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The paper is concerned with an advertising diffusion model where a firm devotes a fixed pro-
portion of sales to advertising, while customers go through a two-stage adoption process. The
model takes the form of a second-order, time-invariant, nonlinear dynamic system, in which a
homaclinic bifurcation to infinity is shown to exist. Allowance is subsequently made for a sea-
sonal fluctuation in the firm’s advertising rate. A bifurcation study of the periodic solutions is
then accomplished by means of a continuation procedure. Emphasis is placed on the emergence
of chaos. Only the chaotic solutions stemming from a cascade of peried doublings appear to be

economically meaningful.

1. Imtroduction

A consumer cannot purchase a new product if he/
she is not aware of it. Thus, for a new product to be
successful, there must be an effective spread of in-
formation about it. New product diffusion models,
first conceived in the 1960s, represent this dissemi-
nation process by considering the effects of word-of-
mouth, advertising, as well as other communication
forms. The simplest models (see, e.g., Bass [1969],
Lekvall & Wahlbin {1973], and Dodson & Muller
{1978]) focus on demand, disregarding supply and,
hence, such questions as price, capacity restrictions,
and marketing strategies. The choice optimization
problems of buyers and sellers are also neglected.
Nonetheless, there is a bulk of empirical evidence
supporting these models (see, for instance, the sur-
vey by Mahajan ef al. [1990]), which have also
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proven to be the most effective in forecasting the
diffusion of a new product. As a consequence, they
have been used by many companies, as reported by
Bass [1986].

The model by Feichtinger [1992a] (see also Fe-
ichtinger & Novak [1994]) retains the above-
mentioned attitute. The setting consists of a firm
selling a new product at a constant price and devot-
ing a fixed proportion of sales to advertising. Cus-
tomers go through a two-stage adoption process,
turning from potential inte actual ones under the
influence of word-of-mouth and advertising. This
results in a second-order, time-invariant, nonlinear
dynamic system.

Further examination of this model is given in
the present work, where the existence of a homo-
clinic bifurcation to infinity is pointed out by using
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both geometrical and numerical arguments. Owing
to this bifurcation, business failure proves to be un-
avoidable for some parameter values. The notion
of homoclinic bifurcation to infinity was first intro-
duced by Brons & Sturis [1991, 1992], who showed
it to occur in a model of the economic long wave
proposed by Rasmussen et al. [1985].

It is subsequently recognized that both adver-
tising and its effects are likely to possess a seasonal
component. For instance, since television watch-
ing is more intense in the cold seasons than in the
warm ones, television spots generally behave in a
similar manner. Moreover, when a product’s sales
display a seasonal pattern, the advertising policy is
usually seasonal, yet not necessarily synchronized
with sales [Kotler, 1984; p. 650]. Allowance is ac-
cordingly made for a periodic change in the firm’s
advertising rate, thus giving rise to a periodically
forced, second-order, nonlinear dynamic system. A
bifurcation study of the periodic solutions is then
numerically accomplished by means of a continu-
ation procedure. This eventually uncovers a wide
set of asymptotic behaviors, ranging from periodic
and quasi-periodic to chaotic solutions. Emphasis
is placed on the bifurcation sequences leading to
chaos. In the light of the findings about the time-
Invariant case, it is readily realized why a cascade
of period doublings is the only meaningful path to
chaos.

In writing the paper, both the economic and the
mathematical detail have been kept to a minimum,
so as to make the work appealing to a large aundi-
ence, ranging, in principle, from marketing schol-
ars to applied mathematicians. The paper is orga-
nized as follows. The model is briefly introduced
in Sec. 2 (a detailed account can be found in Fe-
ichtinger [1992a]). The time-invariant case is briefly
resumed and further investigated in the same sec-
tion, while the periodically forced case is dealt with
in Sec. 3. Final remarks and directions for future
research appear in Sec. 4.

