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We 
onsider a pair of neurons modelled by Fitzhugh-Nagumo equations with ele
tri
al 
oupling. When

the neurons are identi
al, we show how the symmetry of the system leads to the 
oexisten
e multiple,

stable periodi
 orbits. As the 
oupling between the neurons is strengthened, these periodi
 orbits 
an

undergo various bifur
ations, leading to the 
oexisten
e of multiple, stable 
haoti
 attra
tors. We show

that this behaviour persists when the neurons are 
lose to, put no longer exa
tly, identi
al.

1. Introdu
tion

The Fitzhugh-Nagumo [1,2℄ equations are an set of simple equations whi
h exhibit the qualitative

behaviour observed in neurons, namely: quies
en
e, ex
itability and periodi
 behaviour. The form we

will use here
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+ z(t)); _y = �
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(x� a+ by); (1)

was introdu
ed in [1℄ by modifying the equations of the van der Pol relaxation os
illator [3℄. Although

the variables have no exa
t physiologi
al interpretation, for appropriate parameter values (see se
tion

two), the qualitative behaviour of x is similar to that of the voltage variable in the Hodgkin Huxley

equations [4℄ and that of y to the \re
overy" or gating variables. The fun
tion z(t) represents the for
ing

of the 
ell by an external stimulus. We will be interested in the 
ase when there is no external for
ing,

z(t) � 0, so we may fo
us on e�e
ts of 
oupling two su
h neurons together. In se
tion two we will review

the possible behaviour whi
h may o

ur in (1) as the parameters a; b; 
 are varied. This will allow us to


hoose reasonable range of values for our 
oupled neuron studies.

Our study is designed to emulate two neurons linked with ele
tri
al 
oupling, i.e. 
oupling via the


ow of ions through the gap jun
tions between neurons. We thus follow [5℄ in 
hoosing the form of this


oupling to be a 
onstant times the di�eren
e in the voltage of the two 
ells. As in this work (and di�ering

from [6℄) we 
ouple the neurons only through their voltage equation. This leads to a set of four 
oupled,

nonlinear ordinary di�erential equations:
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From a biologi
al standpoint, if we 
onsider the two neurons to be in a similar region of the brain, it

is likely that the parameter values will be similar but not identi
al. Thus our fo
us will be on the 
ase

where the parameter values are su
h that both neurons will be 
apable of exhibiting the same qualitative

behaviour.
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To give us a basis from whi
h to start, we 
onsider, in se
tion three, the behaviour when two neurons

with identi
al parameters are 
oupled together (i.e. (2) with a

1

= a

2

, b

1

= b

2

, 


1

= 


2

and 


12

= 


21

).

We will fo
us on parameter values su
h that the neurons may display either a single stable steady state

or periodi
 behaviour. This will lead us to se
tion 4, where we study the 
ase of near-identi
al neurons,

i.e neurons where the parameters di�er by a small amount. In se
tion 5 we dis
uss our results in relation

to some other similar studies.

2. Single Neuron

Consider equation 1 with no external for
ing
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3

3
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(x� a+ by): (3)

Equilibrium solutions, (x(t); y(t)) = (�x; �y), must satisfy
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= 0; �y =

a� �x
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; (4)

for b 6= 0 and (�x; �y) = (a; a

3

=3�a) when b = 0. We will restri
t our analysis to b > 0 sin
e the expressions

for the equilibrium points are well behaved in this interval, and sin
e this will be the relevant parameter

range for the studies of subsequent se
tions.

One, two or three solutions to (4) 
an exist, depending on whether the quantity D = a

2

+ 4(1� b)

3

=9b

is positive, zero or negative, respe
tively. Verifying the standard 
onditions it 
an be shown that a saddle

node bifur
ation o

urs along the set of parameter values where D = 0.

The Ja
obian of linearization of (3) about an equilibrium is

J(�x) =

�


(1 � �x

2

) 


�

1




�

b




�

; (5)

whi
h has eigenvalues

� =

1

2

2

4


(1� �x

2

)�

b




�

s

�


(1� �x

2

)�

b




�

2

+ 4 (b(1� �x

2

) � 1)

3

5

:

Therefore, a Hopf bifur
ation of the equilibrium point (�x; �y) 
an o

ur when b

2
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2
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= 0: (6)

Using (4) shows that this will o

ur when b
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We will fo
us on parameter values where only one equilibrium point exists, but this point may undergo

a Hopf bifur
ation. This is the parameter range 
hosen for biologi
al reasons by Fitzhugh [1℄. Clearly this


orresponds 0 < b < min(1; j
j). For any �xed b in this range there 
an be up to two Hopf bifur
ations of

the equilibrium as a is varied.

