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Summary

Chaos is the general name for non-linear dynamical systems which behave noise-like. Chaos
is indecomposable, is highly dependent on the initial condition and consists of a large number
of periodic points and orbits. Because of this, the solution of a chaotic system is difficult to
predict, which calls for a way to control it. The control algorithm of Ott, Grebogi and Yorke
(OGY, [13]) manages to do this.

The basic observation behind OGY is that a chaotic attractor has a large number of
unstable periodic solutions embedded within itself. Furthermore, by slightly perturbing an
accessible parameter of the system, it is possible to push the system towards one of these
orbits. Since chaos behaves ergodically, at some point in time the solution will come into the
vicinity of a certain point of the orbit where a linearization is valid. With this linearization a
simple pole placement method can be used to calculate a control effort to direct the system
towards this point and thus the orbit.

OGY is a discrete control algorithm, perturbing the system at discrete moments in time.
OGY can therefore easily be used on discrete systems like the Hénon map. By first discretizing
a system using the Poincaré map it can also be used on continuous systems like the Duffing
oscillator. Periodic orbits will become a simple sequence of points on the Poincaré map (m
points for a period m orbit), around which the OGY algorithm finds a linearization.

The accuracy of this linearization is very important in the implementation of OGY. In
cases where no model is present the values of the periodic points should be estimated using
the recurrence method and the matrices A and B in

xi+1 − x∗i+1 = Ai (xi − x∗i ) + Bi (pi − p̄)

should be estimated using linear least squares and data points in a small vicinity around
x∗j . Better results are obtained when this estimation is performed iteratively; the fixed point
estimate x̄ is adjusted and the matrix A recalculated until the offset C in

xi+1 − x̄i+1 = Ai (xi − x̄i) + C

is close to zero. The matrix B is calculated with these new values of x̄ and A.
The matrices A and B are then used to find the control matrix KT with which the control

effort (or parameter perturbation) during simulation can be calculated:

pi − p̄ = −KT
i (xi − x∗i ).

When this perturbation is bigger than a limit δ, it is set to zero, so that a vicinity around x̄ is
defined. Applying this on Hénon and Duffing indeed results in controlled states, for different
periodic orbits. Observations during these simulations include: a steady state control effort
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SUMMARY

when using estimations, time to achieve control differs per orbit and per simulation, maximum
perturbation δ influences time to achieve control and number of false control attempts. OGY
is able to overcome some amount of noise and is therefore quite robust. When noise is present
during estimation though, it could cause poor estimates and therefore no control.

When only one variable of the system can be measured, delay coordinates can be used to
reconstruct the chaotic attractor (and its Poincaré map). Since previous control efforts could
still have a direct effect on the current state of the system, the OGY algorithm should be
adjusted for this. Implementation of this new algorithm caused problems though. Therefore
an adjustment is made so that the parameter perturbation is applied in less time, removing
the necessity of adjusting the OGY algorithm itself. Simulation indeed proved the increased
performance for both period 1 and 2 orbits.

As soon as all the estimates are made, OGY can also be implemented in Simulink R©, which
makes it easier to play around with the system. Therefore two models, for both period 1 and
period 2 orbits, were made, which show results comparable to the previous results.

Summarizing, OGY seems to work on any system, discrete and continuous, with or without
delay coordinates, as long as the error during estimation is not too big. The influence of the
maximum parameter perturbation was shown, e.g. on the time to achieve control.
Not needing a model makes OGY attractive to use. However, there are some major drawbacks
of OGY. For example, control is restricted to one of the embedded orbits, time to achieve
control is unpredictable and could be very large, and the eigenvectors are changed after control
implementation.

Recommendations considering OGY include taking different estimation methods for the
periodic points and the matrices A and B. One can think of Partial Least Squares in case
there is correlation present, or using a non-linear least squares method (e.g. quadratic) in
order to shorten the time to achieve control by increasing the control vicinity. Furthermore, it
should be investigated whether OGY can be written in continuous form, so that control can
be applied around any point of the orbit instead of just one, thereby decreasing the time to
achieve control even further. Targeting techniques could also be used for this purpose.
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Chapter 1

Introduction

Ever since the beginning of mankind, people are fascinated by movements, like the move-
ment of the sun along the sky or the falling of objects towards the ground. Through the
years mankind has learned that these movements are generated and influenced by forces. This
knowledge has resulted into the research field called dynamics: the study of bodies in mo-
tion and the forces acting on them. Increased insight in dynamics during the past centuries
finally has paved the way for control technology. This latter research field manages to regulate
movements studied by dynamics, and has developed very fast in the 20th century due to the
invention of the computer.

In dynamics there is a general distinction between linear and non-linear dynamics. Al-
though most dynamical systems in reality appear to be non-linear, most of the emphasis of
dynamic research is put on linear systems. Linear research provides basic insight in dynamics
and control, mainly because it is much easier to understand than non-linear systems. This
results in the fact that dynamical analysis and control of linear systems is far more developed
than non-linear systems.

This report will deal with a special kind of non-linear dynamic behavior, so called chaos.
Main focus will not be on the analysis but on its control. Furthermore, it will only concentrate
on situations where the dynamics of the system is unknown, so no model is present. It will be
assumed that there is only some amount of experimental data of the system. This restriction
(the absence of a model) will limit the control possibilities; e.g. control will only be possible
towards certain fixed points or orbits. The goal of this report is to examine the possibility of
controlling a certain experimental chaotic dynamical system towards one or multiple (unstable)
orbits, by just measuring one state variable of the system. However, no actual experiment is
done for this, the data used is just numerical.

In order to reach its goal, this report will use an algorithm designed by Edward Ott, Celso
Grebogi and James Yorke to control chaos. These authors introduced their so called OGY
algorithm in 1990, which was further improved by various authors in the following years.
Chapter 2 will give an introduction to chaotic dynamical systems and some basic control
theory. Chapter 3 will discuss the basics of the OGY algorithm. In the following chapters
this algorithm is implemented in both discrete and continuous systems. Finally, chapter 6 will
discuss the results and reflect on them.
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Chapter 2

Background

Before examining and applying the algorithm for chaotic dynamical systems, it is useful to
discuss some background. This chapter will therefore give some background on chaotic systems
(section 2.1, see also [2], [21] and [22]) and some elementary control theory (section 2.2).

2.1 Chaotic dynamical systems

2.1.1 Definition and properties

What exactly is a chaotic dynamical system? In general, the equation of a dynamical
system can be written in the form

ẋ = f (x, u) or xi+1 = f(xi, ui), (2.1)

where x is the state vector and u the input vector of the system. If the function f is non-
linear in x and/or u, the system is also non-linear. A chaotic system is a special kind of
non-linear system, characterized by its chaotic behavior. However, this behavior cannot be
recognized by just looking at the equation of the system, no matter how simple that equation
is. One can only recognize chaotic behavior by analyzing the system response, which can be
highly complicated and noise-like. Due to its complexity, there is no common definition of
chaotic systems, but Devaney [2] manages to define chaos quite well using the following three
properties:

1. A chaotic system has sensitive dependence on initial conditions.

2. A chaotic system is topologically transitive.

3. Periodic orbits and/or points are dense in the chaotic attractor.

In other words, a chaotic system is unpredictable, since its response will highly depend on the
initial condition; a small perturbation can result in a completely different response. Topolo-
gical transitivity means that the system is indecomposable; it cannot be broken down into two
subsystems. Finally, a chaotic system also has an element of regularity, since it is composed by
a large number of periodic orbits and points embedded within the system. A typical chaotic
response contains an infinite number of periodic orbits, creating an aperiodic solution, but the
response can also be a simple periodic motion. Again, this depends to a large extend on the
initial condition. Further explanation can be found in [2].

3
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A chaotic system can only be analyzed by observing the responses for a large set of different
initial conditions, since a single solution, aperiodic or not, cannot fully describe the chaotic
system. Because of this, only a few systems are actually proven to be chaotic, like the Hénon
map of chapter 4. For the other systems used in this report, chaos is very plausible.

Although a typical aperiodic response of chaos looks like noise, its structured behavior
clearly shows the contrary. This structure is called ergodic behavior. When the system wanders
through space, at a certain time t1 it crosses point x1. A time t2 after t1 it will come into some
vicinity ε of the point x1 again. The same will happen a time t3 after t2, etc. In general, the
smaller this vicinity ε is defined, the bigger t2, t3, . . . will be. But although the solution will
come very close to x1, it will never become completely equal to it (with ε→0, ti→∞). This
ergodic behavior explains the so called strange attractor which will arise; a certain subspace
in space inside which the solution of the system will wander around.

2.1.2 Chaotic examples

To illustrate the chaotic properties mentioned in the previous section, this section will
shortly discuss two examples: the Rössler system and the Duffing oscillator.

2.1.2.1 Rössler system

In 1976 Otto E. Rössler found a very simple 3-D continuous chaotic system, including its
attractor[17]. This system is defined by the following set of differential equations:

ẋ = − (y + z)
ẏ = x + ay
ż = b + xz − cz,

(2.2)

where a, b and c are parameters of the system. The equation contains only one simple
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Figure 2.1: Response of Rössler system with initial condition (4,4,1)
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non-linearity, namely xz. Still, for some initial conditions the 3-D solution (x, y, z) of the
system clearly shows a strange attractor; see figure 2.1 where a = 0.2, b = 0.4 and c = 5.7.
The solution neither converges to a stable point or a periodic orbit, nor does x, y, z →∞.
Instead, the system wanders around within a certain subspace, never crossing itself, creating
an aperiodic solution. This strange attractor shows the ergodic and thus chaotic behavior
of the system. It should be noted though, that for some initial conditions the solution does
become periodic, and for other initial conditions x, y, z→∞.

−8 −6 −4 −2 0 2 4 6 8 10
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−6

−4

−2

0

2

4
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8

x

y

Figure 2.2: Dependence on initial conditions for (2.2); a = 0.2, b = 0.4, c = 5.7

The dependence on initial conditions is shown in figure 2.2. One curve has initial condition
(0,−4, 0) and the other has an initial condition very close to this. However, both solutions
follow a different path and after 40s of simulation (indicated by the encircled marks) both
solutions clearly differ.

2.1.2.2 Duffing oscillator

The example of Rössler is just a theoretical case meaning that the equation doesn’t repre-
sent an actual system. A system which does arise in reality is the Duffing oscillator [5]:

ẍ + δẋ + (βx3 ± ω2
0x) = γ cos(ωt + φ). (2.3)

Georg Duffing introduced this non-linear equation in 1918 to model the vibration modes of
a beam with periodic forces acting on it. With certain parameter choices this system can
behave in a chaotic way, meaning that the solution can be aperiodic. This behavior depends
on the initial condition though. This is illustrated by the following Duffing oscillator:

ẍ + dẋ + x + x3 = f cos ωt, (2.4)

where d = 0.2, f = 36 and ω = 0.661 (see [4]). When the initial condition is set at (0,1), the
response of the system looks chaotic, as can be seen by the strange attractor in figure 2.3(a).
However, figure 2.3(b) shows that the system behaves completely different when the initial
condition is set on e.g. (0, 0). It seems that the solution is some kind of higher periodic orbit.
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Figure 2.3: Response of (2.4); the first 500s of transient behavior is removed

One way to investigate the (a)periodicity of a solution is by making a Fourier transform
(FFT), shown in figure 2.4. The difference is obvious: the first solution shows a very noisy and
continuous FFT, whereas the second clearly is discrete. It has sharp peaks at 1

3ω, ω, 12
3ω, 21

3ω,
etc, in other words, 1

3ω +k 2
3ω, where k∈Z. This shows that the latter attractor only contains

a finite number of frequencies and is thereby a periodic attractor. The first trajectory is clearly
aperiodic since its FFT shows that it contains all frequencies. It should be said though, that
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the existence of an aperiodic solution doesn’t prove that the system itself is chaotic (see the
definition of chaos in section 2.1.1).

2.1.3 Characterizing chaos

The previous section already introduced the FFT method to investigate chaotic behavior.
This section will shortly introduce some more methods to detect and characterize chaotic
behavior.

2.1.3.1 Bifurcation diagram

Non-linear systems are often subject to a phenomenon called bifurcation: the dynamic
behavior of the system changes due to changes in one of the parameters. For example, the
number of fixed points or (in)stable periodic orbits can depend on the value of a single pa-
rameter. The parameter value where this change occurs is where the bifurcation arises.

Figure 2.5: Bifurcation diagram of xn+1 = cos (µxn); 40 points are plotted at each µ

The easiest way to illustrate bifurcations is by looking at a discrete system xn+1 =
f (xn, µ), where µ is the parameter, for example:

xn+1 = cos (µxn) . (2.5)

By iterating (2.5) lots of times at a certain parameter value, one can find periodic orbits: xn

will only take a finite number of values. By plotting these points for different values of µ
a so called bifurcation diagram is obtained (figure 2.5). For example, at µ ≈ 1.3 the single
equilibrium changes to a period two orbit and at µ ≈ 1.8 the orbit becomes period four. These
points are therefore (period doubling) bifurcation points. At µ ≈ 2.3 and µ ≈ 2.9 there is an
infinite amount of periodic orbits with different periods, or in other words, chaos is present.

