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Chaotic orbits are sometimes an undesirable behavior in real-world systems. However, these orbits
can be stabilized in some cases if the system contains a parameter that is accessible to a control
scheme. The OGY method is one way to stabilize an orbit using such a parameter. We explain this
method and present two such controllers that stabilize a period-one and a period-two orbit for the
Henon Map, a simple two-dimensional continuous map.

Introduction—Chaotic behavior occurs in many mod-
els of real-world systems, from simple one-dimensional
maps to complex continuous-time systems with many
variables. Sometimes this is a desirable result, for ex-
ample in the case of random number generators. Often,
however, it is not. An erratically oscillating machine may
cause significant damage to itself and surrounding infras-
tructure, and a heart chaotically oscillating in the throes
of arrhythmia does not pump blood[3]. Moreover, since
the chaotic region for a system may contain many pos-
sible orbits, being able to select between several of these
by changing control parameters allows multiple responses
from the same system[1]. Thus, it is often useful to stabi-
lize a chaotic orbit to one that is regular and predictable.

One method to do so involves the feedback-based OGY
method. We aim to present an explanation and demon-
stration of this method targeted towards undergraduate
students in engineering and mathematics. We begin by
introducing the theory and proceed to implement it for
the two-dimensional Hénon Map that demonstrates the
successful stabilization of a period-1 and a period-2 orbit.

Stability—To understand what is involved in stabiliz-
ing a chaotic orbit, it is first necessary to lay context
in the idea of periodic orbit. A period-n orbit of a map
yields the same value after successive n iterations. Stable
periodic orbits are surrounded by a region of points that
get closer to that orbit with successive iterations, while
unstable orbits are surrounded by a region of points that
tend to diverge away. Thus, in the latter case, unless such
an initial value is exactly on the unstable periodic orbit,
it will not stabilize toward the fixed points because the
surrounding region will tend to push it away. A chaotic
orbit can be interpreted as an unstable period-infinity
orbit.

The stability of a fixed point in a given map ~F can be
calculated by taking the eigenvalues of the Jacobian of
the map at the fixed point. For a periodic orbit, we use
the matrix product of the Jacobian at each point in the
orbit to calculate the eigenvalues. If all eigenvalues are
greater than one, then the periodic orbit is unstable; even
if a point starts very close to the periodic orbit, it will
tend to move away with successive iterations. If the set of
eigenvalues is mixed between values greater and less than
1, the orbit is a saddle point; the orbit will tend to diverge

away from the fixed point along the eigenvectors of the
eigenvalues greater than 1; hence saddle points are also
unstable. If the absolute value of each of the eigenvalues
is less then 1, then the periodic orbit is stable.

OGY Method— One way to generate such a periodic
output from a chaotic system is to use the OGY method,
a feedback-based approach published by Ott, Grebogi,
and Yorke in 1990[1]. It can be explained as follows:

Let ~F be an N -dimensional map with an unstable
period-1 fixed point ~P ∗ (the argument can be expanded
to period-n orbits by replacing ~F with ~Fn). Since we are
interested in finding the motion of the orbit relative to
the fixed point(s), we define another term, the ”error” ~pn,
equal to ~Pn− ~P ∗ where ~P is the value of the nth iteration
of the orbit and ~P ∗ is the value of the fixed point.

Assume that the value of the map at this fixed point
is dependent on a system parameter Z that normally has
value Q. That is, perturbing this parameter by some
small amount z to a new value Q− z results in a change
of ∂ ~F

∂z in the map at this point. Near the fixed point, ∂ ~F∂z
can be approximated by a linear Taylor series expansion
~C; hence, changing the parameter z affects the value of
the map by ~Cz.

If we strategically modify z in response to the error
~p, we may be able to use ~Cz to cancel the effect of J,
the tendency of the orbit to move away from the fixed
point. Modifying z affects each component of the vector
~pn+1; to find a global optimally solution, the change to
z must be determined with a mind to its effects on all
components of the vector ~Pn+1. Thus, we define a set of
weights {k1, k2, . . . , kN} which we can express as a row
vector ~K such that z = ~K ~C. In equation 1, we examine
the equation for the error of the next value of the orbit
in terms of K to solve for the proper values for ~K.

