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We onsider a pair of neurons modelled by Fitzhugh-Nagumo equations with eletrial oupling. When

the neurons are idential, we show how the symmetry of the system leads to the oexistene multiple,

stable periodi orbits. As the oupling between the neurons is strengthened, these periodi orbits an

undergo various bifurations, leading to the oexistene of multiple, stable haoti attrators. We show

that this behaviour persists when the neurons are lose to, put no longer exatly, idential.

1. Introdution

The Fitzhugh-Nagumo [1,2℄ equations are an set of simple equations whih exhibit the qualitative

behaviour observed in neurons, namely: quiesene, exitability and periodi behaviour. The form we

will use here
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was introdued in [1℄ by modifying the equations of the van der Pol relaxation osillator [3℄. Although

the variables have no exat physiologial interpretation, for appropriate parameter values (see setion

two), the qualitative behaviour of x is similar to that of the voltage variable in the Hodgkin Huxley

equations [4℄ and that of y to the \reovery" or gating variables. The funtion z(t) represents the foring

of the ell by an external stimulus. We will be interested in the ase when there is no external foring,

z(t) � 0, so we may fous on e�ets of oupling two suh neurons together. In setion two we will review

the possible behaviour whih may our in (1) as the parameters a; b;  are varied. This will allow us to

hoose reasonable range of values for our oupled neuron studies.

Our study is designed to emulate two neurons linked with eletrial oupling, i.e. oupling via the

ow of ions through the gap juntions between neurons. We thus follow [5℄ in hoosing the form of this

oupling to be a onstant times the di�erene in the voltage of the two ells. As in this work (and di�ering

from [6℄) we ouple the neurons only through their voltage equation. This leads to a set of four oupled,

nonlinear ordinary di�erential equations:
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From a biologial standpoint, if we onsider the two neurons to be in a similar region of the brain, it

is likely that the parameter values will be similar but not idential. Thus our fous will be on the ase

where the parameter values are suh that both neurons will be apable of exhibiting the same qualitative

behaviour.
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To give us a basis from whih to start, we onsider, in setion three, the behaviour when two neurons

with idential parameters are oupled together (i.e. (2) with a

1

= a
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, b
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= b
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, 
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and 

12
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21

).

We will fous on parameter values suh that the neurons may display either a single stable steady state

or periodi behaviour. This will lead us to setion 4, where we study the ase of near-idential neurons,

i.e neurons where the parameters di�er by a small amount. In setion 5 we disuss our results in relation

to some other similar studies.

2. Single Neuron

Consider equation 1 with no external foring
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Equilibrium solutions, (x(t); y(t)) = (�x; �y), must satisfy
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for b 6= 0 and (�x; �y) = (a; a

3

=3�a) when b = 0. We will restrit our analysis to b > 0 sine the expressions

for the equilibrium points are well behaved in this interval, and sine this will be the relevant parameter

range for the studies of subsequent setions.

One, two or three solutions to (4) an exist, depending on whether the quantity D = a

2

+ 4(1� b)

3

=9b

is positive, zero or negative, respetively. Verifying the standard onditions it an be shown that a saddle

node bifuration ours along the set of parameter values where D = 0.

The Jaobian of linearization of (3) about an equilibrium is
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Therefore, a Hopf bifuration of the equilibrium point (�x; �y) an our when b
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We will fous on parameter values where only one equilibrium point exists, but this point may undergo

a Hopf bifuration. This is the parameter range hosen for biologial reasons by Fitzhugh [1℄. Clearly this

orresponds 0 < b < min(1; jj). For any �xed b in this range there an be up to two Hopf bifurations of

the equilibrium as a is varied.

3. Coupled, Idential Neurons

We now turn to the situation where two idential neurons are oupled together. The model for this

ase is (2) with a

j

= a; b

j

= b; 

j

= ; j = 1; 2. We further assume that the oupling is symmetri, i.e.
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Note that a onsequene of the form of the oupling and the assumption that the neurons are idential is

the invariane of the equations under the transformation (x

1

; y
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an also be observed in the existene of an invariant subspae for the equations I = f(x
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g: We will refer to solutions whih lie in I as symmetri and those whih do not lie in I as

non-symmetri solutions. Physially, the invariane of this subspae means that if the two neurons start

with idential initial onditions then their subsequent behaviour will also be idential; suh solutions are

sometime referred to as in-phase.