2.1.3.2 Poincaré maps

For autonomous continuous systems, chaos can only occur in systems of third order or
higher (see [21]). The response for a third order system is hard to draw though, since it needs

7



CHAPTER 2. BACKGROUND

a 3-D plot to fully capture its behavior. Higher order systems will even need more dimensions.
It is therefore useful to make plots of lower dimension which are able to show part of the
dynamic behavior. A common method to do this is by making a Poincaré map (figure 2.6).
It is named after Henri Poincaré, who introduced this map in 1881 (see [15]).

Figure 2.6: Poincaré map;
from [18] page 294

Suppose an n-dimensional system has a solution
which intersects a certain hypersurface of dimension
n−1. The points of intersection where the solution has
the same direction then form the Poincaré map. It is
called a map since it maps each intersection point (xj)
into the next (xj+1). Of course, the resulting Poincaré
map will depend on the choice of the hypersurface.
A periodic orbit will become a single point in the
Poincaré representation, and a chaotic attractor will
be characterized by a certain shape. See figure 2.7
where the Poincaré map of the Rössler system (2.2)
is drawn, with a = 0.2, b = 0.4 and c = 5.7. The

hypersurface is formed by x = 0. For e.g. the Duffing oscillator one can also choose a constant
phase as the hypersurface, which means sampling with the same period as the acting force.
It is clear that the Poincaré map not only decreases the dimension with one, it also turns a
continuous time system into a discrete time system, with xj+1 = f(xj).

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5
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3
Rossler system; Poincare−map
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z

Figure 2.7: Poincaré map of figure 2.1(a);
hypersurface x = 0, y positive
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t)

Delay coordinates reconstruction

Figure 2.8: Reconstruction of figure 2.1(b),
using x(t), x(t− τ); τ = 0.88

2.1.3.3 Delay coordinates

During experiments it is sometimes not possible to measure all n state components, but
only one or two. Still it might be useful to construct the n-dimensional chaotic attractor in or-
der to analyze the system and its chaotic behavior. In their article [14], Packard et al. manage
to do this using just one state component (say, x) by using the delay coordinates method: the
attractor is reconstructed by defining n new states x(t), x(t− τ), x(t−2τ), . . . , x(t− (n−1)τ),
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2.2. ELEMENTARY CONTROL THEORY

where τ is a chosen delay time [11]. The resulting attractor can then be used for further
analysis, e.g. to make a Poincaré map. Compare the delay coordinates reconstruction of the
Rössler system with its original in figure 2.8.

2.2 Elementary control theory

Before chapter 3 will discuss a control algorithm for chaotic dynamical systems, this section
will give a short introduction to some basic control theory. Only the so called pole placement
method will be discussed, since this is the basic method the control algorithm of chapter 3.

2.2.1 Pole placement

The pole placement control method is probably one of the easiest control laws and therefore
also quite easy to understand. It is a linear control method working well on linear systems.
Since non-linear systems can normally be linearized around a equilibrium point, it is also
applicable to a wide variety of non-linear systems.

2.2.1.1 Linear systems

In order to apply pole placement, a system should be expressed in state space notation:

ẋ = Ax + Bu for continuous systems, (2.6a)
xj+1 = Axj + Buj for discrete systems. (2.6b)

Here A is the (n× n) system matrix, B the (n×m) input matrix, x the (n× 1) state of the
system and u the (m × 1) input. For continuous cases, system (2.6a) is stable when all the
eigenvalues λi of A are negative, or <(λi) < 0. For discrete cases, system (2.6b) is stable when
the magnitude of every eigenvalue λi of A is smaller than 1, or |λi| < 1.

When system (2.6) is unstable, an input u is needed to stabilize the system. The following
pole placement technique will manage to do this when the system is controllable. This means
that the controllability matrix P defined by

P = [B,AB,A2B, . . . , An−1B] (2.7)

has to have full rank n. When this is the case, a so called state feedback u = −Kx or
uj = −Kxj can be defined, so that (2.6) can be written as:

ẋ = Ax + Bu = Ax−BKx = (A−BK)x. (2.8)

Now the matrix (A−BK) is the new system matrix, so the stability of the controlled system
is now determined by the eigenvalues of (A−BK) and will depend on K. The eigenvalues, or
poles, of the system can thus be placed anywhere by choosing an appropriate K. By choosing
these poles according to <(λi) < 0 (for continuous systems) or |λi| < 1 (for discrete systems)
the system will become stable.

Stabilizing a linear system is thus translated into finding K corresponding to the chosen
poles. One way to do this is by using Ackermann’s formula (see [1]). This algorithm is also
implemented in Matlab R© (command acker).

9



CHAPTER 2. BACKGROUND

2.2.1.2 Non-linear systems

Non-linear systems can also be written in state space notation:

ẋ = f(x, u) for continuous systems, (2.9a)
xj+1 = f(xj , uj) for discrete systems. (2.9b)

Now suppose system (2.9) has an equilibrium point (x∗, u∗), for which holds that ẋ∗ = 0 or
x∗j+1 = x∗j resp. Then around x∗ system (2.9) is linearized by defining:

A =


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn

∂x1
· · · ∂fn

∂xn


(x∗,u∗)

and B =


∂f1

∂u1
· · · ∂f1

∂um
...

. . .
...

∂fn

∂u1
· · · ∂fn

∂um


(x∗,u∗)

, (2.10)

both evaluated at the equilibrium point (x∗, u∗). Then around this equilibrium point we can
approximate system (2.9) by using (2.6).

Finding an appropriate control law u = −Kx is then the same as in the previous paragraph.
There is one essential difference though. For linear systems the control law will control any
point x ∈R, whereas for non-linear systems the control law will only work for x sufficiently
close to x∗, since the linearization (2.10) is only valid in the vicinity of the equilibrium point.

10



Chapter 3

The OGY control theorem

3.1 Introduction

The name OGY comes from its inventors: Edward Ott, Celso Grebogi and James Yorke.
In 1990 they published an article [13], showing that it was possible to control chaos, and
thereby being the first to achieve this with reasonable control efforts. Ott, Grebogi and Yorke
based their theory on recent articles showing that a chaotic attractor has a large number of
unstable periodic orbits embedded within it [11]. The essence of the OGY theory is simply
to stabilize one (or more) of these orbits by applying small perturbations. To apply these
perturbations one of the parameters of the system should be accessible, meaning that this
parameter can be adjusted while the system is running. This parameter thus becomes the
input of the system.

Ott, Grebogi and Yorke based their theory on just experimental data of the chaotic attrac-
tor, without having a priori analytical knowledge of the system. The noise-like behavior of the
data causes modelling of a chaotic system to be almost impossible. OGY can only be applied
to discrete data, so continuous time systems should first be made discrete time by using e.g.
the Poincaré map. In case only one state variable can be measured, the OGY theory could be
combined with the delay coordinates method [14].

The method presented by Ott, Grebogi and Yorke still needed some modifications though.
While their article [13] was only theoretical and used a discrete time numerical Hénon map
example, Ditto et al. were the first to successfully implement the OGY theory in a real
experimental system [3], namely a parametrically driven magnetoelastic ribbon. They used
an article by Eckmann and Ruelle [6] to approximate the dynamic behavior in the vicinity of
the desired orbit.

Dressler and Nitsche discovered a difficulty of OGY when they implemented it using de-
lay coordinates. In their article [4] they proposed an important change to OGY, making it
applicable to any experimental chaotic system.

Romeiras et al.[16] wrote an important article in further understanding of the OGY theory.
They restated the algorithm and showed that OGY is nothing more then an ordinary pole
placement technique (discussed in section 2.2), making the algorithm easier to implement.
Furthermore the OGY algorithm was also implemented to control not only fixed points, but
also periodic orbits.

The articles [20] and [7] continue the article of Romeiras et al. by applying the pole
placement technique to the control of fixed points and orbits using delay coordinates, making

11



CHAPTER 3. THE OGY CONTROL THEOREM

OGY applicable to every situation: fixed points as well as periodic orbits, discrete time maps
as well as continuous time systems discretized by Poincaré and delay coordinates.

Other adjustments, extensions and discussions of the OGY theory are discussed in [12],
[19], [9] and [10].

3.2 Description of the OGY algorithm

As said before, the basic idea behind the OGY algorithm is that there are a large num-
ber of unstable periodic orbits embedded within a chaotic attractor. By perturbing a certain
accessible parameter, it is possible to stabilize one (or more) of these orbits. But how does it
work? This section will introduce the mathematics of the OGY algorithm, mostly based on
articles [16], [20] and [7].

As was mentioned in section 3.1, OGY control is only applicable to discrete time systems.
In case of a continuous time dynamical system, this system should first be converted into a
discrete time system by using e.g. Poincaré maps (section 2.1.3.2). This way a n-dimensional
system can be written in the form:

xi+1 = f(xi, p), (3.1)

where xi ∈ Rn is the n-dimensional state of the system at iteration i and p is the accessible
parameter mentioned in section 3.1. For the parameter p a nominal value p̄ is defined, for
which the system has a chaotic attractor. Since the perturbation of p is assumed to be small,
the value of p is restricted:

|p− p̄ | < δ. (3.2)

A fixed point of the discrete time map (3.1) with p = p̄ satisfies x∗i+1 = x∗i , which is a period
one orbit if the real system is described in continuous time (assuming the sampling is done
once per period). Similarly, a period two point for the discrete time map, or period two
orbit for continuous time systems, corresponds to x∗i+2 = x∗i . In general, a period T point
or orbit satisfies x∗i+T = x∗i . Of course, for any q ∈ Z this also means that x∗i+T+q = x∗i+q.
For understanding, the implementation of OGY for period one and higher periods is discussed
separately in the following sections.

3.2.1 Fixed points

First the case x∗i+1 = x∗i = x∗ is considered, where x∗ is an unstable fixed point embedded
within the chaotic attractor. Since the system is ergodic (section 2.1.1) the state xi will come
very close to this point at some point in time, while p = p̄. When this is the case, system
(3.1) can be linearized around x∗:

xi+1 − x∗ = A(xi − x∗) + B(p− p̄), (3.3)

where A is the Jacobian and B represents the influence of the ’input’ p (for j, k = 1, 2, . . . , n):

A = ∂f
∂x (x∗, p̄) = Dxf(x, p) (3.4a)

B = ∂f
∂p (x∗, p̄) = Dpf(x, p), (3.4b)

12



3.2. DESCRIPTION OF THE OGY ALGORITHM

both matrices evaluated at x = x∗ and p = p̄. Then a state feedback can be defined, similar
to section 2.2:

p− p̄ = −KT (xi − x∗), (3.5)

so that

xi+1 − x∗ = A(xi − x∗) + B(p− p̄)
= A(xi − x∗)−BKT (xi − x∗)
= (A−BKT )(xi − x∗).

(3.6)

Stability is now determined by the eigenvalues of (A−BKT ). As said in section 2.2 the system
is stable when |λ| < 1.

When the system is controllable, the poles λ can be placed anywhere by calculating the
corresponding KT (with Ackermann’s method [1]). The question is, how should these poles
be chosen in OGY control? Since x∗ is unstable, matrix A will have nu unstable eigenvalues
and ns stable ones (with nu+ns =n). Then choose ns poles of (A−BKT ) equal to the ns poles
of A and choose the remaining nu poles equal to zero, which corresponds to superstability.
When the OGY algorithm was first introduced, it was believed that this would cause the
stable eigenvectors to remain unchanged. But although the eigenvalues ns are still the same
as before, the stable directions do change, since the eigenvectors of A − BKT are different
then those of A.

With these desired poles one can find KT , with which the parameter perturbation as
defined in (3.5) can be found. One should keep (3.2) in mind though. Therefore, when∣∣KT (xi − x∗)

∣∣ ≥ δ

the control is set to zero, so that p = p̄.

3.2.2 Higher periodic orbits

The OGY algorithm for orbits (or points) with period larger than one is slightly more
complicated. Suppose there is an orbit of period T embedded within the chaotic attractor,
meaning that x∗i+T = x∗i for any i. So for every iteration (or intersection with the Poincaré
map) we can linearize the system, finding T different matrices Ai (the Jacobian) and Bi:

Ai = Ai+T = ∂f
∂x (x∗i , p̄) = Dxf(x, p) (3.7a)

Bi = Bi+T = ∂f
∂p (x∗i , p̄) = Dpf(x, p), (3.7b)

evaluated at x = x∗i and p = p̄. At each iteration i the linearization is now given by:

xi+1 − x∗i+1 = Ai (xi − x∗i ) + Bi (pi − p̄) . (3.8)

Furthermore, at the unstable orbit of period T (with p= p̄) it is known that

x∗i+T = f
(
x∗i−1+T , p̄

)
, x∗i−1+T = f

(
x∗i−2+T , p̄

)
, . . . , x∗i+1 = f (x∗i , p̄) (3.9)

In order to determine the stability of this orbit, one can investigate the propagation of a small
error ε. This can be done by using the Taylor expansion:

f(xi + ε, p̄) = f(xi, p̄) + Dxf(xi, p̄)ε + O(ε2) ≈ f(xi, p̄) + Dxf(xi, p̄)ε. (3.10)
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CHAPTER 3. THE OGY CONTROL THEOREM

After T iterations, using Dxf(xi) = Ai, this then leads to:

f(x1 + ε, p̄) ≈ f(x1, p̄) + Dxf(x1, p̄) = x2 + A1ε (3.11a)
f(x2 + A1ε, p̄) ≈ f(x2, p̄) + Dxf(x2, p̄)A1ε = x3 + A2A1ε (3.11b)

...
f(xT + AT−1 · · ·A1ε, p̄) ≈ x1 + (AT AT−1 · · ·A2A1)ε (3.11c)

The error after one period of the orbit is, by approximation, equal to (AT · · ·A1)ε. It is
clear that this error is smaller than ε when the magnitude of (AT · · ·A1) is smaller than
one. In other words, the stability of the period T orbit is determined by the eigenvalues λ of
(AT · · ·A1), i.e the product of all the T matrices Ai in descending order. The starting point
of the multiplication doesn’t matter: the eigenvalues of (AT AT−1 · · ·A2A1) are exactly equal
to those of e.g. (A4 · · ·A1AT AT−1 · · ·A5).