~pn+1 = (J− ~C ~K) ~pn (1)

In equation 1, ~pn+1 is the error of the next point in the
orbit, ~Pn+1 − ~P ∗, pn is the error of the current point in
the orbit, ~Pn− ~P ∗. J is the Jacobian of the map which is
the local sensitivity of pn+1 to the error p of the previous
value of the orbit. ~C is the sensitivity of the map to
some accessible system parameter Z that is displaced by
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z from its normal value.

The stability of the map thus depends on the matrix
J − ~C ~K, which is the Jacobian of the controlled map.
Thus if J − ~C ~K has eigenvalues with modulus less than
1, the control system can successfully stabilize the sys-
tem. This requires an appropriate choice of ~K such that
the magnitude of each eigenvalue is less than 1. To deter-
mine the range of appropriate values for k1, k2, . . . , kN ,
one can solve det (J− ~C ~K − λ~I) = 0 for λ1, λ1, . . . , λN
(the characteristic equation of the matrix) in terms of
k1, k2, . . . , kN . Then, solving the equations with the
boundary conditions for each lambda value (λn = 1,
λn = −1) allows us to find the set of boundary condi-
tions for stability.

Applying to the Hénon map— We can apply the OGY
algorithm to a two-dimensional map in the form ~pn+1 =
~F (~pn), where ~p is a two-dimensional vector, ~F is a vec-
tor function, and n is the iteration count. One example
of a two-dimensional map is the Hénon map, defined in
equation 2. At certain parameter values, the Hénon map
presents chaotic behavior [2]. In our examples, we use
the parameters a = 1.4 and b = 0.3 because those were
the parameters Hénon [2] showed demonstrated chaotic
behavior, but our analysis is symbolic and should work
with any given parameters the has chaotic behavior.

~F (Pn+1) =
{
Xn+1 = 1 + Yn − aX2

n

Yn+1 = bXn

}
(2)

We first perform a change of variables such that Xn =
1
axn and Yn = b

ayn. By changing the variables, the re-
vised Hénon map, in equation 3, has the parameter a
which is not attached to either the variable xn or yn,
making that system parameter easily adjustable. Our
control system consists of creating perturbations a0 in
the parameter a.

~F (~Pn+1) =
{
xn+1 = a+ byn − ax2

n

yn+1 = xn

}
(3)

We can find the fixed points by solving the equation
~Pn = ~F (~Pn), where ~F (~Pn) is defined in equation 3. The
solutions to this system of equation for both x and y
are the roots to the polynomial 0 = x2 + (1 − b)x − a.
Only one of these fixed points is located in the chaotic
attractor [4]. Because the OGY algorithm only makes a
fixed point locally stable, the control system work only
when the chaotic orbit passes close to that fixed point.
Therefore, we want to stabilize the orbit around the fixed
point located in the chaotic attractor, which we call the
stabilization fixed point x∗. In equation 4, we use the
quadratic formula to find x∗.

x∗ = y∗ =
b− 1 +

√
(1− b)2 + 4a
2

(4)

Characteristic Polynomial and Control Parameters—
We proceed to apply the control algorithm, a pertur-

bation in the parameter a when the system is close to
the fixed point, defined in general in equation 1. The
total perturbation, in this case a0, is proportional to the
error. In this specific case, ~C, the partial derivatives of
the map with regards to the controlled system parame-
ter a, equals the column vector (1, 0). The row vector
~K, also written as [k1, k2], is the control parameter that
varies according to the map parameters. The chaotic or-
bit can be controlled only by choosing the correct values
for [k1, k2].

With the control algorithm in place, the stability of
the fixed point is determined by the eigenvalues of the
matrix [J − ~C ~K], defined below. J is the Jacobian of
the uncontrolled Hénon map, defined in equation 3. The
error grows if the modulus of the eigenvalues were greater
than 1 and decay if the modulus is less than 1.

[J− ~C ~K] =
(
−2x∗ − k1 b− k2

1 0

)

FIG. 1: The boundary on the k1, k2 plane that can stabilize
the chaotic orbit defined in equation 6. If we choose parame-
ters within the region bounded by the triangle and apply the
control algorithm, the system will stabilize around the fixed
point. In general, control parameters close to the boundary
causes the system to stabilize more slowly because the mod-
ulus of their eigenvalues is closer to 1, causing a slower rate
of decay in the error.