3. Coupled, Identi
al Neurons

We now turn to the situation where two identi
al neurons are 
oupled together. The model for this


ase is (2) with a

j

= a; b

j

= b; 


j

= 
; j = 1; 2. We further assume that the 
oupling is symmetri
, i.e.
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= 
, yielding the equations
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Note that a 
onsequen
e of the form of the 
oupling and the assumption that the neurons are identi
al is

the invarian
e of the equations under the transformation (x

1

; y

1

; x

2

; y

2

)$ (x

2

; y

2

; x

1

; y

1

): This symmetry


an also be observed in the existen
e of an invariant subspa
e for the equations I = f(x

1

; y
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2

; y

2
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g: We will refer to solutions whi
h lie in I as symmetri
 and those whi
h do not lie in I as

non-symmetri
 solutions. Physi
ally, the invarian
e of this subspa
e means that if the two neurons start

with identi
al initial 
onditions then their subsequent behaviour will also be identi
al; su
h solutions are

sometime referred to as in-phase.

To fa
ilitate our study of these equations we will perform a simple, linear 
hange of variables
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leading to the new equations

_

X

1

= 
(Y

1

+X

1

�

X

3

1

3

�X

1

X

2

2

) + 2
X

1

;

_

Y

1

= �

1




(X

1

+ bY

1

);

_

X

2

= 
(Y

2

+X

2

�

X

3

2

3

�X

2

1

X

2

);

_

Y

2

= �

1




(X

2

� a+ bY

2

):

(10)

In the new variables the symmetry is
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and the invariant subspa
e (and hen
e the symmetri
 solutions) have the simple form I = f(X

1

; Y
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2

) jX
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= 0g.

A further symmetry is also evident
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On
e again, we begin our study by determining the equilibrium points of the equations. Symmetri


equilibrium points are of the form
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2

) = (0; 0; �x; �y) (13)

where �x and �y satisfy (4). Non-symmetri
 equilibrium points are given by
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The Ja
obian of the linearization of (10) about the symmetri
 equilibrium is

J(�x) =
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Clearly, the four eigenvalues of this matrix 
ome in two pairs.

The symmetri
 eigenvalues have eigenve
tors lying in the invariant subspa
e I and satisfy �

2

� �

I

�+

�

I

= 0; with �

I

= 
(1� �x

2

)� b=
 and �

I

= 1� b(1� �x

2

). Bifur
ations asso
iated with these eigenvalues

will result in new solutions whi
h remain in I. We will refer to these as symmetry preserving bifur
ations.

These bifur
ations are just the bifur
ations of the Fitzhugh-Nagumo equations studied in the se
tion two.
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while a Hopf bifur
ation 
an o
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The non-symmetri
 eigenvalues have eigenve
tors whi
h lie in the 
omplement of I and satisfy �
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+ 2
 and �
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2

)� 2b=

. Bifur
ations asso
iated

with these eigenvalues will result in new solutions whi
h no longer lie in I. We will refer to these as

symmetry breaking bifur
ations. Pro
eeding in a similar manner to the last se
tion, we �nd that there


an be a Hopf bifur
ation when �

N

= 0 if �

N

> 0, that is when
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Using the expression for the equilibrium points (4) this be
omes
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Further, there 
an be a steady state bifur
ation when �

N

= 0, whi
h upon using (4) be
omes
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Consideration of the form of the equilibria (14) (whi
h is a 
onsequen
e of the symmetry (11) of the

equations), we see that this must be a pit
hfork bifur
ation.

Note that when 
 = 0, both (18) and (20) will be satis�ed simultaneously. At su
h parameter values, the

equilibrium point will have a repeated pair of pure imaginary eigenvalues: � = �i

q

1�
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2

. Consideration

of the Ja
obian of the linearization at su
h parameter values,
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M 0
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shows that these are points of D

2

symmetri
 Hopf bifur
ation. As shown in [16℄, su
h points 
an be the

sour
e of more 
ompli
ated dynami
s resulting from se
ondary bifur
ations.