The eigenvectors do differ though. Where the (in)stability of an orbit is the same at each
iteration, the direction in which this happens is of course different. Now assume that the
orbit has s stable and u unstable eigenvalues. Then at every iteration i there are s stable
eigenvectors {νi,1, . . . , νi,s} and u unstable eigenvectors {νi,1, . . . , νi,u}, which are formed by
the eigenvectors of (AiAi−1 · · ·Ai−T+1). The idea of OGY is then, in order to control the
u unstable directions, the system is perturbed u times, so that xi+u lands on the linearized
stable manifold of the periodic orbit through the point x∗i+u. In other words, after u iterations
the deviation should lie on the linearized stable subspace spanned by the stable eigenvectors
{νi+u,1, . . . , νi+u,s}:

xi+u − x∗i+u = α1νi+u,1 + α2νi+u,2 + . . . + αsνi+u,s (3.12)

Using linearization (3.8), xi+u − x∗i+u is approximated by

xi+2 − x∗i+2 = Ai+1

(
xi+1 − x∗i+1

)
+ Bi+1 (pi+1 − p̄)

= Ai+1Ai (xi − x∗i ) + Ai+1Bi (pi − p̄) + Bi+1(pi+1 − p̄) (3.13a)
xi+u − x∗i+u = Ai+(u−1) · · ·Ai (xi − x∗i ) + Ai+(u−1) · · ·Ai+1Bi (pi − p̄)

+Ai+(u−1) · · ·Ai+2Bi+1(pi+1 − p̄) + . . .

+Ai+(u−1)Bi+(u−2)

(
pi+(u−2) − p̄

)
+ Bi+(u−1)

(
pi+(u−1) − p̄

)
(3.13b)

= Φi,0 (xi − x∗i ) + Φi,1Bi (pi − p̄) + Φi,2Bi+1 (pi+1 − p̄) + . . .

+Φi,u−1Bi+(u−2)

(
pi+(u−2) − p̄

)
+ Bi+(u−1)

(
pi+(u−1) − p̄

)
, (3.13c)

Where Φi,j is defined as

Φi,j = Ai+u−1Ai+u−2 · · ·Ai+j+1Ai+j (3.14)

Furthermore, a matrix Ci at each iteration i is defined as

Ci =
[
Φi,1Bi

... Φi,2Bi+1
... · · ·

... Φi,u−1Bi+u−2
... Bi+u−1

... νi+u,1
... νi+u,2

... · · ·
... νi+u,s

]
(3.15)

This matrix Ci can be compared to the controllability matrix of section 2.2, so the system is
controllable if Ci is nonsingular. When the control effort is defined similar to (3.5), i.e.

pi − p̄ = −KT
i (xi − x∗i ), (3.16)
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3.2. DESCRIPTION OF THE OGY ALGORITHM

then Romeiras [16] and So and Ott [20] show that Ackermann’s method for setting the unstable
poles to zero, as described in section 3.2.1, is equivalent to defining KT

i as

KT
i = κC−1

i Φi,0, (3.17)

where κ is an n-dimensional row vector whose first entry is one and remaining entries zero.
Keep in mind that the restriction of (3.2) is still valid. If |pi − p̄| ≥ δ, then pi is set to zero.

3.2.3 OGY and delay coordinates

Most of the time it is impossible to measure all state variables of a system. To overcome
this problem, section 2.1.3.3 gave a solution by introducing delay coordinates, for which an
adjustment to the OGY algorithm is needed, as Dressler and Nitsche show in their article [4].
For a system with discrete time ti (e.g. by taking the Poincaré map) recall the definition of
the delay coordinate:

X(ti) = [x(ti), x(ti − τ), x(ti − 2τ), . . . , x(ti − (n−1)τ)] . (3.18)

Assume that the time between two successive intersections of the solution with the Poincaré
map is tF . It is clear to see that when (n − 1)τ > tF , the delay coordinate X at time ti
contains information of the previous Poincaré intersection at time ti − tF . So if there was a
parameter perturbation at time ti − tF , it still has influence at time ti. In fact, all parameter
values {pi, . . . , pi−r} have influence on the variable X(ti) (to be called Xi), where r is the
smallest integer such that (n−1)τ < rtF . This observation leads to an alternative description
of the system:

Xi+1 = F (Xi, pi, pi−1, . . . , pi−r) , (3.19)

which leads to an alternative linearization:

Xi+1 −X∗
i+1 = Ai (Xi −X∗

i ) + B1
i (pi−p̄) + B2

i (pi−1−p̄) + . . . + Br+1
i (pi−r−p̄) . (3.20)

Here Bj
i is equal to

Bj
i = Bj

i+T = Dpi−(j−1)
F (X, pi, pi−1, . . . , pi−r) . (3.21)

In (3.20) pi is the only unknown on the right hand side. In order to solve for pi, new variables
are introduced:

Yi =


Xi

pi−1

pi−2
...

pi−r

 and Y ∗
i = Y ∗

i+T =


X∗

i

p̄
p̄
...
p̄

 , (3.22)

and the matrices A and B are redefined as

Ãi =



Ai B2
i B3

i · · · Br
i Br+1

i

0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0


and B̃i =


B1

i

1
0
...
0

 . (3.23)
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With these new variables and matrices, the linearization (3.20) can be written in the form

Yi+1 − Y ∗
i+1 = Ãi (Yi − Y ∗

i ) + B̃i (pi − p̄) . (3.24)

The new matrices Ãi and B̃i can then be used in the OGY algorithm described in sections
3.2.1 and 3.2.2.

3.3 Implementation of the OGY algorithm

The OGY control algorithm described in the previous section can only be applied once the
fixed points or periodic orbits and the matrices A and B are known. Sometimes these have to
be estimated though. Therefore, in order to control a n-dimensional continuous time system
where not all variables can be measured, the following general strategy can be adopted:

1. Define the delay coordinate X(t) = [x(t), x(t− τ), . . . , x(t− (n− 1)τ)];

2. Convert the system into a discrete time system, by constructing the Poincaré map,
creating X(ti) = [x(ti), x(ti − τ), . . . , x(ti − (n− 1)τ)];

3. Find fixed points X(ti+1)=X(ti) and period T points X(ti+T )=X(ti) of the Poincaré
map;

4. Linearize the Poincaré map in the vicinity of these points, finding A;

5. Investigate the influence of a parameter perturbation and linearize again around the
points of interest, thus finding B;

6. Implement the OGY algorithm described in section 3.2.

Especially steps 3 and 4 may need some extra attention, since the methods used at these steps
require a decent amount of statistics. In order to estimate fixed points and orbits, there is a
method available called recurrence method, and for the estimation of A and B a Least Squares
method will be used. The theory behind these methods is presented in the following sections;
further adjustments will be made in chapter 5.

3.3.1 Recurrence method

In order to apply OGY control, (an estimation of) the fixed points or orbits of the discrete
time map of the system are needed, i.e. the values for xi for which xi+1 = xi or xi+T = xi

holds, need to be found. When an exact description of the discrete time map is present, these
points can be found by substituting these conditions into (3.1), keeping p = p̄. For higher
periodic orbits the calculations can become very complicated though. Sometimes an accurate
description of the discrete time map isn’t available, thus a different approach is needed.

Lathrop and Kostelich discuss such an approach in their article [11]. Assume a chaotic
attractor of a continuous time system (or its delay coordinates reconstruction), and period
one, two and three orbits embedded within it (figure 3.1). When a point x is close to an
orbit, it will stay in the vicinity of this orbit for a certain time, moving with a frequency
approximately equal to that of the orbit. Thus the motion of x is an approximation of the
unstable orbit. The Poincaré points xi and xi+T are thus close to each other and give an
approximation of x∗i .
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Now collect a large amount of data points, i.e. successive Poincaré intersections, and define
a vicinity ε > 0. For each point xi follow its images xi+1, xi+2, . . . until the smallest k > i is
found such that ‖xk − xi‖ < ε, and define m=k−i. Then if k exists, xi is an (m, ε) recurrent
point.

Figure 3.1: The recurrence method;
from [11] page 4028

Such a point only indicates a possible period
m orbit, but can not guarantee its existence. If
recurrent points form a sequence though, so if
all points xi, xi+1, . . . , xk are (m, ε) recurrent
points, its presence becomes more likely. One
can also make a histogram in which the number
of occurrences of each value of m are plotted, in
order to investigate this likelihood. A smaller
ε and more data points will increase the accu-
racy of the recurrence method. Results for very
high periodic orbits are not reliable, since high
periodic recurrences are normally due to the er-
godic behavior and not because of the stability
of the orbit. Furthermore, low periodic points
could occur as high periodic ones and vice versa,
depending on the size of ε.

In order to find all the m points of a period
m orbit, one should collect all likely (m, ε) recurrent points, i.e. only those who are in a
sequence (as described before). All points which are in each others vicinity (meaning they
represent the same Poincaré point) should then be grouped and averaged. The thus achieved
points x̄1, x̄2, . . . , x̄m provide a reasonable estimation of the actual orbit x∗1, x

∗
2, . . . , x

∗
m.

3.3.2 Least Squares method

As can be concluded from section 3.2.2, the matrices Ai and Bi have to be computed for
every point x̄1, x̄2, . . . , x̄m found by the recurrence method. Since it is assumed that there is
no model present, these matrices have to be estimated with the same data as was used for
the recurrence method. The estimation is then done by an ordinary Least Squares method,
described in e.g. [6].

The least squares method is normally used to find a best-fit linear curve for y=f(x) using
an amount of data points. For (x1, y1), (x2, y2), . . . , (xp, yp), the basic form of least squares
finds a and c in a function y = ax+c for which the sum of squares of the errors ej =yj−(axj+c)
is as small as possible:

min
a,c

:
p∑

j=1

e2
j =

p∑
j=1

[yj − (axj + c)]2 (3.25)

For n-dimensional problems this becomes:

min
a1···ak,c

:
p∑

j=1

e2
j =

p∑
j=1

[yj − (a1x1,j + a2x2,j + . . . + akxk,j + c)]2 (3.26)

Here, the deviation of an n-dimensional point from the orbit is considered, expressed as

(xi−x̄i, xi+1−x̄i+1) = (δxi, δxi+1) , (3.27)
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where δxi has n components δxi,j (with j = 1, 2, . . . , n). Thus a linear curve for δxi+1 = f(δxi)
must be sought. The points used for this are found by defining a small vicinity ξ > ε. For every
x̄1, x̄2, . . . , x̄m combinations (xi, xi+1) for which ‖xi− x̄i‖ < ξ and its image ‖xi+1− x̄i+1‖ < ξ
should be found. If ξ is small enough only points close to the orbit, where the linearization is
valid, are selected.

3.3.2.1 Finding A

In order to find the matrix A, the linear fit for δxi+1 =f (δxi) can be written as

δxi+1,1 = a1,1δxi,1 + a1,2δxi,2 + . . . + a1,nδxi,n + c1

δxi+1,2 = a2,1δxi,1 + a2,2δxi,2 + . . . + a2,nδxi,n + c2
...

δxi+1,n = an,1δxi,1 + an,2δxi,2 + . . . + an,nδxi,n + cn,

(3.28)

creating n equations which can be solved with the least squares method. A is then formed by

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 .

The numbers ci form a vector C which denotes an offset, which is not equal to the matrix B
in the OGY algorithm. In fact, since only deviations from the orbit are considered, this offset
should be equal to zero in the ideal case where x̄ = x∗. Therefore C will be neglected.

3.3.2.2 Finding B

The matrix B is found by investigating the influence of the parameter perturbation. First
consider the delay coordinates case, so there are multiple matrices Bk with k=1, 2, . . . , r+1.
Recall from section 3.2.3 that r is the smallest integer such that (n−1)τ <rtF . Then while the
system is running, the maximum parameter perturbation δ= p−p̄ is turned on at each (r+1)th
piercing of the Poincaré map and turned off the next piercing. From the resulting data series
only those points are selected which are close to an orbit (similar to section 3.3.2.1). These
points are then divided into (r+1) groups: pairs (xi, xi+1) for which pi 6= p̄, pairs (xi, xi+1)
for which pi−1 6= p̄, etc. (until pi−r 6= p̄). Now, for e.g. pi 6= p̄, (3.20) reduces to

xi+1 − x̄i+1 = Ai (xi − x̄i) + B1
i (pi − p̄) .