2. An Advertising Diffusion Model

2.1. Analytical setting and Hopf
bifurcation

Consider a firm launching a new preduct, a low-
priced and frequently repurchased one. Let z(t) and
y(t) be the number of potential and actual buyers
at time £, respectively. Contacts between poten-
tial and actual buyers, essentially through word-of-
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mouth [Lilien & Kotler, 1983; Chap. 19], can turn
the former into the latter. If contacts are random,
the rate of generation of actual buyers is &zy, where
the term & reflects the word-of-mouth effectiveness.
Such an analytical form, originally borrowed from
the epidemic field [Kermack & McKendrick, 1927],
is standard in the literature about new product dif-
fuston. Mahajan et al. [1984], among others, pro-
vide empirical evidence in support of it.

Moreover, Simon & Sebastian [1987], among
others, provide empirical evidence suggesting that
advertising enhances the word-of-mouth effective-
ness. ‘Thus, it is also assumed that & = oy, where
the constant o reflects the advertising effectiveness.
Such a linear relationship makes sense if actual buy-
ers (re)purchase the product at a constant rate and
at a constant price, and the firm devotes a fixed pro-
portion of sales to advertising. The latter, which is
consistent with the celebrated rule by Dorfman &
Steiner [1954], is also the optimal advertising policy
for dynamic optimization problems where both the
advertising and the price elasticity of demand are
constant [Schmalensee, 1972].

Therefore, x(t) and y(t) are governed by the
foliowing differential equations:

2(t) =k — az(t)y®(t) + By(t), (1)
5(t) = ex(t)y(t) — (B + )y(2). @)

Notice that there is an external source of new poten-
tial customers, who enter the market at a constant
rate k. Moreover, actual buyers are supposed to
leave the market at a rate (84 ¢)y, where (f+¢) is
the removal constant. Some of them are lost forever
but some others are not, since they just switch to
other brands, thus flowing back at a rate Sy into
the class of potential buyers.

Remark 2.1. It can be ascertained that (see Fe-
ichtinger [1992a, 1992b] for a formal proof):

(a) The system (1),(2) is paositive, ie., z(0),
y(0} > 0 implies that z(#), y(¢) > 0 forall ¢ > 0.
(b) The system (1),{(2)} has a unique equilibrium,

le,
z, g) — (M , E) ,
@K €
which is stable for & > agp and unstable for
o < agp, with app = (8 +€)62/k2.
(c) @ = aup marks a supercritical Hopf bifurca-
fion. As a matter of fact, the Jacobian matrix



evaluated at (%, ¥) has a pair of pure imagi-
nary eigenvalues A = tiw, with w = /(f + ¢)e.
Moreover, the computation of the normal form
coefficient a [Guckenheimer & Holmes, 1986;
p. 152] yields ¢ = —1/8(1 + w?) < 0, so that
the Hopf bifurcation is always supercritical.

1t is straightforward to check that the equilib-
rium (%, ¥) cannot be involved in any other local
bifurcation.

2.2. Further analytical resulls

Proposition 2.1. For all values of «, there are un-
bounded trajectories with (xz(t), y(y)) — (o0, 0).

Proof. The phase diagram for system (1),(2) is por-
trayed in Fig. 1. The region [’ has the y = 0 axis,
the line segments QA and AB, and the line v as
boundary, where O = (0, 0), A = (0, fe/ak), B =
(k/e, Be/ak) and 7 is the curve y = y(z) = B/ az.
Since £ > 0 in all T, showing that I is a trapping re-
glon amounts to proving the existence of unbounded
trajectories.

