pores water

- transmembrane diffusion carbon dioxide, oxygen
- transporters glucose, sodium-calcium exchanger
- pores water
- ion-selective, gated channels sodium, potassium, calcium

- transmembrane diffusion carbon dioxide, oxygen
- transporters glucose, sodium-calcium exchanger
- pores water
- ion-selective, gated channels sodium, potassium, calcium
- ATPase exchangers sodium-potassium ATPase, SERCA

Most molecules move by a random walk:

Most molecules move by a random walk:

Fick's *law*: When there are a large number of these molecules, their motion can be described by

$$J = -D \quad \frac{\partial C}{\partial x}$$

Most molecules move by a random walk:

Fick's *law*: When there are a large number of these molecules, their motion can be described by

$$J = -D \quad \frac{\partial C}{\partial x}$$

molecular flux,

Most molecules move by a random walk:

Fick's *law*: When there are a large number of these molecules, their motion can be described by

$$J = -D \frac{\partial C}{\partial x}$$

molecular flux, diffusion coefficient,

Most molecules move by a random walk:

Fick's *law*: When there are a large number of these molecules, their motion can be described by

$$J = -D \left[\frac{\partial C}{\partial x} \right]$$

molecular flux, diffusion coefficient, concentration gradient.

Conservation Law

Conservation:

$$\frac{\partial C}{\partial t} + \frac{\partial J}{\partial x} = 0$$

leading to the Diffusion Equation

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} (D \frac{\partial C}{\partial x}).$$

Basic Consequences - I

Diffusion in a tube fed by a reservoir

$$C(x,t) = f(\frac{x^2}{Dt})$$

Diffusion time: $t = \frac{x^2}{D}$ for hydrogen ($D = 10^{-5}$ cm ² /s).				
r	+	Fxample		

x	t	Example
10 nm	100 ns	cell membrane
1 μ m	1 ms	mitochondrion
10 μ m	100 ms	mammalian cell
100 μ m	10 s	diameter of muscle fiber
250 μ m	60 s	radius of squid giant axon
1 mm	16.7 min	half-thickness of frog sartorius muscle
2 mm	1.1h	half-thickness of lens in the eye
5 mm	6.9 h	radius of mature ovarian follicle
2 cm	2.6 d	thickness of ventricular myocardium
1 m	31.7 yrs	length of sciatic nerve

Basic Consequences - Ohm's Law

Diffusion across a membrane

$$J = \frac{AD}{L}(C_1 - C_2)$$

Flux changes as things like C_1 , C_2 and L change.

Math Physiology - p.10/23

Math Physiology - p.10/23

For this system,

$$J = J_{max} \frac{S_e - S_i}{(S_e + K_e)(S_i + K_i)}.$$

.... a saturating Fick's law

Ion Movement

lons move according to the Nernst-Planck equation

$$J = -D(\nabla C + \frac{Fz}{RT}\nabla\phi)$$

Consequently, at equilibrium

Ion Current Models

There are many different possible Models of *I*_{ionic}.

- Barrier models, binding models, saturating models, PNP equations, etc.
- Constant field assumption:

$$I_{ion} = P \frac{F^2}{RT} V \left(\frac{[C]_i - [C]_e \exp(\frac{-zVF}{RT})}{1 - \exp(\frac{-zVF}{RT})} \right), \quad \text{GHK Model}$$

• Long Channel limit (used by HH)

$$I_{ion} = g(V - V_N)$$
 Linear Model

All of these have the same reversal potential, as they must.

Electrodiffusion Models

If the channel is short, then $L \approx 0 \Rightarrow \lambda \approx 0$. Then $\frac{d^2\phi}{dx^2} = 0$ implies the field is constant:

$$\frac{d\phi}{dx} = v \quad \Rightarrow \quad \frac{dc_1}{dx} - vc_1 = -J_1$$

$$\Rightarrow \quad J_1 = v \frac{c_i - c_e e^{-v}}{1 - e^{-v}}$$

$$\Rightarrow \quad I_{ion} = P \frac{F^2}{RT} V \left(\frac{[C]_i - [C]_e \exp(\frac{-zVF}{RT})}{1 - \exp(\frac{-zVF}{RT})} \right)$$

This is the Goldman-Hodgkin-Katz equation.

Long Channel Limit

If the channel is long, then $\frac{1}{L} \approx 0 \Rightarrow \frac{1}{\lambda} \approx 0$. Then $c_1 \approx c_2$ throughout the channel:

$$\begin{aligned} c_1 &= c_2 \quad \Rightarrow \quad 2\frac{dc_1}{dx} = -J_1 - J_2 \\ \Rightarrow & c_1 = c_2 + (c_e - c_i)x \\ \Rightarrow & \phi = -\frac{v}{v_1} \ln\left(\frac{c_i}{c_e} + (1 - \frac{c_i}{c_e})x\right) \qquad v_1 = \text{Nernst potential} \\ \Rightarrow & J_1 = \frac{c_e - c_i}{v_1} (v - v_1) \end{aligned}$$

This is the linear I-V curve used by Hodgkin and Huxley.

Sodium-Potassium ATPase

Math Physiology - p.16/23

0107472434013390705444454260

$$rQ = P_1 - P_2 - \pi_1 + \pi_2$$

$$\pi_i = kTC_i$$

Na⁺ is pumped out, K⁺ is pumped in, Cl⁻ moves passively, negatively charged macromolecules are trapped in the cell.

Charge Balance and Osmotic Balance

• Inside and outside are both electrically neutral, macromolecules have negative charge z_x .

 $qw(N_i + K_i - C_i) + z_x qX = qw(N_e + K_e - C_e) = 0, \qquad \text{(charge bala)}$

• Total amount of osmolyte is the same on each side.

$$N_i + K_i + C_i + \frac{X}{w} = N_e + K_e + C_e$$
 (osmotic balance)

The Solution

- If the pump stops, the cell bursts, as expected.
- The minimal volume gives approximately correct membrane potential (although there are MANY deficiencies with this model.)

Volume Control and Ion Transport

- How can epithelial cells transport ions and water while maintaining constant cell volume under widely varying conditions?
- Spatial separation of leaks and pumps?
- Other intricate control mechanisms are needed.
- Lots of interesting problems (A. Weinstein, BMB 54, 537, 1992.)

Inner Meduullary Collecting Duct

- Real cells are far more complicated
- Notice the large Na⁺ flux from the lumen.
- cf. A. Weinstein, Am. J.
 Physiol. 274, F841-F855, ¹¹
 1998.

Interesting Problems (suitable for projects)

- How do organism (e.g., T. Californicus living in tidal basins) adjust to dramatic environmental changes?
- How do plants in arid, salty regions, prevent dehydration? (They make proline)
- How do fish (e.g., salmon) adjust to both freshwater and salt water?
- What happens to a cell and its environment when there is ischemia (loss of ATP)?
- How do cell in high salt environments (epithelial cell in kidney) maintain constant volume?