Since A has just been calculated, the only unknown variables in this equation are the compo-
nents of B1

i , which of course can now be easily estimated. The matrices B2
i , . . . , Br+1

i can be
estimated similarly.

When delay coordinates are not used and there is only one matrix B, the perturbation
is switched on every odd piercing of the Poincaré map. Then only the pairs (xi, xi+1) in the
vicinity of the orbit for which the perturbation on xi is switched on are used to estimate B.

It should be noted though, that when there is a correlation between the separate δxi+1,j

in (3.28), the least squares method will not be an accurate method to find A and B. A so
called Partial Least Squares fit [23] should then give better results. However, in this case it is
assumed that there is no correlation, so the ordinary least squares can be used.
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Chapter 4

OGY control of the Hénon map

This chapter will numerically implement the OGY control algorithm as described in chap-
ter 3. The system used is the discrete Hénon map.

4.1 Introduction to Hénon

A special kind of chaotic system is the so called Hénon map [8], named after its inventor.
The Hénon map is a purely theoretical map, and doesn’t represent a physical system. Still,
this discrete time system or map describes the basic characteristics of chaotic behavior (see
e.g. [21]) and has a very clear strange attractor. Its equation is quite simple and given by:

xi+1 = f1(xi, yi) = yi + 1− ax2
i

yi+1 = f2(xi, yi) = bxi.
(4.1)

Typical parameter values for which chaos occurs are a = 1.4 and b = 0.3. This is illustrated
by the bifurcation diagrams of the Hénon map, shown in figure 4.1. The strange attractor of

(a) a variable, b = 0.3 (b) b variable, a = 1.4

Figure 4.1: Bifurcation diagrams of the Hénon map
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Figure 4.2: The Hénon map and its basin of attraction

the Hénon map with these parameter values is shown in figure 4.2(a), where yi is a function
of xi. After the removal of transient behavior, the solution of the map will always wander
around on this attractor. Some initial conditions will never converge to the attractor though,
but yi→−∞. When the long term behavior (t→∞) of every initial condition is examined,
the basin of attraction is obtained, which is shown in figure 4.2(b). All initial conditions inside
the darker V-shaped part will converge to the attractor, while for the other points yi→−∞.

4.1.1 Fixed points and linearization

The fixed points of (4.1) are easily found by setting xi+1 =xi =x∗ and yi+1 =yi =y∗:

x∗ = y∗ + 1− ax∗2

y∗ = bx∗

}
⇒ x∗ = bx∗ + 1− ax∗2 ⇒ ax∗2 + (1− b)x∗ − 1 = 0,

which has solutions

x∗ =
−(1− b)±

√
(1− b)2 + 4a

2a
. (4.2)

For a = 1.4 and b = 0.3 this gives(
x∗

y∗

)
=

(
−1.1314
−0.3394

)
and

(
x∗

y∗

)
=

(
0.6314
0.1894

)
, (4.3)
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4.2. APPLICATION OF OGY TO HÉNON

which are drawn in figure 4.2(b). In the remaining part of this chapter only the second fixed
point will be used, since the first point lies on the edge of the basin of attraction, and is
therefore not suitable for OGY control.

Linearizing the Hénon map using (3.4) gives

A = Dx,yf(x, y, a, b) =
[
−2ax 1

b 0

]
(4.4a)

Ba = Daf(x, y, a, b) =
[
−x2

0

]
(4.4b)

Bb = Dbf(x, y, a, b) =
[

0
x

]
. (4.4c)

4.2 Application of OGY to Hénon

In this section the OGY control will be applied to the Hénon map described in section 4.1.
The application will be done in a number of steps with increasing complexity, in order to keep
the algorithm understandable for the reader.

4.2.1 Known fixed point, known A and B

Since the Hénon map knows two parameters a and b, both parameters could be used for
OGY control. In the first case it is assumed that the fixed point (4.3) and the matrices A
and B, (4.4), are known. Furthermore, it can be proven that the system is controllable, since
(2.7) becomes

Pa = [Ba, ABa] =
[
−x2 2ax3

0 −bx2

]
and Pb = [Bb, ABb] =

[
0 x
x 0

]
, (4.5)

which both have full rank if x 6= 0. Now the OGY algorithm is quite straightforward: the
matrix KT can easily be calculated using Ackermann’s method. The success of OGY only
depends on the choice of the maximum parameter perturbation (3.2), which will be called
δamax or δbmax here. The corresponding Matlab R© code is given in appendix C.4.1.

Figures 4.3 and 4.4 show the response of the Hénon map for different choices of the ac-
cessible parameter. Note the difference for different values of δamax and δbmax. When the
maximum parameter perturbation is very small, the OGY algorithm waits until the state of
the system is very close to the fixed point. The linearization is quite accurate there, so in
general the first attempt will immediately result in a steady state. It should be noted though
that a small δa or δb doesn’t have to imply that the state of the system is close to the fixed
point. Recall (3.5):

p− p̄ = −KT (xi − x∗).

Since K and xi−x∗ are vectors, there is a xi−x∗ 6=0 such that p−p̄=0. So (3.5) defines a band
of points for which the control effort is nonzero, instead of an (elliptic) vicinity around x∗.
This means that there can be a (false) control effort when the state is far away from the fixed
point. In this case a control effort δa or δb will not result in a steady state. Furthermore, due
to the behavior of the system, it is possible that the system drifts away from the fixed point
at iteration i+1 while it was close to it at iteration i, thus resulting in a false control effort.
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Figure 4.3: Controlling Hénon with parameter a; initial condition (0,0)
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(a) OGY control with δbmax = 0.01
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Figure 4.4: Controlling Hénon with parameter b; initial condition (0,0)

This phenomenon occurs more often when δamax and δbmax are relatively large. The
algorithm will then try to control points which are further away from the fixed point, where
the linearization is not always accurate. This results in much more control attempts, including
more false ones. In general, higher δamax and δbmax, for as far this is practically possible, will
result in a smaller time to achieve control, but this can highly depend on the ergodic behavior.
Too large perturbations can make the system instable, since it can push the system outside
the basin of attraction (figure 4.2(b)).

Finally, note that once a steady state is established, the control effort decreases to zero.
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4.2. APPLICATION OF OGY TO HÉNON

This is because the fixed point and A and B are known, so that the system is controlled
exactly towards the actual fixed point. All remaining sections will show different results.

4.2.1.1 Influence of noise

In the remainder of this chapter a will be used as the control parameter. This section will
shortly discuss the influence of noise on the OGY algorithm. Two cases are considered: noise
on the state (x, y) and on δa. In both cases the maximum parameter perturbation δamax is
5% of ā, and the control is switched on from iteration 0 till 500 and 1000 till 1500.

Noise on a: Results in figure 4.5(a)
In this case δa is calculated as in section 4.2.1, but before this perturbation is applied, a
random number from a normal distribution is added. The variance is chosen relatively
high: 20% of δamax. When δa=0 no noise is added. Two things catch the eye:

• In the steady state the control effort δa 6= 0. Due to the noise, the state of the
system will never be exactly equal to the fixed point, thereby still needing control.

• Around iteration 1300 the noise forces the system outside the controlled region, into
chaos again. When the noise is large enough, the control effort needed to overcome
the noise could exceed δamax, so that δa is set to zero, causing the system to go to
chaos. Some iterations later the system is again controlled.
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Figure 4.5: Influence of noise on OGY; control parameter a, initial condition (0,0)

Noise on (x, y): Results in figure 4.5(b)
In this case an amount of noise is added to x and y at every iteration, so the noise has a
direct effect on the state of the system. Although the results are similar to the previous
case, the most important difference is the size of the noise: variances larger than approx.
5% of δamax will result in instability. The added noise could easily cause the system to
land outside the basin of attraction (figure 4.2(b)), so that yi→−∞.
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CHAPTER 4. OGY CONTROL OF THE HÉNON MAP

4.2.2 Unknown fixed points, known A and B

In the next step it is assumed that the fixed point is unknown and it is desirable to also
control higher periodic orbits. The matrices A and B are still known and given in (4.4).

To estimate fixed and periodic points, the recurrence method of section 3.3.1 will be used.
The written Matlab R© code can be found in appendix C.3.1. The accuracy of the recurrence
method is determined by size of the vicinity ε and the length of the data series. Here the
vicinity is scaled in x- and y-direction, giving it the shape of an ellipse:

x2

range2
x

+
y2

range2
y

= ε2, (4.6)

where rangex and rangey denote the difference between the maximum and minimum values
of x and y. For 100,000 data points a choice of ε = 0.002 gives reasonable results (i.e.
between 20 and 50 recurrence points for lower periodic orbits), as shown in figure 4.6. Higher
periodic orbits than 15 are not considered because most of the higher periodic recurrences are
coincidental and therefore not reliable.
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Figure 4.6: Recurrence histogram of 100,000 Hénon points, ε = 0.002

Two things should be noted regarding figure 4.6. First, there seems to be no recurrences
of period 3 and 5, and second, period 13 seems to be highly dominant, i.e. it has by far
the highest number of recurrences. Therefore it is chosen to apply OGY control to the lower
periodic orbits 1, 2 and 4 and the higher periodic orbit 13.

As was discussed in section 3.3.1, not all recurrence points have to be part of the periodic
orbit. A filter is needed to select only the relevant points. This filtering is illustrated in
figure 4.7. In figure 4.7(a) all points selected by the recurrence method are plotted. Then a
filter is applied for every orbit in a number of steps:

1. Search for the most likely orbit. This means searching the longest sequence of (m, ε)-
recurrent points. If (xi, yi), (xi+1, yi+1), . . . , (xi+p, yi+p) are all recurrent points and p is
as large as possible, it is very likely that these points are close to an actual m-periodic
orbit.
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Figure 4.7: Illustration of the filtering of recurrence points

2. If p < m, finish the sequence to length m with original data points. Recall that if (xi, yi)
is a (m, ε)-recurrent point, it is close to (xi+m, yi+m), even when (xi+m, yi+m) is not a
recurrent point itself.

3. Gather all the other selected recurrent points to one of the points (xi, yi), . . . , (xi+m, yi+m)
when they are in the vicinity defined by (4.6). If they are not inside any vicinity, they’re
considered coincidental and thrown away.

4. Average all points in each others vicinity, obtaining m estimated values of the m periodic
points: (x̄i, ȳi), . . . , (x̄i+m, ȳi+m).

Figure 4.7(b) shows the selected points after the described filtering is applied. The number of
points thrown away for every period in this filtering proces are 0, 4, 0 and 62. The coordinates
of these points are found in appendix A.

The obtained results are then used for the simulation of OGY control, shown in figure 4.8.
Every 500 iterations a different orbit is controlled, in the following order: 1, 2, 4, 13, 2, 1 and
4. The corresponding Matlab R© code can be found in appendix C.4.2.

Figure 4.8 clearly shows the success of OGY for higher periodic orbits. Some remarks
should be made though. First, in every controlled situation, notice that δa 6= 0, in other
words, there is a continuous perturbation (δa≈−0.0032 for the period 1 orbit). This is due
to the fact that the orbit estimations are not exactly equal to the actual orbits. After each
iteration the system drifts away from the estimated orbit due to its instability, needing a
control effort to compensate this. In fact, the system is pushed away from the actual orbit
(which needs p= p̄), towards the slightly different estimated orbit (which needs p 6= p̄).
Second, higher periodic orbits are in general controlled faster than lower ones. This is caused
by the simple fact that there are more points to control around. For the period 13 orbit this
means that as soon as the system is close to one of the 13 points, control can be applied,

25



CHAPTER 4. OGY CONTROL OF THE HÉNON MAP

0 500 1000 1500 2000 2500 3000 3500
−1.5

−1

−0.5

0

0.5

1

1.5
System response

timestep

x

(a) State of the system x

0 500 1000 1500 2000 2500 3000 3500
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Control effort δa

timestep

δa

(b) Control effort

Figure 4.8: OGY control for higher periodic orbits; δamax = 0.05a
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Figure 4.9: OGY control for higher periodic orbits; δamax = 0.0025a

instead of e.g. just one point. As a result of this, higher periodic orbits also need smaller
control efforts, see figure 4.9, where the maximum perturbation is 20 times smaller, and the
period 13 orbit is the only controlled orbit. Notice in figure 4.9(b) that three points which
initially need a large δa to be controlled, are now not controlled, i.e. δa = 0. The system is
not perturbed at these points, but it can still be controlled due to the fact that the system
does not drift away very fast. The next iteration point can still correct the deviation from the
orbit with a δa which is smaller than δamax.
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4.2. APPLICATION OF OGY TO HÉNON

Third, notice that between iterations 2500 and 3000 the algorithm fails to control the fixed
point. This also results from the previous remark; the ergodic behavior of the system causes
the system not to come close to the single fixed point within the relatively short time of 500
iterations.
Finally, the steady state values of x and y are not equal to the estimates, nor to the real
periodic points. E.g. figure 4.9 shows that the steady state value for the fixed point is:(

x
y

)
≈

(
0.6319
0.1896

)
, (4.7)

whereas the real fixed point (4.3) and its estimation are(
x∗

y∗

)
≈

(
0.6314
0.1894

)
and

(
x̄
ȳ

)
≈

(
0.6309
0.1891

)
.