To failitate our study of these equations we will perform a simple, linear hange of variables
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leading to the new equations
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In the new variables the symmetry is
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and the invariant subspae (and hene the symmetri solutions) have the simple form I = f(X
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A further symmetry is also evident
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One again, we begin our study by determining the equilibrium points of the equations. Symmetri

equilibrium points are of the form
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) = (0; 0; �x; �y) (13)

where �x and �y satisfy (4). Non-symmetri equilibrium points are given by
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The Jaobian of the linearization of (10) about the symmetri equilibrium is
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Clearly, the four eigenvalues of this matrix ome in two pairs.

The symmetri eigenvalues have eigenvetors lying in the invariant subspae I and satisfy �
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). Bifurations assoiated with these eigenvalues

will result in new solutions whih remain in I. We will refer to these as symmetry preserving bifurations.

These bifurations are just the bifurations of the Fitzhugh-Nagumo equations studied in the setion two.

Reall that the saddle node bifuration ours on
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The non-symmetri eigenvalues have eigenvetors whih lie in the omplement of I and satisfy �
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symmetry breaking bifurations. Proeeding in a similar manner to the last setion, we �nd that there
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Using the expression for the equilibrium points (4) this beomes
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Further, there an be a steady state bifuration when �
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Consideration of the form of the equilibria (14) (whih is a onsequene of the symmetry (11) of the

equations), we see that this must be a pithfork bifuration.

Note that when  = 0, both (18) and (20) will be satis�ed simultaneously. At suh parameter values, the

equilibrium point will have a repeated pair of pure imaginary eigenvalues: � = �i
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of the Jaobian of the linearization at suh parameter values,
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shows that these are points of D

2

symmetri Hopf bifuration. As shown in [16℄, suh points an be the

soure of more ompliated dynamis resulting from seondary bifurations.

Now onsider the non-symmetri equilibria. Clearly, there an be one, two or three solutions of (16).

The transition from one to three orresponds to a saddle node bifuration of the non-symmetri equilib-

rium points. This will our when the disriminant of (16) equals zero, whih ours when the
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The Jaobian of the linearization of (10) about the non-symmetri equilibrium points is
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and the orresponding harateristi equation is
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To determine parameter values where a Hopf bifuration may our, we let � = i! in this equation,

separate into real and imaginary parts and eliminate !. This gives a onstraint on the parameters for the

existene of a Hopf bifuration: p
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1.5

0 0.14

Figure 1. (a) Bifuration sets in ; a plane for oupled idential osillators (10). Here b = 0:4 and

 = 2, but the diagram would be similar for any b;  satisfying b < min(1; jj). (b) Bifuration diagram

of X

1

vs  for the same parameter values and a > H

s

�xed (a = 0:7). Solid (dashed) lines orrespond

to stable (unstable) equilibrium points, losed (open) irles orrespond to the maximum amplitude of

stable (unstable) periodi orbits.

is a j order polynomial in  with oeÆients whih are funtions of a; b; . Using the equilibrium point

equation, we an then derive an impliit Hopf bifuration set involving ; a; b; . Due to its length, we do

not reprodue the expression here.

We illustrate our results by �xing b and  and drawing the urves orresponding to the bifuration

sets desribed above in the ; a plane (Fig. 1). We have hosen the ase where 0 < b < 1 < . Thus in

the absene of oupling ( = 0), eah neuron an exhibit either steady state or periodi behaviour. The

labelling of urves is as follows H

s

{ symmetry preserving Hopf bifuration, H

b

{ symmetry breaking

Hopf bifuration, H

n

{ Hopf bifuration of non-symmetri equilibrium point, P { pithfork bifuration,

SN

n

{ saddle node bifuration of non-symmetri equilibrium point. Reall from the analysis of setion

two that the saddle node of the symmetri equilibrium point annot our for these parameter values.