The characteristic equation to find the eigenvalues is
defined below in equation 5, where x∗ is the fixed point
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defined in equation 4

0 = λ2 + λ(2x∗ + k1) + k2 − b (5)

To stabilize the system about the fixed points through
decaying the error, we must choose values of k1 and k2

such that both eigenvalues, λ1 and λ2 have magnitudes
less than 1. Another way to interpret this is that the the
product of both eigenvalues must be less than 1, and that
λ1 < 1 and λ1 > −1.

To meet the condition that λ1λ2 < 1, we can factor out
the characteristic equation 5 into (λ − λ1)(λ − λ2) = 0.
This means λ1λ2 = k2 − b. Thus, the boundary when
λ1λ2 transitions from below to above 1 equals k2 = 1+b.

We proceed to find conditions to ensure λ1 < 1; to do
this, we can find the parameter ranges such that λ1 = 1,
which form the boundary for when λ1 transitions from
below 1 to above 1. We can locate the boundary by trying
to factor out (λ − 1) from the characteristic equation 5.
Through long division, we can factor out (λ − 1) if and
only if k2 − b + 2x∗ + k1 + 1 = 0. Thus, the boundary
for λ1 = 1 on the k1, k2 plane is a line defined by k2 =
−k1 − 2x0 − 1 + b.

We use a similar approach in factoring out (λ + 1) to
find the boundary for λ1 = −1. The boundary where λ1

transitions from below −1 to above is a line defined by
k2 = k1 + b+ 2x∗ − 1. Equation 6 states the boundaries.

λ1λ2 < 1 : k2 = 1 + b

λ1 < 1 : k2 = −k1 − 2x∗ − 1 + b (6)
λ1 > −1 : k2 = k1 + 2x∗ − 1 + b

Figure 1 plots the three boundary, a triangle defined
by equation 6. To stabilize the system about the fixed
point, we must choose a value of k1 and k2 within that
triangle. A thorough discussion of the inconsistencies is
given right before the conclusion.

In figure 2, we choose control parameters within the
stable region from figure 1 and iterate the controlled map.
Because we made linear approximations, our method
should work when ~P is close to the fixed point, or when
the error is small. Thus, our control algorithm activates
whenever it detects that xn and yn are close to the fixed
points. Another reason the control algorithm activates
when the error is small is because the power of the con-
trol might be limited such that it can only work with
small error.

Stabilizing on a Period-2 Orbit— We can apply the
OGY algorithm to stabilize a chaotic orbit to a period-2
orbit.

We find the period-2 orbits by solving the equation
~P = ~F 2(~P ), where the function is defined in equation
3. Because we aim to have the system oscillate between
two points, we can remove the fixed points from the set

FIG. 2: The top graph represents the chaotic orbit of an un-
controlled Hénon map. With the control algorithm activating
around the 28th iteration in the middle graph, we see that the
map stabilizes around the fixed point. The control parame-
ters k1 and k2 is the blue dot inside the teal region in Figure
1, ensuring the system stabilizes within the fixed point. The
bottom graph illustrates the size of the perturbations of the
control parameter; it is strong when it first starts activating
but eventually decreases when the map is stabilized around
the fixed point.

of period-2 orbits. The two remaining period-2 orbits
are designated as xα and xβ . yα and yβ equal xα and
xβ according to equation 3. If a chaotic attractor exists,
the period-2 orbit would be located within that attractor
because a chaotic attractor contains all periodic orbits.

We can apply the OGY algorithm at xα, xβ , or both.
We chose the final option because applying perturbations
to both orbit points stabilizes the system most quickly.