Apparently, since δa 6=0 in steady state, there is a steady state error in x and y. In fact, (4.7)
is the real fixed point of the Hénon map with a = ā+δa = 1.4−0.0032. So for every orbit,
whenever there is a steady state control effort, there is a steady state setpoint error.

4.2.3 Unknown fixed points, unknown A and B

In this final step the matrices A and B are assumed to be unknown and will be estimated,
using the least squares method of section 3.3.2. For the Hénon map, (3.28) reduces to

δxi+1 = a1,1δxi + a1,2δyi + c1

δyi+1 = a2,1δxi + a2,2δyi + c2
(4.8)

where δxi =xi−x̄ and δyi =yi−ȳ, and x̄ and ȳ are the estimations from the previous section.
This linearization will use the same data series as was used for the recurrence method. As was
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Figure 4.10: Representation of points used for the least squares method
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described in section 3.3.2, only points in this series close to the orbit, i.e. within a vicinity ξ,
can be used: so ‖xi−x̄i‖ < ξ and ‖xi+1−x̄i+1‖ < ξ. In order to collect enough points ξ can
be different at every point of an orbit, in general varying between 2ε and 6ε. Lathrop and
Kostelich [11] state that ξ should be chosen such that there are approx. 50 points selected, but
a graphical representation could provide more information, see figure 4.10. In each of these
figures there are two data series, each representing a line in (4.8). Keep in mind that (4.8) is
nothing more than the estimation of a 2-D plane in 3-D space. So ξ should be chosen such
that the selected points form a well defined flat 2-D plane. Note that although the points in
figure 4.10(b) form a parabola, they still define a 2-D flat plane very well. Therefore these
points can all be used to estimate A. For the best results, similar plots should be made for
every point in order to find a correct values of ξ.

Using this method quite accurate results for A are obtained (see appendix A). Besides A
also C is calculated, which is in all cases close to zero and is therefore neglected.

As was discussed in section 3.3.2.2, for the calculation of B a data series is needed where
the parameter a is perturbed. This data series is generated by perturbing the system every
two iterations with δa = δamax. For Hénon this can’t be chosen larger than 0.02 though, for
else the system can be perturbed outside the basin of attraction, so that yi→−∞.

The points which will be used for estimating B are formed by the pairs (xi, yi), (xi+1, yi+1)
in the vicinity ξ of the orbit, where the perturbation is switched on at i. The value ξ can be
different for each point, but should be chosen equal to the ξ with which A was found. B can
then be calculated with[

δxi+1

δyi+1

]
= Ai

[
δxi

δyi

]
+ Biδa ⇒ Bi =

([
δxi+1

δyi+1

]
−Ai

[
δxi

δyi

])
1
δa . (4.9)

Some values for B are given in appendix A. Notice that at some points the estimates are
relatively bad; the error can easily be more than 10%.
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Figure 4.11: OGY control with estimated orbits, A and B
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Figure 4.12: Results of OGY control for δamax = 0.01a

The values of A and B are now used to apply OGY control again. The same orbits are
controlled at the same iterations as in figure 4.8, and again δamax = 0.05a. The results are
shown in figure 4.11 and look very similar to the previous case. In principle every orbit can
be controlled, approx. with the same time to achieve control as before. The constant control
efforts are also nearly equal. Apparently the OGY control is robust enough to overcome
some bad estimates of A and B. Even when the maximum perturbation is lowered towards
δamax = 0.01a there is hardly any difference noticeable, see figure 4.12. The only remark is
that the estimated case seems to have some problems controlling lower periodic orbits. Now
every orbit has some bad estimates of A and B, but especially the higher periodic orbits
4 and 13 also have some very accurate estimates. Similar to the explanation at the end of
section 4.2.2, these accurate estimates are apparently able to force the system towards a steady
state.

4.3 Concluding remarks

In this chapter is has been shown how the OGY algorithm can be successfully applied
to the Hénon map, even when the periodic orbits and the matrices A and B have to be
estimated. Estimation of A and B seemed to have little effect, in contrast to estimating the
periodic orbits and fixed points. The latter case introduced constant parameter perturbations
and steady state setpoint errors which in general cause the time to achieve control to increase
slightly. This time can be decreased considerably using targeting techniques, see [19] and [9].

The time to achieve control is further influenced by the maximum allowed parameter
perturbation, here δamax. A higher δamax will in general result, besides more false control
attempts, into a smaller time to achieve control. Note though, that δamax cannot be chosen
arbitrarily large; there may be system restrictions on the value of the parameter and large
perturbations may lead to instability. A small δamax can cause the OGY control to fail. When
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for period 1 orbits the maximum perturbation is chosen smaller than the steady state control
effort, a controlled state will of course never be reached. But even when δamax is slightly
larger than the steady state effort, control is not guaranteed: the solution must then come
very close to the periodic orbit, which can take forever. This is somewhat different for higher
periodic orbits: e.g. the period 13 orbit showed that the other points on the orbit can still
cause control while one or more points on the orbit are not controlled.

OGY is quite robust, which was shown first by adding noise to the system and second by
using poor estimates. Noise during the estimation can introduce some major problems though.
This noise can cause the estimation of fixed points and orbits to be worse than before and also
A and B will generally deviate more than 10%. This error is partly due to the assumption
that C can be neglected, but appendix A shows that C can be relatively large. The value
of C is then attributed to B, which makes the estimate worse. This can cause OGY to fail
controlling the system. One way to cope with this is to adjust the estimating algorithm, which
will be done in chapter 5.
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Chapter 5

OGY control on the Duffing oscillator

In this chapter the OGY control algorithm will be applied to a Duffing oscillator (2.3).
This case will be treated as an extension of chapter 4 and the final results of that chapter
will be the starting point of this one, extending the application of OGY to continuous time
systems using Poincaré maps and delay coordinates. Furthermore an adjustment will be made
to the estimations of fixed points and the matrices A and B. Finally, an adjustment to the
delay coordinate algorithm will be made.

5.1 System description

In this chapter the following specific oscillator will be used (see [22]):

ẍ + 2ξẋ +
1
2
x = FΩ2 sinΩt, (5.1)

where the right hand side is the acting periodic force. The nominal values of the parameters are
ξ = 0.04, Ω = 0.84 and F = 0.188. The chaotic attractor of this system is given in figure 5.1(a).
Any initial condition within the area marked by this attractor will converge towards it, as lots
of initial conditions outside this area will do. Some initial conditions outside the area will
converge to a periodic orbit given in figure 5.1(b). During the application of OGY control the
state of the system will stay within the area, so only the chaotic attractor is of interest.

The system can be discretized by making the Poincaré map. Since (5.1) is not autonomous
but forced with a certain frequency, this can be done by taking a Poincaré point every period
of the acting force. In other words, the system is sampled every tF = 2π

Ω seconds, so that
sinΩt remains constant. When position and velocity at these times are plotted, the Poincaré
map of figure 5.2(a) is obtained. In some cases it is not possible to measure the velocity ẋ,
but only the position x. In that case delay coordinates can be introduced, using a delay time
τ . The delay coordinate is here defined as

Z(t) = [x(t), x(t− τ), x(t− 2τ)] .

Taking the Poincaré section by sampling every tF seconds, the discrete 2-D vector

z(ti) = [x(ti), x(ti − τ)] (5.2)

remains. The delay τ can be any positive value, but here it is defined as a quarter of the
sampling time, so τ = tF

4 = 2π
4Ω . With this the Poincaré map of figure 5.2(b) can be obtained.
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Figure 5.1: Two different attractors of the Duffing oscillator
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Figure 5.2: Poincaré maps of the Duffing oscillator

5.2 Application of OGY to Duffing

In this section the OGY algorithm will be implemented in the Duffing oscillator (5.1). In
order to do this, the amplitude of the forcing F will be chosen as the accessible parameter.
The implementation will be done in a number of steps, each step with increasing complexity.
All the fixed points, orbits and matrices are assumed to be unknown.
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5.2.1 Adjustment of the estimates

The previous chapter concluded with the remark that a non-zero value of the offset C can
cause problems when OGY is implemented. These non-zero values for C are a result of poor
estimates of fixed points, which have a large impact on the success of OGY. Especially in
the current case, where the discrete time Poincaré map is less known than the Hénon map,
accurate estimates are important. This gives reason to redefine the estimation algorithm used
in chapter 4.

Suppose that x∗i = x̄i and x∗i+1 = x̄i+1 in (3.28). When the system follows a periodic orbit,
then δxi = δxi+1 =0, and (3.28) returns the zero vector for C. When x∗i 6= x̄i and the system
is still on the same orbit, δxi 6= 0 and δxi+1 6= 0, so C will be non-zero. Therefore the goal
of the following adjustment is to set the offset C to zero, since this implies that x∗i = x̄i and
x∗i+1 = x̄i+1 and the estimation is correct. For a 2-D Poincaré map, define a point at a certain
iteration k as [xk, yk]T , and the actual fixed point as [x∗, y∗]T . One can find a first estimation
[x̄, ȳ]T of this fixed point with the recurrence and filtering steps described in section 4.2.2.
Then n points [xi, yi]T within a vicinity ξ of [x̄, ȳ]T are found and [δxi, δyi]T = [xi− x̄, yi− ȳ]T

is defined. With this the linearization around the estimated fixed point is given by

δxi+1 = a11δxi + a12δyi + c1

δyi+1 = a21δxi + a22δyi + c2
, (5.3)

in which ai,j and cj can be calculated using the least squares method, creating A and C. Now
if [x̄, ȳ]T = [x∗, y∗]T then C is zero. Instead, [x̄ + dx, ȳ + dy]T = [x∗, y∗]T , so when [δxi, δyi]T

is replaced by [δxi − dx, δyi − dy]T , the vector C should be zero. The vector [dx, dy] can then
be estimated by rewriting (5.3) into:

(δxi+1 − dx) = a11 (δxi − dx) + a12 (δyi − dy)
(δyi+1 − dy) = a21 (δxi − dx) + a22 (δyi − dy)

⇒ δxi+1 − a11δxi − a12δyi = (1− a11) dx− a12dy
δyi+1 − a21δxi − a22δyi = −a21dx + (1− a22) dy

⇒
[

δxi+1 − a11δxi − a12δyi

δyi+1 − a21δxi − a22δyi

]
=

[
(1− a11) −a12

−a21 (1− a22)

] [
dx
dy

]
,

(5.4)

using the same n data points as for (5.3). Now (5.4) has the form b = Ax, which can easily be
solved using the least squares method. The new estimation for the fixed point is now given by[

x̄new

ȳnew

]
=

[
x̄old

ȳold

]
+

[
dx
dy

]
.

This point can now be used to find new points [xi, yi]T within its vicinity ξ, to find new values
of A and C. The algorithm can then be followed again, until C is small enough, or [dx, dy]T

is below some small value (here: dx or dy smaller than 10−4). The matrix B is calculated
as was done before, with the new fixed point and new matrix A. The derivation for higher
periodic orbits is analogous to the above. Realize that for period 2 (5.4) transforms into:

δxi+1,1 − a11,1δxi,1 − a12,1δyi,1 = −a11,1dx1 − a12,1dy1 + dx2

δyi+1,1 − a21,1δxi,1 − a22,1δyi,1 = −a21,1dx1 − a22,1dy1 + dy2

δxi+1,2 − a11,2δxi,2 − a12,2δyi,2 = dx1 − a11,2dx2 − a12,2dy2

δyi+1,2 − a21,2δxi,2 − a22,2δyi,2 = dy1 − a21,2dx2 − a22,2dy2.

(5.5)

The Matlab R© code for the described iterative algorithm is given in appendix C.3.4. Some
results used in the following sections are given in appendix B.
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Figure 5.3: Estimation of fixed point

5.2.2 Control without delay coordinates

In this section it is assumed that both position and velocity can be measured, so no delay
coordinates are needed. The Poincaré map of figure 5.2(a) will thus be used. In this example
only one fixed point will be stabilized. The rest of this chapter will only focus on orbits of
period 1 or 2, since the identification of higher periodic orbits is rather inaccurate.

First the fixed points of the Poincaré map have to be identified, by using the recurrence
method. With ε = 0.01 defined as in (4.6), and ξ chosen twice as large as ε, this method finds
26 (1, ε) recurrent points in a data series of approx. 26,600 points. These points are divided
in two regions, as is shown by figure 5.3(a). For simplicity, this section will concentrate only
on the right point, for which figure 5.3(b) shows a close up. This figure shows all recurrence
points, together with the initial estimate of the fixed point and the fixed point after the im-
provement of section 5.2.1. The adjustment thus finds values for the fixed point and A, with
which B can be found as in section 3.3.2.2. The perturbation used to generate the data series
with which B can be found, is set to δFmax = 0.05F = 0.0094. The absolute values of fixed
point, A and B can be found in appendix B.