Numerial investigations near the symmetri Hopf bifuration points (the intersetions of the lines H

s

with the urve H

b

in Fig. 1(a)) reveal that seondary bifurations arise from these points. For example,

the bifuration diagram of Fig. 1(b) shows period doubling and pithfork bifuration of limit yles.

These bifurations lead to the oexistene of multiple stable limit yles (Fig. 2(a)) and of a stable limit

yle with more ompliated attrators (Fig. 2(b)).

4. Coupled, Near-Idential Neurons

It is lear from the last setion that the symmetri Hopf bifurations whih resulted from using idential

models for the two neurons an be a soure of multistability. It should be expeted that when the neurons

are no longer idential this symmetri Hopf bifuration point will no longer exist. A little reetion reveals

two possible situations in the non-symmetri ase: (a) the symmetri Hopf bifuration point is replaed

by a non-symmetri Hopf-Hopf interation point (b) there is no Hopf-Hopf interation point at all. We

show below that the former ours if only the oupling parameters are di�erent for the two neurons, but

the latter ours if just one of the parameters di�ers between the equations modelling the two neurons.

The simplest ase ours when all the parameters of the neurons are the same, only the oupling

parameters di�er. The model for this ase is (2) with a

j

= a; b

j

= b; 

j

= ; j = 1; 2. For omparison
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Figure 2. Numerial simulations of (10) with a = 0:7; b = 0:4 and  = 2 for three initial onditions

resulting in three di�erent attrators. (a) Attrators are all limit yles for  = 0:086. (b) Two attrators

have undergone period doubling bifurations by  = 0:087.
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Applying the transformation (9), these beome
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The analysis of this ase is very similar to the symmetri ase. In partiular, the subspae I is still

invariant and the symmetri �xed points are given by (13) and (4).

The Jaobian of the linearization about these �xed points is
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Similarly to the symmetri ase the eigenvalues split into those with eigenvetors in I and those with

eigenvetors not stritly in I. Proeeding as in setion three, we �nd that the symmetry preserving Hopf

bifuration an our on
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Thus when  = ��=2, equations (27) and (28) may be satis�ed simultaneously. By ontrast with the

symmetri ase, the Jaobian of the linearization at suh points in this ase is
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Figure 3. (a) Bifuration sets in ; a plane for idential osillators with non-idential oupling (25). Here

b = 0:4;  = 2 and � = �0:2, but the diagram would be similar for any b;  satisfying b < min(1; jj) and

� 6= 0. (b) Bifuration diagram of X

1

vs  for the same parameter values and a > H

s

, �xed (a = 0:7).

(a)

Y

1

(b)

X

1

-0.4

0

1

-1 0 1
-2

0

2

-2 0 2

Figure 4. Numerial simulations of (25) with a = 0:7; b = 0:4;  = 2 and � = �0:2. (a) A torus and a

limit yle oexist at  = 0:1337. (b) Two limit yles oexist at  = :24

Hene the points orrespond to one-to-one resonant Hopf-Hopf interations. Resonant Hopf bifurations

have been studied in [7℄, where it is shown that suh seondary bifurations as saddle node bifuration

of limit yles and Neimark-Saker bifurations an result.

The other bifurations, inluding those of the non-symmetri �xed points, an be analyzed using a

similar approah as was used in setion three. However, sine we are primarily interested in the presene

of multistability in these equations, we don't present this analysis here. Instead we show a numerially

generated bifuration set for (24) in the ; a plane for b = 0:4;  = 2 and � = 0:2 in Fig. 3(a). The labelling

of urves is as in Fig. 1(a). Note that the intersetion points of the symmetry preserving and symmetry

breaking Hopf bifurations have been shifted to the right as predited by our analysis.

Fixing a at a value slightly above H

s

and varying  lose to the intersetion point reveals seondary

bifurations (Fig. 3(b)), whih lead to multistability (Fig. 4).