Using the chain rule, the stability of a period-2 or-
bit is governed by the eigenvalues of the product of
the respective Jacobian matrix for xα and xβ . To find
proper control parameters, we try to find the eigenval-
ues of the matrix product of [J|x=xα

− ~C|x=xα
~K] and

[J|x=xβ
− ~C|x=xβ

~K] since control is applied at both xα
and xβ . We notice that the characteristic equation for
the eigenvalues of is defined below:

0 =− 4x1x2λ− 2k1x1λ− 2x2k1λ+ b2−
2bk2 + k2

2 − k2
1λ− 2bλ+ 2k2λ+ λ2

To find control parameters for a stable period-2 orbit,
we can again solve for the boundary of the region on the
k1, k2 plane such that λ1λ2 < 1, λ1 < 1, and λ1 > −1.
The approach and logic is the same as the ones used to
derive the parameter boundaries in equation 6. Because
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of various nonlinear terms in the characteristic equation,
the boundary is no longer explicitly defined; we can, how-
ever, describe the boundary as the roots of the polyno-
mial equations defined in equation 7. Figure 3 plots the
boundary for control parameters that can stabilize the
chaotic orbit. Figure 4 gives an example of stabilizing a
chaotic orbit onto a period-2 orbit by choosing a control
parameter within the stable region.

λ1λ2 < 1 : 0 =k2
2 − k2(2b) + b2 − 1

λ1 < 1 : 0 =k2
2 − k2(−2b− 2) + k2

1 + 2k1x1

+ 2k1x2 + 4x1x2 + b2 + 2b+ 1 (7)

λ1 > −1 : 0 =k2
2 − k2(−2b+ 2)− k2

1 − 2k1x1

− 2k1x2 − 4x1x2 + b2 − 2b+ 1

FIG. 3: The boundary of the control parameters, with the
boundary defined in equation 7. Choosing parameters within
the region stabilizes the Hénon map around a period-2 orbit.
Inside the region, locations closer to the boundaries in general
takes more iterations to stabilize, defined as when the error
is reduced by 99%.

Figure 3 also plots the number of iterations the system
takes to stabilize the chaotic orbit to a period-2 orbit once
the control system is activated. The time is calculated
through numerical iteration like that shown in figure 4.
Locations closer to the boundaries generally take more
time to stabilize because the modulus of their eigenval-
ues are closer to 1. The eigenvalues are an approximate
measure the rate of growth or decay of the error from the
desired position (the period-2 orbit); eigenvalues closer to
0 means the error decays quicker.

In both figure 6 and figure 7, there exists some regions
inside the boundary that do not stabilize. This is be-
cause the simulation has not run enough iterations for
such points to stabilize, defined as when 99% of the error
is eliminated. Furthermore, the contours for the num-
ber of iterations are not smooth and well-defined. One
reason is this occurs because the boundaries do not give
direct information about the λ2 or their corresponding
eigenvector. Even if λ1 has a large modulus, λ2 may be
small, resulting in a faster decay. In addition, there exists

roundoff error which amplifies because the results from
each iteration affects the results of the next iteration.

FIG. 4: The top graph represents the chaotic orbit of an un-
controlled Hénon map. With the control algorithm activating
around the 90th iteration in the middle graph, we see that
the map stabilizes by oscillating around the period-2 orbits.
The control parameters k1 and k2 is the blue dot in figure
3. The bottom graph again describes the relative size of the
perturbations made to stabilize the system.

Conclusion — In many cases, chaotic behavior is not
desirable and needs to be controlled to achieve a pre-
dictable steady or periodic behavior. The OGY control
algorithm is a feedback algorithm that creates small per-
turbations in system parameters to stabilize the system
to periodic orbits. We applied the OGY algorithm to the
Hénon map with chaotic system parameters. We found
parameter ranges that the control algorithm is able to
stabilize a system to a fixed point and a periodic orbit.
In addition, the amount of ”work” the control algorithm
must do is directly linked to the eigenvalues of the con-
trolled matrix.

We applied the OGY algorithm to stabilize the Hénon
map about the period-1 and period-2 orbit. Preliminary
results show that the same algorithm can be used to sta-
bilize higher-period orbits; a further area of investigation
is determining whether the OGY algorithm can stabilize
a chaotic Hénon map about any period-n orbit.

We are also interested in other chaotic maps the OGY
algorithm can control. Preliminary investigations into
the Baker map have yielded promising results.

[1] Ott, Edward and Grebogi, Celso and Yorke, James A.
”Controlling Chaos.” Phys. Rev. Lett. 64, 2837 (1990)
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