Owing to the phase diagram features, all tra-
jectories passing through the line segments O A and
‘AB enter I'. Moreover, the y = 0 axis is itself
a trajectory. Thus, it only remains to ascertain
that all trajectories passing through the line -« also

X

Fig. 1. Phase diagram of system {1),(2).
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enter I'. In other words, if P is 2 point of 7, i.e.,
P = (z, B/az), then the slope of v at P must be
greater than, or equal to, the slope of the trajectory
passing through P, namely

(2),> (&),

de.T P - dﬂ'} P

Through simple analytical steps, the above inequal-
ity can be rewrit{en as '

T2z

EH

& o

which holds true, given that B = (k/e, Be/ak). W

Therefore, neither the equilibrium (%, ), which
is stable for @ > ayp, nor the stable limit cycle,
which exists for o < agp, are globally attracting in
the first quadrant. More precisely, Propesition 2.1
implies the existence of an invariant line S, separat-
ing the trajectories approaching the equilibrium {or
the limit cycle) from those whose z grows without
bound. As a consequence, S is part of the boundary
of the domain of attraction of infinity.

Proposition 2.2. There exists no cycle for @ <
anc, with ane = (8 + €)%e2/2(8 + 3e)k® < anp.

Proof. The region I', portrayed in Fig. 2, has the
y = 0 axis, the line segment AB, and the line vy

A
O
X
Fig. 2. Phase diagram of system (1),(2) for & < anc.
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as boundary, where A = (%, 0), B = (7, %), and ~y
is the curve y = y(z) = {8 + €)%c/a’kz?. Showing
that I' is a trapping region for & < aye amounts to
proving that no cycle can exist for o < ane. This
can be accomplished by using the same arguments
as in the proof of Proposition 2.1.

In particular, it must be shown that if P is a
point of v, i.e., P = (z, {f + ¢)%¢/c’ka?) with z >
T, then the slope of v at P must be greater than, or
equal to, the slope of the trajectory passing through

P, namely
dz P dx P )

Through simple analytical steps, the above Inequal-
ity can be first rewritten as '

_ 2ak2 -+ (ﬁ +_5)2€$3

4
(B+e)z >
2(8+€)e  2(B + e)ie?
T e T g 20
and subsequently as
2. _ 2
(B+e) + 3(B+e)%e — 20k Y
ak
3(B+e)(B + )% ~ 2ak?e
* a?k? 3
2 2.2 _ 2
4 Bre)lB+e) 2 28 +3c)ak’le 0
adk3

where z = 3 ~F = 3 — (B + €)e/ak. The resulting
inequality has positive coefficients for < ang, and
hence holds true vz > 0. =

Proposition 2.2 entails that system (1},(2) must
be involved in a bifurcation other than Hopf, taking
place at some o = amy, with anc < ogm < amp,
and marking the disappearence of the stable limit
cycle. Some numerical results about this bifurcation
are preseuted and interpreted in the next section.

2.3. Homoclinic bifurcation to
nfinity

It can be checked by simulation that when a is
decreased below the Hopf bifurcation value app,
the limit cycle grows to infinity in both amplitude
and period (see Fig. 3), and then disappears at
@ = agm < opp. Thus, the limit cycle nndergoes
a homoclinic bifurcation to infinity, as defined by
Brons & Sturis {1992]. It can also be numerically

e ———

ascertained that, for o < apy, every trajectory
in the first quadrant is unbounded with (=(t),
y{f)) — (400,0). The entire one parameter
bifurcation analysis is tentatively summarized in
Remark 2.3.

Remark 2.3. As o« is varied, the following five
occurrences can be distinguished:

(a) For & >-ogp, the equilibrium {Z, ¥) is stable.
The invariant line S is part of the boundary of
the domain of attraction of infinity: all trajecto-
ries starting above S converge to (Z, 7), whereas

the remaining ones are unbounded with (z(%),
y(t)) — (400, 0) [see Fig. 4(a)]. A decrease in

- o moves 5 upward.

(b) For a = agp, the equilibrium (Z, 7) undergoes
a supercritical Hopf bifurcation, as explained in
Remark 2.1.

(¢) For apm < @ < agp, the equilibrium (Z,7) is
unstable and is surrounded by a stable limit cy-
cle. All trajectories starting above converge
to the limit cycle, whereas the remaining ones
are unbounded with (z(t), y(t)) — (+o0, 0) [see
Fig. 4(b)]. A decrease in o gives rise to an in-
crease in both the period and amplitude of the
stable limit cycle.