To study what happens when the parameters in the models for the two neurons are di�erent, we

onsider the ase where all the parameters in the equations for the neurons are the same exept for the



j

. We take this ase in partiular as maintaining the equality of the a's and b's means that this model
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will still admit symmetri equilibria, whih renders the analysis simpler. It also means that this is the

\least harmful" way of breaking the symmetry of these equations. The resulting model is

_x

1

= 

1

(y

1

+ x

1

�

x

3

1

3

) + (x

1

� x

2

); _y

1

= �

1



1

(x

1

� a+ by

1

);

_x

2

= 

2

(y

2

+ x

2

�

x

3

2

3

) + (x

2

� x

1

); _y

2

= �

1



2

(x

2

� a+ by

2

):

(30)

One ould also write equations for the transformed variables (X

1

; Y

1

; X

2

; Y

2

) de�ned by (9), however

these are onsiderably more ompliated than (30). For omparison with setion three, we will use the

transformed variables to represent solutions graphially.

A brief analysis of (30) reveals that although the subspae I is no longer invariant, the symmetri

equilibria still exist and are idential to those of (8), i.e. they are given by (x

1

; y

1

; x

2

; y

2

) = (�x; �y; �x; �y),

with �x; �y solutions of (4). The Jaobian of the linearization of (30) about these equilibria is

J(�x) =

2

6

6

4



1

(1� �x

2

) +  

1

� 0

�

1



1

�

b



1

0 0

� 0 

2

(1� �x

2

) +  

2

0 0 �

1



2

�

b



2

3

7

7

5

; (31)

where �x is a solution of (4). The harateristi equation for this system is then

�

4

+

�

(

1

+ 

2

)(�x

2

� 1) +

b (

1

+ 

2

)



1



2

� 2 

�

�

3

+

�

2 +

(

1



2

(�x

2

� 1) + b)

2



1



2

+b



2

1

+ 

2

2



1



2

(�x

2

� 1)�

�

(

1

+ 

2

)(�x

2

� 1)�

2b (

1

+ 

2

)



1



2

�



�

�

2

+

��

b(�x

2

� 1) + 1

�

�

�

(

1

+ 

2

)(�x

2

� 1) +



1

+ 

2



1



2

�

�

�

b

�

2 +



2

1

+ 

2

2



1



2

�

(�x

2

� 1) + 2

�

b

2



1



2

+ 1

��



�

�

+

�

b(�x

2

� 1) + 1

�

2

�

b (

1

+ 

2

)



1



2

�

b(�x

2

� 1) + 1

�

 = 0

(32)

Clearly, when  = 0, the harateristi polynomial fators into two quadratis, yielding two hara-

teristi equations �

2

+

�

b=

j

+ 

j

(�x

2

� 1)

�

� + 1 + b(�x

2

� 1) = 0, one for eah neuron. For �xed b and



1

6= 

2

, the Hopf bifurations of the two unoupled neurons now our at two distint values of a

a = �

s

1�

b



2

j

"

b

3

 

1�

b



2

j

!

+ 1� b

#

def

= a

Hj

; (33)

When  is nonzero, one might expet that there will still be two sets of parameter values along whih

a Hopf bifuration ours, orresponding to the two sets above. To �nd the expressions for the sets of

parameters along whih a Hopf bifuration an our, we put � = i! into the harateristi equation (32)

and separate the resulting equation into real and imaginary parts. Isolating  yields

 = (

1

+ 

2

)(

1



2

(�x

2

� 1) + b)

b(�x

2

� 1) + 1� !

2

b(�x

2

� 1)(

1

+ 

2

)

2

+ 2b

2

+ 2

1



2

(1� !

2

)

; (34)

where ! satis�es

!

6

+ (

2

1

+ 

2

2

)

�

1

2

(�x

2

� 1)

2

+

b

2



2

1



2

2

� 3

�

!

4

+

�



2

1

+ 

2

2

2

�

b

2



2

1



2

2

(

2

1

+ 

2

2

) � 1

�

(�x

2

� 1)

2

+2b(�x

2

� 1) +

b

2

2

2

1



2

2

(2b

2

� 3(

2

1

+ 

2

2

)) + 3

�

!