These results can then be used to find the value of the control matrix KT , so that OGY
can be applied. Figure 5.4 shows the results when δFmax = 0.05F . Control is applied in the
time intervals [0, 10000] and [20000, 30000], between those two intervals there is no control at
all. Notice the extremely small constant control effort in the controlled situation (about 0.4%
of F ). This is probably due to a relatively accurate estimation of the fixed point. Still, there
is also a steady state setpoint error, since the achieved value differs from the estimation:[

xachieved

ẋachieved

]
=

[
0.5073
−0.3540

]
and

[
xestimated

ẋestimated

]
=

[
0.5079
−0.3535

]
(5.6)

Second, notice the large amount of time needed before the fixed point is reached; it takes
about 4370 seconds, which is more than an hour! To understand this, remember the forcing
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Figure 5.4: OGY control of a fixed point of the Duffing oscillator; δFmax = 0.05F
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Figure 5.5: Representation of controlled fixed point in continuous time domain

period of the system: 2π
Ω ≈ 7.48s, so there is 7,48 seconds between each Poincaré intersection.

The steady state is reached after approx. 580 iterations, which is not so bad compared to the
results for the Hénon map (figure 4.3).

Figure 5.5 shows which period 1 orbit corresponds with the controlled fixed point of the
Poincaré map. The other fixed point of figure 5.3(a) will probably correspond with a similar
loop on the left side of the attractor.
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5.2.3 Control with delay coordinates

Next, it is assumed that only the position x can be measured, so that delay coordinates
have to be used. The delay coordinate defined as z(ti) = [x(ti), x(ti − τ)], with τ = tF

4 ,
yields the Poincaré map of figure 5.2(b). Analogously to the previous section, the recurrence
method (with ε = 0.01) can identify the locations of the fixed points, see figure 5.6. The
method described in section 5.2.1 can then be used to estimate the exact values of the two
fixed points. In this case the adjustment iterations will stop when dx or dy is smaller than
10−5 (the convergence criterium) and again ξ=2ε. This will return z̄a = [0.5075, 1.3053] and
z̄b = [−0.8167,−0.2473]. The method also returns the matrix A, which is given in appendix B.

In order to find the matrix B a perturbed data series has to be generated. Recall sec-
tion 3.2.3 where r was defined as the smallest integer for which (n−1)τ < rtF . Since τ was
defined as 4τ = tF and n = 3, this reduces to 2 < 4r, so r = 1. So besides Fi also Fi−1 has
influence on the state zi+1. So to generate the data the system has to be perturbed for tF
seconds, after which the perturbation is switched off for tF seconds, switched on, etc. The
data series thus obtained can be used to find B1 and B2 (see appendix B).

To find KT now, remember from section 3.2.3 that first Ã and B̃ are defined as

Ã =
(

A B2

0 0

)
and B̃ =

(
B1

1

)
. (5.7)

and the new state is defined as Y = [z, Fi−1]. The new matrices are then used to apply the
pole placement technique. The results are shown in figure 5.7. During the first 20,000 seconds
the algorithm tries to control za, the second 20,000 seconds it tries to control zb. Notice the
large amount of false control attempts in the first 10,000 seconds. As was discussed before,
this is due to the fact that F − F̄ =−KT (Yi − Y ∗) can be zero when Yi 6=Y ∗. Furthermore,
notice that there is no effort to control the second fixed point. To understand this, compare
the control matrices K for each of the two points:

Ka =

 0.8167
−0.8802
−0.4320

 and Kb =

 −60.9028
43.6503
26.7399

 .
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Figure 5.7: OGY control with delay coordinates

Due to the large values of Kb for the second fixed point, the control effort defined as δF =
−KT (Yi − Y ∗) will in general be larger than δFmax and thus set to zero. In other words, it
takes much longer before δF < δFmax and control is allowed.

The next section will provide a different approach for delay coordinates which will deal
with this problem.

5.2.4 Alternative method for delay coordinates

When delay coordinates are used, it is assumed that the control is applied continuously
between two intersections of the Poincaré map, so the control lasts tF seconds; δFi 6=0 from
ti till ti+1. Since δFi is active at time ti+1 delay coordinates have to be used. If the control is
switched off before the next intersection, the delay coordinates are not needed though.

control
length 

x(t
i
−τ) 

x(t
i
) 

Figure 5.8: Moment of perturbation

So here the parameter perturbation will be ap-
plied on just a quarter of the forcing phase, see
figure 5.8. This picture shows one forcing period
tF where the perturbation is applied on the sec-
ond quarter of this period. The delay coordinate
is formed by the value at 3

4 tF and tF , so the pertur-
bation has no direct effect on the delay coordinate.
When control is applied this way, the adjustment of
OGY discussed in section 3.2.3 is not necessary and
the strategy of section 5.2.2 can also be applied to
the delay coordinate situation. The one difference is

that B has to be re-estimated, since B will now describe the influence of a shorter pertur-
bation. The data series used for B is generated by turning on the perturbation during the
intervals [kti + τ, kti + 2τ ] where k = 0, 2, 4, . . .. The series is then divided into two groups,
as was done in section 4.2.3.
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5.2.4.1 Controlling the fixed point

Using the method described above, the new matrix B can be found as given in appendix B.
The control with which the used data series is made, is slightly larger than before, namely
δFmax = 0.1F . This is done because the influence of δF is expected to be smaller than before,
since the perturbation is now applied in less time. Both the estimates of the fixed points and
the matrices A remain the same as in section 5.2.3. The control matrices KT can now be
calculated without using (5.7), and are equal to

Ka =
[

2.5301
−2.7268

]
and Kb =

[
−0.8644
0.6195

]
,

so the problem of the previous section seems to be solved. This is also shown when these
matrices are used to apply OGY control, see figure 5.9, where the first 10,000 seconds point
za is controlled, and the next 10,000 seconds point zb. Both points are now successfully
controlled. Point zb seems to be controlled much easier than point za; notice the larger control
in steady state and the larger time to achieve control for point za. Probably the estimates of
point zb are slightly better than for point za. Compare e.g. x and x̄(ti) in appendix B, both
representing the same point (za): 0.5079 vs. 0.5075. Since the control of section 5.2.2 looks
more successful than the current result, the former estimation is probably better.
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Figure 5.9: Results for adjusted delay coordinates method; δFmax = 0.1F

The corresponding orbits in the continuous time domain are shown in figure 5.10. Indeed,
as section 5.2.2 already suggested, both fixed points of the delay coordinate correspond to a
simple orbit on either side of the chaotic attractor.

5.2.4.2 Controlling the period 2 cycle

Appendix B also shows the values of the estimated Poincaré points of the period 2 orbit,
together with the corresponding values for A and B. Using these values and the adjusted
delay coordinates method introduced before, is should also be possible to control this orbit.
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Figure 5.11: Period 2 orbit

The results are shown in figure 5.12, where it is clear to see that indeed a period 2 orbit
is controlled. Notice the relatively small time to achieve control and the small steady state
control efforts. This could indicate that the estimation of the Poincaré points of this orbit is
quite accurate. Finally, figure 5.11 shows the representation in the continuous time domain. It
seems reasonable that a similar period 2 orbit lies on the right side of the attractor. Controlling
this orbit could be a problem though. It is almost impossible to predict which delay coordinate
Poincaré recurrent points belong to a certain orbit. In other words, if it is desirable to control
a certain continuous time orbit, one can only guess its period, guess which delay coordinate
recurrent points belong to this orbit, and hope that after the application of OGY it indeed
matches the desired orbit. This trial-and-error process is beyond the scope of this report.
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Figure 5.12: Control of period 2 orbit with adjusted delay coordinates method; δFmax = 0.1F
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5.3 Implementation in Simulink R©

All the algorithms used before were implemented in Matlab R© M-files. It is also possible to
implement the OGY algorithm in Simulink R©. One of the big advantages of using Simulink R©

is that it is easier to play around with the algorithm, for example by changing the solver,
switching between fixed points or altering parameters. The estimation of fixed points, A and
B and the calculation of KT will still have to be done in Matlab R©, but of course the previously
obtained results can be used. The following implementation will be based on section 5.2.4.
The model will thus use delay coordinates and the associated adjusted control algorithm where
the perturbation is only applied for 1

4 tF seconds.

5.3.1 The models

Two different models were used for simulation: for both the period 1 and the period 2
orbits. The models are shown in appendix D. In this appendix, figure D.1 shows the main
model for the period 1 case together with its specific control submodel. Notice the switch
in the main model, so that it is possible to switch between fixed point at any point during
simulation. Figure D.2 shows the same situation for the period 2 case. Now notice the switch
inside the control submodel, so that the control law can be switched on and off. Furthermore,
figures D.3(a) and D.3(b) show two submodels used by both models; the Duffing oscillator
and the submodel creating the delay coordinate vector.

5.3.2 Results

This section will show and discuss some results of the Simulink R© simulations done with
the models introduced in the previous section. Figure 5.13 shows some results for the period 1
case. The left figure starts with controlling fixed point za and switches to fixed point zb a few
seconds after the controlled state is established, switches back to za when zb is successfully
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(b) Results with δFmax = 0.07F

Figure 5.13: Some Simulink R© results for period 1 orbits
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(b) Results with δFmax = 0.05F

Figure 5.14: Some Simulink R© results for period 2 orbit

controlled, and so forth. The right figure shows the same, but starts with fixed point zb.
Furthermore, both simulations used different values for δFmax, illustrating its influence. In
figure 5.13(a) δFmax is 10% of F . In 15,000 seconds of simulation seven controlled states
where established. Notice that controlling point za seems more difficult than point zb, as was
also concluded in section 5.2.4.1: point za needs a larger steady state control and needs more
time to achieve control. The figure also shows that this time is to a large extent subject to
the ergodic behavior of the chaotic system. Two out of three situations where point zb is
controlled need very little time, while its first attempt takes a lot of time.
Figure 5.13(b) uses a δFmax of 7% of F , which is slightly more than the steady state control
effort needed to control point za. As can be expected, it takes far more time now before point
za is controlled, resulting in only three controlled states in 15,000 seconds. Controlling point
zb is still relatively easy.

Figure 5.14 shows similar results for the period 2 orbit. In both the left and the right figure
the control was switched off for a short moment as soon as a controlled state was established.
The difference between the figures is again caused by different values of δFmax. In figure 5.14(b)
this value is half the size as in figure 5.14(a), resulting in a larger time to achieve control and
thus less controlled states (three instead of five) in 10,000 seconds of simulation. Furthermore,
notice that in figure 5.14(a) it seems that around 2500 seconds the system is accidentally very
close to a different higher periodic orbit embedded within the chaotic attractor.

5.4 Concluding remarks

This chapter showed that the OGY algorithm can successfully be used for continuous
time systems. In all cases, except for section 5.2.3, a controlled state, i.e. a periodic orbit,
was established. The uncontrolled problem was solved in the following section, where the
delay coordinate algorithm was successfully adjusted. The same conclusions as for the Hénon
applied, e.g. the presence of a steady state control effort and setpoint error. In conclusion,
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OGY is a very useful tool to control any chaotic system towards a certain periodic solution,
even when detailed measurement information is not available. Furthermore, this chapter
showed once again the influence of the maximum allowed perturbation, δFmax. Its value
should at least be larger than the steady state control effort, and increasing its value (subject
to system restrictions) will decrease the time to achieve control.

There are some additional restrictions of OGY though. As was discussed in section 5.2.4.2
one cannot define a desired arbitrary orbit beforehand, since one is restricted to the orbits
embedded within the chaotic attractor. It is even impossible to predict beforehand which
shape these embedded orbits have. Not until the control is successfully applied, one can
know what exactly the OGY was controlling. OGY only turns chaotic behavior into periodic
behavior, but the exact shape and value of the periodic orbit cannot be controlled.

The influence of noise was not investigated in this chapter, but the observations of sec-
tion 4.3 are also valid here. As long as the estimates of fixed points and the matrices A and B
are quite accurate OGY can overcome some amount of noise. Too much noise on the estimates
can make them very poor though, and the OGY control algorithm will undoubtedly fail.

The remark that "OGY works" should be taken with a grain of salt. Recall again the
huge times to achieve control of this chapter: hundreds or thousands of seconds. Although
section 5.2.2 gives an explanation for this, it is still not desirable to wait half an hour before a
real-time system is finally controlled. Conclusions and recommendations considering this and
other problems are given in the next chapter.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

The basic observation behind the control of chaos is that any continuous or discrete time
chaotic system ẋ = f(x, p) or xi+1 = f(xi, pi), with control parameter p, has a large number
of periodic orbits embedded within its chaotic attractor. The OGY control algorithm controls
a chaotic system towards one or more of these orbits by perturbing the parameter p with
small amounts. Because the chaotic attractor is ergodic, the solution will at some point in
time come into the vicinity of the considered orbit where a linearization and a simple pole
placement control method can be applied.

This OGY control seems to work for any system, whether discrete or continuous, with
or without delay coordinates. Very important in its implementation is the accuracy of the
estimates for fixed points and the matrices A and B. As long as the estimates are relatively
accurate, OGY will indeed manage to turn the chaotic behavior into a periodic solution using
only small perturbations. When the fixed point is not estimated correctly, there will be a
steady state control effort. The worse the estimates are, the larger this effort will be, in the
end resulting in a failure of the OGY control algorithm.

In order to improve the estimates this report suggests a method where the fixed point and
the matrix A where calculated iteratively, until the offset matrix C became small enough.
When C = 0 the estimation of the fixed point is expected to be as close to the real fixed point
as possible and therefore A and B are as good as possible.