(d) For & = ayy, there occurs a homoclinic bifur-
cation to infinity [Brons & Sturis, 1992]: the
Iimit cycle has infinite period and amplitude.

(e) For o < amy, the limit cyclé has disappeared,
so that any trajectory is unbounded with {z(t),
y(£)) — (+00, 0) [see Fig. 4(c)).

The existence of unbounded trajectories has a
sound economic interpretation, as it reflects the pos-
sibility of a business failure. Under this circum-
stance, potential buyers z(¢) grow without bound
but actual buyers y(¢) are doomed to extinction. A
decrease in a, i.e., the advertising effectiveness, in-
creases the chance of business failure, as it shrinks
the domain of attraction of either the equilibrium
(Z,7) (o > omp) or the limit cycle (omm < @ <
agp). Business failure is certain for a < QHM-

Needless to say, the homoclinic bifurcation to
infinity deserves further analysis, which is however
beyond the scope of the present work. A still un-
clear question concerns the character of infinity.
Counsider the mapping from the plane onto a sphere,
taking the circle with infinite radius into the North
Pole, the origin into the South Pole, and all the
points at finite distance from the origin into the
remaining points of the sphere (see, e.g., Arnol’d
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Fig. 3. (2) Amplitude {max z(¢) — E) and (b) period of the limit cycle as a function of & [ = 0.5, ¢ = k = 9.5].
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[1992], Chap. 5). The resulting dynamic system
must have two equilibria, with the former corre-
sponding to (T, 7) and the latter, corresponding to
infinity, lying at the North Pole. It cannot be other-
wise, because the sum of the indices of the equilibria
on a sphere must be 2: (%, 7), a node or a focus,
has index 1, so that the North Pole must have in-
dex 1 too. In our opinion, the latter acts as a tangle
(Brunella & Miari, 1990], a rather involved nonhy-
perbolic equilibrium that has index 1 and fits well
the phase diagram of system (1),(2).

3. Seasonal Advertising and Chaos

3.1. Analytical setting and
invesiigation procedure

As made clear in the introduction, both advertising
and its effects are likely to be periodic with a period

X

Trajectories of system (1),(2): (a) @ > ane; (b) cupr > a > onm; (c) oM > o

of one year. Reference is accordingly made to a firm
that seasonally changes its advertising to sales ratio.
As a consequence, the advertising effectiveness « 18
now periodic with a period of one year, i.e.,

a = alt) = ap{l + 6 sin 27t), {(3)

where ag is the average. value of «, and opé is the
amplitude of the seasonal perturbation (0 < § <1}.

System (1)—(3) is periodically forced, so that
chaotic behavior can arise for some values of the
parameters {8, o). To analyze such an occurrence,
resort is made to an approach in which theoreti-
cal arguments and numerical methods are suitably
blended. More specifically, the bifurcations involv-
ing the periodic solutions of (1)-(3) are numerically
analyzed by means of a continuation procedure (see
Doedel et al. [1991]), interactively supported by the
package LOCBIF [Khibnik et al., 1993]. The aim
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0 0.5

Fig. 5. Bifurcation diagram of the periodically forced sYys-
tem {1}-(3).

is {0 obtain a bifurcation diagram, namely a parti-
tion of the parameter space (6, ap) into regions of
structural stability for system (1)—(3). An educated
interpretation of this diagram allows one to detect
the regions in the parameter space (6, «p) where a
stable chaotic solution is likely to exist.