2

+ (b(�x

2

� 1) + 1)

2

�

b

2

(

2

1

+ 

2

2

)

2

2

1



2

2

� 1

�

= 0:

(35)

Thus solving (4) for �x and (35) for ! and substituting in (34) yields the desired expression for  as a

funtion of a; b and the 

j

. This expression is quite lengthy, so we don't reprodue it here, instead we

show a graph of  versus a with b = 0:4; 

1

= 2; 

2

= 2:1 (Fig. 5). Clearly two urves of Hopf bifuration

persist, but they no longer interset. The piture is similar for other values of the parameters, with the

distane between the urves being a funtion of the di�erene between 

1

and 

2

. A measure of this

distane (at  = 0) is a

H1

� a

H2

where the a

Hj

are given by (33).
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(a)

(b)

X

1

a

 

0.62

0.78

–0.1 0.1

-1.5

0

1.5

0 0.14

Figure 5. (a) Hopf bifuration sets in ; a plane for non-idential osillators (30). Here b = 0:4, 

1

= 2,



2

= 2:1, but the piture would be qualitatively similar for any b < min(1; j

j

j); 

1

6= 

2

. (b) Bifuration

diagram of X

1

vs  for the same parameter values and a = 0:7.

(a)

Y

1

(b)

X

1

-1.5

0

1.5

-1.5 0 1.5
-1.5

0

1.5

-2 0 2

Figure 6. Numerial simulations of (30) with a = 0:7; b = 0:4; 

1

= 2 and 

2

= 2:1 for three initial

onditions resulting in three di�erent attrators. (a) Attrators are all limit yles for  = 0:05 (b) Two

attrators have undergone period doubling bifurations at  = 0:076.

As disussed above, hanging the value of 's in the model is the \least harmful" way of breaking the

symmetry of the equations. Sine this resulted in a loss of Hopf interation points we might expet the

same to our for other hanges to the parameters. Indeed, this is what we observe when we hange

either the b`s or the a's.

Appealing to the ontinuous dependene on parameters of solutions of well behaved ODE's, we might

expet that behaviour in the symmetri system would persist in the non-symmetri system if the param-

eters of the two neurons are lose. In fat, for the parameter values near to the \losest approah" of

the two Hopf urves of Fig. 5 we observe the oexistene of three limit yles in the systems. For slightly

large values of the oupling parameter  we observe the oexistene of a large amplitude limit yles with

two smaller amplitude high period attrators (Fig. 6). For a larger di�erene between the 

j

's we observe

bistability between two limit yles or a limit yle and a more ompliated attrator or two ompliated

attrators. This behaviour exists for small values of the oupling even if the the di�erene between the

two parameters is up to 20% of the size of the parameter. We observe similar behaviour when the a's or

the b's are hosen to di�er and when multiple parameters di�er.

5. Disussion

There have been many studies of oupled relaxation osillators, inluding the Fitzhugh-Nagumo [6℄

and van der Pol [8{15℄ models (see also referenes therein). Muh of this work onerns the existene
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and stability of various types (in phase, out of phase, phase loked) of periodi motions, often in the ase

idential osillators. By ontrast, our work foussed primarily of the origin of multistability in a model

with idential neurons and whether this multistability persists when the neurons are no longer idential.

We have shown that the oexistene of multiple stable limit yles or stable limit yles and other more

ompliated attrators result from a symmetri Hopf bifuration when two idential neurons are oupled

together. Similar behaviour has been observed in nonlinearly oupled van der Pol osillators [15℄ and

Fitzhugh-Nagumo equations with eletrial oupling in both the x

j

and y

j

[6℄. In fat suh behaviour

an be expeted to our for any model whih an undergo a Hopf bifuration [16℄.

When the neural models are idential, but the oupling is no longer symmetri we have shown that

the symmetri Hopf bifuration beomes a one-to-one resonant Hopf-Hopf interation, and multistability

still ours. This result also only depends on having two idential neurons whih an undergo a Hopf

bifuration, and thus should also hold for other neural models.

Finally we showed that when the slightest hange in one of the parameters in the neural models is

introdued the Hopf interation point is totally lost. However, if the di�erene of the parameters is no

too great the multistability remains. We onjeture that this result will also hold for arbitrary neural

models with eletrial oupling.

We have not emphasized the fat, but it should be lear that the multistability we have observed ours

lose to the interation points. Generally, this means that the oupling between the neurons must be

small to observe suh behaviour. This is in agreement with the work in [?℄.
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