The dependency on the estimates means that when there’s noise present in the estimation
process, the OGY algorithm might not manage to control chaos. As long as the estimates are
accurate, OGY can cope with noise very well though. As long as the solution, subject to noise,
stays within the vicinity of the orbit (determined by the maximum parameter perturbation
δpmax), control is guaranteed. But larger noise values can push the system outside this vicinity
and the solution will return to chaos.

This report also showed the influence of δpmax. In general, small values of δpmax will result
in large times to achieve control. When δpmax is smaller than the steady state control effort,
the controlled state will never be reached and OGY will fail. Besides a smaller time to achieve
control, higher values of δpmax will result in more false control attempts, since not every point
where control is applied lies within the linear vicinity of the orbit.

The orbits controlled by OGY are limited to the ones embedded within the attractor.
OGY only turns chaos into a periodic solution, but which solution this is cannot be determined
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beforehand and its shape cannot be modified by the control law. It is even impossible to control
one of the state components (i.e. an output y(t)) towards a certain arbitrary trajectory yd(t).
This is a drawback compared to other (non-linear) controllers, which can often control the
output towards any desired trajectory. Furthermore, these non-linear controllers can obtain
much smaller times to achieve control, not depending on the ergodic behavior of the chaotic
system. Also, recall that the OGY algorithm results in a steady state setpoint error, while
most non-linear controllers will have smaller or even no steady state errors. Take, for example,
a computed torque controller, which guarantees that the tracking error becomes zero for t→∞,
following any desired trajectory, y(t)→yd(t).

OGY needs a very small control effort though, which is clearly an advantage, e.g. for
systems where parameters can not be changed a lot due to various restrictions. Another
advantage is that a model is not needed. Using delay coordinates it’s sufficient to measure
only one state component. Nowadays there are lots of different model estimation methods
and model-based non-linear controllers available though, so the question remains how useful
this really is. Chaotic systems might be difficult to model, but keeping in mind the drawbacks
mentioned before, often using a continuous non-linear controller for a poor model of the system
will give faster and better results than OGY does.

Finally, it should be noted that OGY works differently than Ott, Grebogi and Yorke ini-
tially thought. Instead of leaving the stable eigendirections of the orbit in tact, the OGY
algorithm, which is nothing more than a pole placement method, changes both all the eigen-
vectors and the unstable eigenvalues of the system. This is obvious, since the eigenvalues and
the eigenvectors of the closed loop A−BKT are different than those of A.

6.2 Recommendations

The time to achieve control for the OGY algorithm is in general very large and unpre-
dictable, since the ergodic behavior of the chaotic system determines when the solution is close
enough to the orbit. This makes OGY not very attractive, but there are some possibilities to
improve this.

1. As was mentioned in section 4.3, there are targeting techniques available, which are able
to target the solution towards an orbit even when it’s far outside its vicinity.

2. Notice that since OGY is a discrete time algorithm, it only tries to control at discrete
moments in time. In case of the Duffing oscillator this means that only every 2π

ω = 7.48s
there is a possibility to control, once per forcing period. OGY would perform faster if
this could be changed to much more moments, to ideally an infinite amount of points. It
should thus be investigated whether OGY can be written as a continuous time algorithm.

3. Instead of using linear estimates, non-linear least squares methods can be used to obtain
A and B. For example for the Hénon map a quadratic least squares fit might be more
accurate in a larger vicinity around the considered (fixed) point. This increasing size of
the vicinity can result in smaller times to achieve control.

In addition the the latter point, the simple linear least squares method used to find A and
B, is not allowed when there’s a correlation between the separate xi+1,j in (3.28). This wasn’t
the case for the systems in this report, but in some cases the possibility of using Partial Least
Squares should be considered.

44



6.2. RECOMMENDATIONS

Although this report assumes that the models of the used systems where unknown, all
results are purely based on numerical simulations. It still can not guarantee the success
of OGY in real experimental systems. Therefore, it is recommended to test the algorithm
described in this report on experimental chaotic systems. Various difficulties may then arise,
including measurement noise. Furthermore, the construction of the Poincaré map may be
much more difficult, especially when there is no periodic force present. In that case, samples
should be taken when, for example, position or velocity is at a certain value, which can be
very difficult or even impossible. This will also cause the time between samples to be different,
which calls for reconsideration of the length of time of the applied control (section 5.2.4).

Finally, one can ask why the control of chaos is necessary. First of all, there aren’t a lot
of real life applications of chaos. Secondly, in some situations it’s not clear whether periodic
behavior of a system is preferred over chaotic behavior. This could depend on the consequences
of either behavior, expressed in e.g. energy absorption or material fatigue. Or maybe the price
of perturbing the parameter(s) is higher than the gain of periodic over chaotic behavior.
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Appendix A

Estimation results for Hénon

In this appendix chapter some results are presented for the implementation of the OGY
control algorithm to the Hénon map, given by

xi+1 = yi + 1− ax2
i

yi+1 = bxi.

The theoretical stable fixed point of this map is[
x∗

y∗

]
=

[
0.6314
0.1894

]
,

and its corresponding matrices A and B, assuming a as the accessible parameter, are

A =
[
−2ax 1

b 0

]
and Ba =

[
−x2

0

]
.

In section 4.2.2 the coordinates of the period 1, 2, 4 and 13 were estimated using the recurrence
methods. These coordinates are, written in matrixform:

period 1:
[

0.6309
0.1891

]
period 2:

[
−0.4752 0.9760
0.2921 −0.1425

]
period 4:

[
0.6380 0.2181 1.1251 −0.7067
−0.2122 0.1917 0.0654 0.3375

]
period 13:

[
−0.2068 0.6223 0.3957 0.9675 −0.1932 1.2384
−0.3178 −0.0621 0.1867 0.1185 0.2907 −0.0579

· · ·

· · · −1.2032 −0.6556 0.0372 0.8014 0.1111 1.2228 −1.0601
0.3713 −0.3610 −0.1967 0.0112 0.2401 0.0332 0.3669

]
.

In section 4.2.3 also the matrices A and B are estimated for all of these points. Since it’s
unnecessary and paper filling to give all these 20 matrices A, only those for period 1 and 2
will be given here. For period 4 and 13 the eigenvalues of the orbit (i.e. the eigenvalues λ of
the product of the matrices) are given.

A1 =
[
−1.7666 0.9996
0.3000 −0.0000

]
A2,1 =

[
1.3285 0.9929
0.3000 0.0000

]
A2,2 =

[
−2.7297 0.9960
0.3000 0.0000

]
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λ4 = λ(A4,1 · · ·A4,4) = [−8.6464;−0.0010]
λ13 = λ(A13,1 · · ·A13,13) = [−8.0490; 0.0000]

Indeed the eigenvalues show that the total orbit has one stable (|λ| < 1) and one unstable
(|λ|> 1) direction. The offset matrix C can also be calculated, and should be zero. This is
not exactly true though:

C1 = 10−3

[
0.7651
0.2302

]
C2,1 = 10−3

[
−0.1261
−0.0650

]
C2,2 =

[
−0.0011
0.0007

]
The matrices B are only given for period 1, 2 and 4:

B1 =
[
−0.3563
0.0115

]
B2,1 =

[
−0.2290
−0.0032

]
, B2,2 =

[
−0.9970
0.0339

]
B4,1 =

[
−0.4111
−0.0134

]
, B4,2 =

[
−0.0487
0.0000

]
, B4,3 =

[
−1.2531
0.0000

]
, B4,4 =

[
−0.4807
0.0090

]
.

To examine the accurateness of these values, look at the actual value of B1 at the estimated
fixed point:[

x
y

]
=

[
0.6309
0.1891

]
⇒ B1 =

[
−x2

0

]
=

[
−0.3981

0

]
This means that the error in B1 is more than 10%. For other points this error in B is approx.
between 0% and 15%.
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Estimation results for Duffing

In this appendix chapter some results are presented for the implementation of the OGY
control algorithm to the Duffing oscillator, given by

ẍ + 2ξẋ +
1
2
x = FΩ2 sinΩt,

in which F is chosen as the control parameter.

When both position and velocity can be measured, there’s no need to use delay coordinates.
The recurrence method and the adjustment of the fixed point estimation then finds a fixed
point [

x
ẋ

]
=

[
0.5079
−0.3535

]
,

with the corresponding matrix A and remaining small offset C:

A =
[
−3.8958 −6.7048
0.0161 −0.1131

]
C = 10−5

[
−0.0112
0.4123

]
.

Using a perturbation δFmax = 0.05F a data series can be generated with which B can be
found as

B =
[
−5.4938
−0.7330

]
.

Delay coordinates are necessary when only position can be measured. For the delay coor-
dinate z(ti) = [x(ti), x(ti − τ)], the recurrence method and the adjustment of the fixed point
estimation are able to calculate two fixed points and a period 2 orbit:[

x̄(ti)
x̄(ti − τ)

]
1,a

=
[

0.5075
1.3053

] [
x̄(ti)

x̄(ti − τ)

]
1,b

=
[
−0.8167
−0.2473

]
,[

x̄(ti)
x̄(ti − τ)

]
2

=
[
−0.4287 −1.2510
−0.0648 −0.7362

]
.
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The adjustment method also returns A and the offset C:

A1,a =
[
−5.1180 5.3419
−1.5385 1.4965

]
C1,a = 10−16

[
0.1525
−0.8388

]
A1,b =

[
−5.5756 3.8982
−2.3079 1.5174

]
C1,b = 10−16

[
−0.1133
0.0991

]
A2,1 =

[
0.4824 −0.0233
−1.3269 0.5916

]
C2,1 = 10−16

[
0.3747
−0.5538

]
A2,2 =

[
−15.4317 8.1570
−4.7384 2.4191

]
C2,2 = 10−15

[
0.9061
0.2762

]
.

The perturbation matrices B1 (influence of δFi) and B2 (influence of δFi−1) for the fixed
points were found using δFmax = 0.05F :

B1
1,a =

[
−4.8474
−1.0575

]
B1

1,b =
[

1.5454
1.4537

]
B2

1,a =
[

2.6853
0.7935

]
B2

1,b =
[

2.3862
0.9270

]
When the adjusted delay coordinate method of section 5.2.4 is used, the values of z̄(ti)

and A remain the same. In that case there’s only one B at each point, instead of B1 and B2.
Using δFmax = 0.1F , B becomes:

B1,a =
[
−1.4256
−0.0539

]
B1,b =

[
6.2522
2.3932

]
B2,1 =

[
−0.2289
0.2358

]
B2,2 =

[
13.3566
3.9703

]
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Matlab R© code

C.1 The Hénon map
% Henon Parameters
a = 1.4; b = 0.3;
iter = 100000;

% Creation of data points
data = [0;0];
for i = 1:iter;

data(1,i+1) = data(2,i)+1-a*data(1,i)^2;
data(2,i+1) = b*data(1,i);

end
xrange = max(data(1,:))-min(data(1,:));
yrange = max(data(2,:))-min(data(2,:));

C.2 The Duffing oscillator

The code for delay coordinate reconstruction of Duffing:

% Duffing parameters
ksi = 0.04;
omega = 0.84;
F = 0.188;

% Defining delay
period = 2*pi/omega;
deel = 4;
delay = periode/deel;

% Generating data series
begin = [0 0];
endtime = 200000;
nop_end = ceil(endtime/period);
endtime = nop_end*period;
data = [];
for i = 0:(nop_end-1);

timedc = [i*period , (i+1)*period-delay , (i+1)*period];
[tdc,xdc] = ode45(@duffing,timedc,begin,options,ksi,omega,F);
data = [data , [xdc(3,1) ; xdc(2,1)] ];
begin = xdc(end,:);

end

xrange = max(data(1,:))-min(data(1,:));
yrange = max(data(2,:))-min(data(2,:));
iter = length(data)-1;
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This code uses the function duffing.m:

function dx = duffing(t,x,ksi,omega,F);
dx = zeros(2,1);

dx(1) = x(2);
dx(2) = F*omega^2*sin(omega*t) - 2*ksi*x(2) - 0.5*x(1)^3 + 0.5*x(1);

C.3 Estimation tools

The scripts in sections C.3.1, C.3.2 and C.3.3 were used for the Hénon map. Section C.3.4
shows the script for the adjustment of the estimations for fixed points and A and B for the
Duffing oscillator, described in section 5.2.1.