3.2. Bifurcation diagram

Reference is made in the sequel to the case o = 10,
B =05 %k = ¢ = 9.5. The remainder of this
subsection is devoted to an explanation of Fig. 5,
where a bifurcation diagram of system (1)-(3) is
portrayed in the (4, ap) parameter space. The bi-
furcation diagram contains three curves, each mark-
ing a codimension-1 bifurcation of a period-1 so-
lution, namely a solution with the same period of
the forcing term. More precisely, there are a fip
(period doubling) curve F, a tangent (saddle-node)
curve T (formed by three branches 73, i = 1, 2, 3),
and a Netmark-Sacker (Hopf) curve N (see, for in-
stance, Wiggins [1990], Chap. 3). The bifurcation
diagram also includes three codimension-2 bifurca-
tion points, with C7 and C; denoting a cusp, and A
representing a strong resonance 1:1 {Arnol’d, 1988;
Chap. 6].

The equilibrium (Z, §) of the unforced system
(& = 0) is stable for op > app. By continuity, the
forced system (6 > 0) has a stable period-1 solution

in region 0. Moreover, since the equilibrium (Z, %)
of the unforced system (§ = 0) undergoes a Hopf
bifurcation at ap = agp, a curve ¥V is rooted on the
ap-axis at agp. On crossing N toward region 1, the
period-1 solution bifurcates into an unstable period-
1 solution and a stable quasi-periodic solution.

As we know from Sec. 2, the unforced system
(6 = 0) has a stable limit cycle for agy < oy <
amgp, with period 7 = 2a//e(B8+¢) = 0.645 at
the Hopf bifurcation and period + — 400 as the
homoclinic bifurcation is approached. Therefore,
as o decreases toward appg, the period 7 passes
through the integer values 1, 2, 3,.... Let o* be the
value yielding v = 1. A pair of tangent bifurcation
curves T; (i = 1, 2), enclosing an Arnol’d tongue
(see, for instance, Wiggins [1990], p. 414), is rooted
on the agp-axis at a'. On crossing T} from region 1
to 2, two period-1 solutions, a stable and a saddle
one, appear through tangent bifurcation, and sub-
sequently disappear through tangent bifurcation as
Ty is crossed. It is worthwhile {0 remark that there
exist analogous pairs of tangent bifurcation curves

f,z fori =2, 3,... (not shown in Fig. 5). The pair
T}, is rooted on the ag-axis at of, where the un-
forced cycle has period 7 = i, while the sequence
oty o, o8, ... accumulates on amy. Bach Arnol’d
tongue contains two period-: solutions, a stable and
a saddie one,

On moving rightward through the curve F, a
period-1 stable solution bifurcates into a period-2
stable solution and a period-1 unstable solution. A
flip curve F2 (not shown in Fig. 5) lies close to F.
On crossing F?, a period-2 stable solution is re-
placed with a period-4 stable solution and a period-
2 unstable solution. _

It is clear from the previous description that
there are regions in the parameter space (8, ag)
marking the coexistence of several stable solutions.
‘This occurs, for instance, in the strip between the
curves 177 and F,

3.3. Chaotic behavior

In the light of the bifurcation diagram of Fig. 5, the
chaotic regions in the parameter space (8, ap) can
be tentatively located, as made clear in Remark 3.2
below. Remark 3.1 is a helpful premise, as it points
out some empirical evidence about the existence of
unbounded trajectories.

Remark 3.1, It can be checked by simulation that,
for all pairs (4, o), there are unbounded trajecto-




ries with {z(t), y(t)) — (+o0, 0). Actually, Propo-
sition 2.1 could be readily extended to cover the
periodically forced case. Moreover, it can be nu-
merically ascertained that, for any ¢, if o is small
enough, every trajectory in the first quadrant is un-
bounded with {z(%), y(t)) — (400, 0). Also this
bears some resemblance with the time-invariant
case, where the loss of any stable solution is brought
about by a homoclinic bifurcation to infinity (see
Remarks 2.2 and 2.3).