Now 
onsider the non-symmetri
 equilibria. Clearly, there 
an be one, two or three solutions of (16).

The transition from one to three 
orresponds to a saddle node bifur
ation of the non-symmetri
 equilib-

rium points. This will o

ur when the dis
riminant of (16) equals zero, whi
h o

urs when the
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The Ja
obian of the linearization of (10) about the non-symmetri
 equilibrium points is
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orresponding 
hara
teristi
 equation is
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To determine parameter values where a Hopf bifur
ation may o

ur, we let � = i! in this equation,

separate into real and imaginary parts and eliminate !. This gives a 
onstraint on the parameters for the

existen
e of a Hopf bifur
ation: p

4
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; a; b; 
)X
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(
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(
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Figure 1. (a) Bifur
ation sets in 
; a plane for 
oupled identi
al os
illators (10). Here b = 0:4 and


 = 2, but the diagram would be similar for any b; 
 satisfying b < min(1; j
j). (b) Bifur
ation diagram

of X

1

vs 
 for the same parameter values and a > H

s

�xed (a = 0:7). Solid (dashed) lines 
orrespond

to stable (unstable) equilibrium points, 
losed (open) 
ir
les 
orrespond to the maximum amplitude of

stable (unstable) periodi
 orbits.

is a j order polynomial in 
 with 
oeÆ
ients whi
h are fun
tions of a; b; 
. Using the equilibrium point

equation, we 
an then derive an impli
it Hopf bifur
ation set involving 
; a; b; 
. Due to its length, we do

not reprodu
e the expression here.

We illustrate our results by �xing b and 
 and drawing the 
urves 
orresponding to the bifur
ation

sets des
ribed above in the 
; a plane (Fig. 1). We have 
hosen the 
ase where 0 < b < 1 < 
. Thus in

the absen
e of 
oupling (
 = 0), ea
h neuron 
an exhibit either steady state or periodi
 behaviour. The

labelling of 
urves is as follows H

s

{ symmetry preserving Hopf bifur
ation, H

b

{ symmetry breaking

Hopf bifur
ation, H

n

{ Hopf bifur
ation of non-symmetri
 equilibrium point, P { pit
hfork bifur
ation,

SN

n

{ saddle node bifur
ation of non-symmetri
 equilibrium point. Re
all from the analysis of se
tion

two that the saddle node of the symmetri
 equilibrium point 
annot o

ur for these parameter values.

Numeri
al investigations near the symmetri
 Hopf bifur
ation points (the interse
tions of the lines H

s

with the 
urve H

b

in Fig. 1(a)) reveal that se
ondary bifur
ations arise from these points. For example,

the bifur
ation diagram of Fig. 1(b) shows period doubling and pit
hfork bifur
ation of limit 
y
les.

These bifur
ations lead to the 
oexisten
e of multiple stable limit 
y
les (Fig. 2(a)) and of a stable limit


y
le with more 
ompli
ated attra
tors (Fig. 2(b)).

4. Coupled, Near-Identi
al Neurons

It is 
lear from the last se
tion that the symmetri
 Hopf bifur
ations whi
h resulted from using identi
al

models for the two neurons 
an be a sour
e of multistability. It should be expe
ted that when the neurons

are no longer identi
al this symmetri
 Hopf bifur
ation point will no longer exist. A little re
e
tion reveals

two possible situations in the non-symmetri
 
ase: (a) the symmetri
 Hopf bifur
ation point is repla
ed

by a non-symmetri
 Hopf-Hopf intera
tion point (b) there is no Hopf-Hopf intera
tion point at all. We

show below that the former o

urs if only the 
oupling parameters are di�erent for the two neurons, but

the latter o

urs if just one of the parameters di�ers between the equations modelling the two neurons.

The simplest 
ase o

urs when all the parameters of the neurons are the same, only the 
oupling

parameters di�er. The model for this 
ase is (2) with a

j

= a; b

j

= b; 


j

= 
; j = 1; 2. For 
omparison
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(a)

Y

1

(b)

X

1

-1.5

0

1.5

-1.5 0 1.5
-1.5

0

1.5

-2 0 2

Figure 2. Numeri
al simulations of (10) with a = 0:7; b = 0:4 and 
 = 2 for three initial 
onditions

resulting in three di�erent attra
tors. (a) Attra
tors are all limit 
y
les for 
 = 0:086. (b) Two attra
tors

have undergone period doubling bifur
ations by 
 = 0:087.

with the symmetri
 
ase we also set 


12

= 
 and 
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= 
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Applying the transformation (9), these be
ome
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The analysis of this 
ase is very similar to the symmetri
 
ase. In parti
ular, the subspa
e I is still

invariant and the symmetri
 �xed points are given by (13) and (4).