C.3.1 Estimating fixed points and orbits
% Recurrence parameters
ksi_grens = 0.002; maxrecur = 15;

% Recurrence iterations
veld = sparse(1,iter);
for i = 1:(length(data)-1);

for j = i+1 : length(data);
ddata = data(:,i) - data(:,j);
ddata = [ddata(1,:)/xrange ; ddata(2,:)/yrange];
ksi = norm(ddata,2);
if ksi < ksi_grens;

veld(1,i) = j-i; break;
elseif j-i >= maxrecur ; break;
else ;
end

end
end
clear i j ddata ksi;

For every period m of interest, perform the following:

periode = m;

% Recurrent points for period m
[i,j] = find(veld==periode);
for n = 1:length(j);

rec(1,n) = j(n);
rec(2:3,n) = data(:,j(n));

end
clear n;

% Searching longest sequence
len = 1;
lengte = 0;
for n = 1:length(rec)-1;

if rec(1,n+1)-rec(1,n) == 1;
len = len + 1;

else if len > lengte;
lengte = len;
begin = n+1-lengte;
eind = n;

else ;
end
len = 1;

end
end
if len > lengte;
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lengte = len;
begin = n+2-lengte;
eind = n+1;

else ;
end
clear len n;
serie = rec(2:3,begin:eind);
sd = ones(1,lengte);

% Creating extra points if needed
if lengte < periode;

n = [rec(1,eind)+1 : rec(1,eind)+periode-lengte];
serie(:,lengte+1:periode) = data(:,n);
sd(1,lengte+1:periode) = ones(1,periode-lengte);
lengte = periode; eind = begin+periode-1;

end
clear n;

% Gathering all points in each others vicinity
for n = [1:begin-1 , eind+1:length(rec)];

for m = 1:lengte;
dx = rec(2:3,n) - serie(:,m);
dx = [dx(1,:)/xrange ; dx(2,:)/yrange];
if norm(dx,2) < ksi_grens;

sd(1,m) = sd(1,m) + 1;
serie(:,m,sd(1,m)) = rec(2:3,n); break

else ;
end

end
end
clear n m dx;

% Averaging all points
perpunt = serie(:,1:periode,:);
diepte = sd(1,1:periode);
for n = 1:lengte-periode;

ratio = ceil(n/periode)-1;
oud = diepte(1,n-ratio*periode);
diepte(1,n-ratio*periode) = oud + sd(1,n+periode);
perpunt(:,n-ratio*periode,1+oud:diepte(1,n-ratio*periode)) = serie(:,n+periode,1:sd(1,n+periode));

end
clear n sd serie ratio oud;
for n = 1:periode;

pm(:,n) = sum(perpunt(:,n,1:diepte(1,n)),3)/diepte(1,n);
end
clear n;

Now pm contains all m points of the period m orbit.

C.3.2 Estimating A

The following function estimates A:

function [A,C] = algorithm_a(data,pn,ksi_grens,grootte,fignr);

periode = size(pn,2);
dim = size(pn,1);

% Looking for points to estimate with
[orig,afb] = zoeka(data,pn,grootte,ksi_grens);
% Calculate A and the small perturbation C
for i = 1:periode;

temp_afb = afb(:,:,i);
while temp_afb(:,end) == [0;0];

temp_afb = temp_afb(:,1:(end-1));
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end
temp_orig = orig(:,1:size(temp_afb,2),i);
n = size(temp_orig,2);
x = [ones(1,n) ; temp_orig]’;
y = temp_afb’;
c = x\y;
A(:,:,i) = c(2:end,:)’;
C(:,:,i) = c(1,:)’;

end

This function uses a function to find points close to the orbit:

function [orig,afb] = zoeka(data,p,grootte,ksi_grens);

xrange = max(data(1,:))-min(data(1,:));
yrange = max(data(2,:))-min(data(2,:));

% ’grootte’ should be as long as p
if length(grootte) == 1;

grootte = ones(1,size(p,2))*grootte;
elseif length(grootte) == size(p,2);
else error(’De vector grootte heeft niet dezelfde lengte als p’);
end

% Searching points within ’ksi_grens’
punt = [ p , p(:,1) ];
k = ones(size(p,2),1);
for i = 1:(length(data)-1);

for j = 1:size(punt,2)-1;
ddata = data(:,i) - punt(:,j);
ddata = [ddata(1,1)/xrange ; ddata(2,1)/yrange];
ksi1 = norm(ddata,2); clear ddata;
if ksi1 < grootte(j)*ksi_grens;

ddata = data(:,i+1) - punt(:,j+1);
ddata = [ddata(1,1)/xrange ; ddata(2,1)/yrange];
ksi2 = norm(ddata,2); clear ddata;
if ksi2 < grootte(j)*ksi_grens;

orig(:,k(j),j) = data(:,i) - punt(:,j);
afb(:,k(j),j) = data(:,i+1) - punt(:,j+1);
k(j) = k(j)+1; break;

else ;
end

else ;
end

end
end

C.3.3 Estimating B

function B = algorithm_b(serie,pn,A,ksi_grens,grootte,dp_grens);

periode = size(pn,2);

% Looking for points close to the orbits
[orig,afb] = zoekb(serie,pn,grootte,ksi_grens);

% Estimating B
for i = 1:periode;

temp_afb = afb(:,:,i);
while temp_afb(:,end) == [0;0];

temp_afb = temp_afb(:,1:(end-1));
end
temp_orig = orig(:,1:size(temp_afb,2),i);
n = size(temp_orig,2);
x = temp_orig’;
y = temp_afb’;
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ball = temp_afb - A(:,:,i)*temp_orig;
nul = zeros(1,n);
bave = mean(ball,2);
B(:,:,i) = bave/dp_grens;

end

The function uses a function to find relative points:

function [orig,afb] = zoekb(serie,p,grootte,ksi_grens);

xrange = max(max(serie(1,:,:)))-min(min(serie(1,:)));
yrange = max(max(serie(2,:,:)))-min(min(serie(2,:)));

punt = [ p , p(:,1) ];
k = ones(size(p,2),1);
for i = 1:(length(serie)-1);

for j = 1:size(punt,2)-1;
dserie = serie(:,i,1) - punt(:,j);
dserie = [dserie(1,1)/xrange ; dserie(2,1)/yrange];
ksi1 = norm(dserie,2); clear dserie;
if ksi1 < grootte(j)*ksi_grens;

dserie = serie(:,i,2) - punt(:,j+1);
dserie = [dserie(1,1)/xrange ; dserie(2,1)/yrange];
ksi2 = norm(dserie,2); clear dserie;
if ksi2 < grootte(j)*ksi_grens;

orig(:,k(j),j) = serie(:,i,1) - punt(:,j);
afb(:,k(j),j) = serie(:,i,2) - punt(:,j+1);
k(j) = k(j)+1; break;

else ;
end

else ;
end

end
end

C.3.4 Estimation adjustments
tol = 1e-4; % Stopping criterium, absolute tolerance on dp
dpn = [1 ; 1]; % Initial fixed point adjustment
Cold = [1;1];

while max(abs(dpn)) > tol;
% Estimation of A and C
% The function zoeka was already used before
[orig,afb] = zoeka(data,pn,2,ksi_grens);
n = size(orig,2);
x = [ones(1,n) ; orig]’;
y = afb’;
c = x\y;
A = c(2:3,:)’
C = c(1,:)’
if C == Cold;

disp(’No improvement possible’); break;
end
Cold = C;

% New estimation fixed point
y1 = (afb(1,:)-A(1,:)*orig)’;
y2 = (afb(2,:)-A(2,:)*orig)’;
yn = [y1;y2];
x1 = [ones(1,n)*(1-A(1,1)) ; -ones(1,n)*A(1,2)]’;
x2 = [-ones(1,n)*A(2,1) ; ones(1,n)*(1-A(2,2))]’;
xn = [x1;x2];
dpn = xn\yn
if max(abs(dpn)) > tol;

pn = pn+dpn;
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else pn = pn;
end
end

C.4 The OGY algorithm

C.4.1 Fixed point
Here the example of the Hénon map is used.

% Parameters
p = a;
dp_grens = 0.05*a;
fp = max(roots([a (1-b) -1])) % Theoretical fixed point

% Linearize:
A = [-2*a*fp , 1;

b , 0];
B = [0 ; fp];
lam = eig(A); % Eigenvalues of A

% Setting unstable eigenvalues to zero
i = 1;
while i <= length(lam);

if abs(lam(i)) >= 1
k(i) = 0; i=i+1;

else k(i) = lam(i); i=i+1;
end

end

% Pole placement
C = ctrb(A,B);
if size(B,1) == rank(C) % Controllability demand

K = acker(A,B,k);
K = K’;

else error(’Matrices A and B are not controllable!’)
end

% Application to 1000 iterations
Xfp = [fp;b*fp]
X = [0;0]; % Initial condition
regelstap = [0];

a = p;
for i = 1:1000;

dp = -K’*(X(:,i)-Xfp);
if abs(dp) <= dp_grens

a = p + dp;
regelstap = [regelstap , dp];

else dp = 0; a = p + dp;
regelstap = [regelstap , dp];

end
X(1,i+1) = X(2,i)+1-a*X(1,i)^2;
X(2,i+1) = b*X(1,i);

end
tijd_X = 0:(length(X)-1);

% Visualization
figure(1)
subplot(2,1,1)
hold on, grid
plot(tijd_X,X(1,:),’b.’,’MarkerSize’,5)
title(’System response’,’FontSize’,18)
ylabel(’Response x’,’FontSize’,15)
subplot(2,1,2)
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hold on, grid
plot(tijd_X,regelstap,’r.’,’MarkerSize’,5)
xlabel(’timestep’,’FontSize’,15),ylabel(’Control effort \deltab’,’FontSize’,15);

C.4.2 Higher periodic orbits
File to create the matrix Φi,j :

function phi = makephi(A,u,i,j);

periode = size(A,3);

if j > u-1;
phi = zeros(0,size(A,1));

else
while i+j > periode;

i = i-periode;
end
phi = A(:,:,i+j);
while j < u-1;

j = j+1;
while i+j > periode;

i = i-periode;
end
phi = A(:,:,i+j) * phi;

end
end

File to create the matrix C:

function [C,u] = makec(A,B);

periode = size(A,3);

% Calculation number of stable and unstable eigenvectors
prod = A(:,:,periode);
for i = 1:periode-1;

prod = prod*A(:,:,periode-i);
end
clear i;
d = eig(prod);
s = 0; u = 0;
for i = 1:length(d);

if abs(d(i)) < 1;
s = s+1;

elseif abs(d(i)) > 1;
u = u+1;

else ;
end

end
clear i prod d;

% Calculation stable eigenvectors for every point
for i = 1:periode;

stab = A(:,:,i);
j = i-1;
for n = 1:periode-1;

if j == 0;
j = periode;

else;
end
stab = stab*A(:,:,j);
j = j-1;

end
[v,d] = eig(stab);
m=1;
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for n=1:length(d);
if abs(d(n,n)) < 1;

vs(:,m,i) = v(:,n);
m=m+1;

else;
end

end
end
clear i j n m v d stab;

% Creation of C (by using makephi)
for i = 1:periode;

iu = i+u;
iumin = i+u-1;
while iu > periode;

iu = iu-periode;
end
while iumin > periode;

iumin = iumin-periode;
end
temp = [ B(:,:,iumin) , vs(:,:,iu) ];
if u-1 < 1;

;
else for j = 1:u-1;

temp = [chaos09phi(A,u,i,u-j) , temp];
end

end
C(:,:,i) = temp;

end
clear i j temp;

File to create control matrix K:

function K = makek(A,C,u);

periode = size(C,3);
kappa = zeros(1,size(C,1)); kappa(1,1) = 1;
for i = 1:periode;

temp = kappa*inv(C(:,:,i))*chaos09phi(A,u,i,0);
K(:,:,i) = temp’;

end
clear temp i;

OGY control of a period m orbit then becomes as simple as:

% Calculation of K
[Cm,um] = makec(Am,Bm);
Km = makek(Am,Cm,um);

% Application of OGY
regel = m;
for i = 1:1000;

for j = 1:regel;
dp(j,1) = -Km(:,:,j)’*(X(:,i)-pm(:,j));
if abs(dp(j,1)) > dp_grens;

dp(j,1) = 0;
else ;
end

end
test = find(dp);
[e,f]=min(abs(dp(test))); dp=dp(test(f));
if dp == [];

dp = 0;
else ;
end
a = p + dp;
regelstap = [regelstap , dp];
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X(1,i+1) = X(2,i)+1-a*X(1,i)^2;
X(2,i+1) = b*X(1,i);
clear test e f;

end

C.4.3 Delay coordinates
When OGY is implemented using delay coordinates as in section 5.2.3, K has to be

recalculated. Using the same A and new defined matrices B1 and B2, the code becomes:

% Defining new A and B
An = [A , B_2;

zeros(1,size(A,2)) , 0];
Bn = [B_1 ; 1];

% Calculation of K
ev = findev(An);
i = 1;
while i <= length(ev);

if abs(ev(i)) >= 1
k(i) = 0; i=i+1;

else k(i) = ev(i); i=i+1;
end

end
C = ctrb(An,Bn);
if size(Bn,1) == rank(C);

K = acker(An,Bn,k);
K = K’;

end

The application of OGY is then calculated with the following code:

% Using fp = fixed point, and K = control matrix
p = F;
regelstap = [0];
period = 2*pi/omega;
eind = 10000;
nop_end = ceil(eind/period);
for i = 1:nop_end;

tijd = [(i-1)*period , i*period-delay , i*period];
dp = -K’*(rdata(:,end) - fp);
if abs(dp) > dp_grens

dp = 0; F = p + dp;
else F = p + dp;
end
[t,x] = ode45(@duffing,tijd,begin,options,ksi,omega,F);
regelstap = [regelstap , dp];
rdata(:,i+1) = [ x(3,1) ; x(2,1) ; F];
rtijd(1,i+1) = t(end);
begin = x(end,:);

end
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