Remark 3.2. Two routes to chaos are present in the
periodically forced system (1}-(3):

(a) Period doubling cascade. Stable chaotic solu-
tions can arise from a period-doubling cascade
[Guckenheimer & Holmes, 1986; Chap. 6] on the
right of the curve F. They can be easily ob-
served by simulation, as shown in Fig. 6, where
(6, @) = (0.4, 12.4) (see point P in Fig. 5}.
Figure 7 portrays two time patterns of y(t},
corresponding to two slightly different initial
states: the divergence between them is a typi-
cal hallmark of chaos. According to simulation
evidence, the domain of attraction of a chaotic
golution gets narrower and narrower as g 1S
decreased. Notably, this is in accordance with
Rernark 3.1 as well as the results about the un-
forced system (6 = 0) obtained in Sec. 2 (re-
call that a decrease in o moves S upward, thus
shrinking the domain of attraction of either the
equilibrium or the limit cycle).

(b) Torus destruction. Stable chaotic solutions can
also arise from a complex sequence of bifurca-
tions involving a quasi-periodic solution (torus)
and a saddle type periodic solution [Arnol'd
et al., 1993]. Although this can occur, in princi-
ple, below the curve IV, where there are Arnol’d
tongues, we have not succeeded in detecting
such solutions by simulation, since «g is close
to the critical value amn, so that any kind of
stable solution must possess a very small do-
main of attraction.

Therefore, only the chaotic solutions arising
from a period-doubling cascade are of economic in-
terest. Moreover, the larger ag, the larger their
domain of attraction. In view of this, both o and
§ must be relatively large for chaos to unfold.

Other bifurcation diagrams, unreported for
brevity, have been computed with reference to dif-
ferent parameter values. As far as chaos is con-
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Fig. 6.

o 100

Fig. 7. Time patterns of y(¢) for two slightly different initial
states.

cerned, the previous qualitative conclusions can be
drawn in all instances.

4. Discussion and Conclusions

The diffusion of a new product and the under-
lying adoption process have been studied by means
of a second-order, nonlinear dynamic syster,
which may include a periodically varying param-
eter. According to our analysis, if the firm has a
poor advertising effectiveness, the new product is
doomed to failure. When actual customers at the
very beginning are too few, such a conclusion can-
not be escaped even if the firm has a good adver-
tising effectiveness. More precisely, the larger the
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average value of the advertising effectiveness, the
larger the domain of attraction of any stable solu-
tion, the fewer are the chances of a failure. All the
above results do hold whether advertising is peri-
odically forced or not. All of them seem to make
economic sense. -

As for the periodically forced case, if the av-
erage advertising effectiveness is large enough there
can exist two basic kinds of stable asymptotic
behavior. If the seasonal change in the firm’s
advertising-to-sales ratio is slight, a periodic solu-
tion is the most likely occurrence. In contrast, if
the seasonal change is substantial, there can be a
chaotic solution. The shift from a periodic solution
to a chaotic one takes place through a cascade of
period doublings.

Unfortunately, the above-mentioned results
cannot be compared with any empirical evidence,
since little attention has been paid to chaos in the
marketing literature. This is somehow surprising,
since, as previously mentioned, the advertising dif-
fusion models borrow a lot from the epidemic ones,
where the existence of chaos has been ascertained
both on a theoretical and on an empirical ground
[Schaffer et al, 1988; Olsen et al., 1988; Kuznetsov
& Piccardi, 1994]. Thus, empirical work on this
subject could disclose interesting results.

Other possible lines of research are closely con-
nected to the model investigated in this work. First
of all, emphasis could be placed on highly seasonal
products, such as, for instance, drinks, swimming
units, lawn mowers, and ski sets. In view of this,
allowance should be made for a seasonal change in
the rate £ at which new potential customers enter
the market.

Moreover, and perhaps more interestingly, the
time-invariant model could be further analyzed. Al-
though the homoclinic bifurcation to infinity has al-
ready been observed and described in detail {Brons
& Sturis, 1991, 1992], no complete analytic proof
has been obtained yet in a specific set of equations.
As made clear in Sec. 2, a first step in this direc-
tion could be that of understanding the character
of infinity.
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