The Ja
obian of the linearization about these �xed points is
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Similarly to the symmetri
 
ase the eigenvalues split into those with eigenve
tors in I and those with

eigenve
tors not stri
tly in I. Pro
eeding as in se
tion three, we �nd that the symmetry preserving Hopf

bifur
ation 
an o

ur on
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and the symmetry breaking Hopf bifur
ation on
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Thus when 
 = ��=2, equations (27) and (28) may be satis�ed simultaneously. By 
ontrast with the

symmetri
 
ase, the Ja
obian of the linearization at su
h points in this 
ase is

J =

�

M 0

E M

�

; with M =

�

b







�

1




�

b




�

; E =

�

�� 0

0 0

�

: 0 =

�

0 0

0 0

�

: (29)
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(a)

(b)

X

1

H

s




H

s

H

n

SN

n

H

b

H

n

SN

n

a




-4

0

4

-1 0 5

-2

0

1.5

0.1 0.3

Figure 3. (a) Bifur
ation sets in 
; a plane for identi
al os
illators with non-identi
al 
oupling (25). Here

b = 0:4; 
 = 2 and � = �0:2, but the diagram would be similar for any b; 
 satisfying b < min(1; j
j) and

� 6= 0. (b) Bifur
ation diagram of X

1

vs 
 for the same parameter values and a > H

s

, �xed (a = 0:7).

(a)

Y

1

(b)

X

1

-0.4

0

1

-1 0 1
-2

0

2

-2 0 2

Figure 4. Numeri
al simulations of (25) with a = 0:7; b = 0:4; 
 = 2 and � = �0:2. (a) A torus and a

limit 
y
le 
oexist at 
 = 0:1337. (b) Two limit 
y
les 
oexist at 
 = :24

Hen
e the points 
orrespond to one-to-one resonant Hopf-Hopf intera
tions. Resonant Hopf bifur
ations

have been studied in [7℄, where it is shown that su
h se
ondary bifur
ations as saddle node bifur
ation

of limit 
y
les and Neimark-Sa
ker bifur
ations 
an result.

The other bifur
ations, in
luding those of the non-symmetri
 �xed points, 
an be analyzed using a

similar approa
h as was used in se
tion three. However, sin
e we are primarily interested in the presen
e

of multistability in these equations, we don't present this analysis here. Instead we show a numeri
ally

generated bifur
ation set for (24) in the 
; a plane for b = 0:4; 
 = 2 and � = 0:2 in Fig. 3(a). The labelling

of 
urves is as in Fig. 1(a). Note that the interse
tion points of the symmetry preserving and symmetry

breaking Hopf bifur
ations have been shifted to the right as predi
ted by our analysis.

Fixing a at a value slightly above H

s

and varying 
 
lose to the interse
tion point reveals se
ondary

bifur
ations (Fig. 3(b)), whi
h lead to multistability (Fig. 4).

To study what happens when the parameters in the models for the two neurons are di�erent, we


onsider the 
ase where all the parameters in the equations for the neurons are the same ex
ept for the




j

. We take this 
ase in parti
ular as maintaining the equality of the a's and b's means that this model
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will still admit symmetri
 equilibria, whi
h renders the analysis simpler. It also means that this is the

\least harmful" way of breaking the symmetry of these equations. The resulting model is

_x

1

= 


1

(y

1

+ x

1

�

x

3

1

3

) + 
(x

1

� x

2

); _y

1

= �

1




1

(x

1

� a+ by

1

);

_x

2

= 


2

(y

2

+ x

2

�

x

3

2

3

) + 
(x

2

� x

1

); _y

2

= �

1




2

(x

2

� a+ by

2

):

(30)

One 
ould also write equations for the transformed variables (X

1

; Y

1

; X

2

; Y

2

) de�ned by (9), however

these are 
onsiderably more 
ompli
ated than (30). For 
omparison with se
tion three, we will use the

transformed variables to represent solutions graphi
ally.

A brief analysis of (30) reveals that although the subspa
e I is no longer invariant, the symmetri


equilibria still exist and are identi
al to those of (8), i.e. they are given by (x

1

; y

1

; x

2

; y

2

) = (�x; �y; �x; �y),

with �x; �y solutions of (4). The Ja
obian of the linearization of (30) about these equilibria is

J(�x) =

2

6

6

4




1

(1� �x

2

) + 
 


1

�
 0

�

1




1

�

b




1

0 0

�
 0 


2

(1� �x

2

) + 
 


2

0 0 �

1




2

�

b




2

3

7

7

5

; (31)

where �x is a solution of (4). The 
hara
teristi
 equation for this system is then

�

4

+

�

(


1

+ 


2

)(�x

2

� 1) +

b (


1

+ 


2

)




1




2

� 2 


�

�

3

+

�

2 +

(


1




2

(�x

2

� 1) + b)

2




1




2

+b




2

1

+ 


2

2




1




2

(�x

2

� 1)�

�

(


1

+ 


2

)(�x

2

� 1)�

2b (


1

+ 


2

)




1




2

�




�

�

2

+

��

b(�x

2

� 1) + 1

�

�

�

(


1

+ 


2

)(�x

2

� 1) +




1

+ 


2




1




2

�

�

�

b

�

2 +




2

1

+ 


2

2




1




2

�

(�x

2

� 1) + 2

�

b

2




1




2

+ 1

��




�

�

+

�

b(�x

2

� 1) + 1

�

2

�

b (


1

+ 


2

)




1




2

�

b(�x

2

� 1) + 1

�


 = 0

(32)

Clearly, when 
 = 0, the 
hara
teristi
 polynomial fa
tors into two quadrati
s, yielding two 
hara
-

teristi
 equations �

2

+

�

b=


j

+ 


j

(�x

2

� 1)

�

� + 1 + b(�x

2

� 1) = 0, one for ea
h neuron. For �xed b and




1

6= 


2

, the Hopf bifur
ations of the two un
oupled neurons now o

ur at two distin
t values of a

a = �

s

1�

b




2

j

"

b

3

 

1�

b




2

j

!

+ 1� b

#

def

= a

Hj

; (33)

When 
 is nonzero, one might expe
t that there will still be two sets of parameter values along whi
h

a Hopf bifur
ation o

urs, 
orresponding to the two sets above. To �nd the expressions for the sets of

parameters along whi
h a Hopf bifur
ation 
an o

ur, we put � = i! into the 
hara
teristi
 equation (32)

and separate the resulting equation into real and imaginary parts. Isolating 
 yields


 = (


1

+ 


2

)(


1




2

(�x

2

� 1) + b)

b(�x

2

� 1) + 1� !

2

b(�x

2

� 1)(


1

+ 


2

)

2

+ 2b

2

+ 2


1




2

(1� !

2

)

; (34)

where ! satis�es

!

6

+ (


2

1

+ 


2

2

)

�

1

2

(�x

2

� 1)

2

+

b

2




2

1




2

2

� 3

�

!

4

+

�




2

1

+ 


2

2

2

�

b

2




2

1




2

2

(


2

1

+ 


2

2

) � 1

�

(�x

2

� 1)

2

+2b(�x

2

� 1) +

b

2

2


2

1




2

2

(2b

2

� 3(


2

1

+ 


2

2

)) + 3

�

!

2

+ (b(�x

2

� 1) + 1)

2

�

b

2

(


2

1

+ 


2

2

)

2


2

1




2

2

� 1

�

= 0:

(35)

Thus solving (4) for �x and (35) for ! and substituting in (34) yields the desired expression for 
 as a

fun
tion of a; b and the 


j

. This expression is quite lengthy, so we don't reprodu
e it here, instead we

show a graph of 
 versus a with b = 0:4; 


1

= 2; 


2

= 2:1 (Fig. 5). Clearly two 
urves of Hopf bifur
ation

persist, but they no longer interse
t. The pi
ture is similar for other values of the parameters, with the

distan
e between the 
urves being a fun
tion of the di�eren
e between 


1

and 


2

. A measure of this

distan
e (at 
 = 0) is a

H1

� a

H2

where the a

Hj

are given by (33).
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(a)

(b)

X

1

a


 


0.62

0.78

–0.1 0.1

-1.5

0

1.5

0 0.14

Figure 5. (a) Hopf bifur
ation sets in 
; a plane for non-identi
al os
illators (30). Here b = 0:4, 


1

= 2,




2

= 2:1, but the pi
ture would be qualitatively similar for any b < min(1; j


j

j); 


1

6= 


2

. (b) Bifur
ation

diagram of X

1

vs 
 for the same parameter values and a = 0:7.

(a)

Y

1

(b)

X

1

-1.5

0

1.5

-1.5 0 1.5
-1.5

0

1.5

-2 0 2

Figure 6. Numeri
al simulations of (30) with a = 0:7; b = 0:4; 


1

= 2 and 


2

= 2:1 for three initial


onditions resulting in three di�erent attra
tors. (a) Attra
tors are all limit 
y
les for 
 = 0:05 (b) Two

attra
tors have undergone period doubling bifur
ations at 
 = 0:076.

As dis
ussed above, 
hanging the value of 
's in the model is the \least harmful" way of breaking the

symmetry of the equations. Sin
e this resulted in a loss of Hopf intera
tion points we might expe
t the

same to o

ur for other 
hanges to the parameters. Indeed, this is what we observe when we 
hange

either the b`s or the a's.

Appealing to the 
ontinuous dependen
e on parameters of solutions of well behaved ODE's, we might

expe
t that behaviour in the symmetri
 system would persist in the non-symmetri
 system if the param-

eters of the two neurons are 
lose. In fa
t, for the parameter values near to the \
losest approa
h" of

the two Hopf 
urves of Fig. 5 we observe the 
oexisten
e of three limit 
y
les in the systems. For slightly

large values of the 
oupling parameter 
 we observe the 
oexisten
e of a large amplitude limit 
y
les with

two smaller amplitude high period attra
tors (Fig. 6). For a larger di�eren
e between the 


j

's we observe

bistability between two limit 
y
les or a limit 
y
le and a more 
ompli
ated attra
tor or two 
ompli
ated

attra
tors. This behaviour exists for small values of the 
oupling even if the the di�eren
e between the

two parameters is up to 20% of the size of the parameter. We observe similar behaviour when the a's or

the b's are 
hosen to di�er and when multiple parameters di�er.

5. Dis
ussion

There have been many studies of 
oupled relaxation os
illators, in
luding the Fitzhugh-Nagumo [6℄

and van der Pol [8{15℄ models (see also referen
es therein). Mu
h of this work 
on
erns the existen
e
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and stability of various types (in phase, out of phase, phase lo
ked) of periodi
 motions, often in the 
ase

identi
al os
illators. By 
ontrast, our work fo
ussed primarily of the origin of multistability in a model

with identi
al neurons and whether this multistability persists when the neurons are no longer identi
al.

We have shown that the 
oexisten
e of multiple stable limit 
y
les or stable limit 
y
les and other more


ompli
ated attra
tors result from a symmetri
 Hopf bifur
ation when two identi
al neurons are 
oupled

together. Similar behaviour has been observed in nonlinearly 
oupled van der Pol os
illators [15℄ and

Fitzhugh-Nagumo equations with ele
tri
al 
oupling in both the x

j

and y

j

[6℄. In fa
t su
h behaviour


an be expe
ted to o

ur for any model whi
h 
an undergo a Hopf bifur
ation [16℄.

When the neural models are identi
al, but the 
oupling is no longer symmetri
 we have shown that

the symmetri
 Hopf bifur
ation be
omes a one-to-one resonant Hopf-Hopf intera
tion, and multistability

still o

urs. This result also only depends on having two identi
al neurons whi
h 
an undergo a Hopf

bifur
ation, and thus should also hold for other neural models.

Finally we showed that when the slightest 
hange in one of the parameters in the neural models is

introdu
ed the Hopf intera
tion point is totally lost. However, if the di�eren
e of the parameters is no

too great the multistability remains. We 
onje
ture that this result will also hold for arbitrary neural

models with ele
tri
al 
oupling.

We have not emphasized the fa
t, but it should be 
lear that the multistability we have observed o

urs


lose to the intera
tion points. Generally, this means that the 
oupling between the neurons must be

small to observe su
h behaviour. This is in agreement with the work in [?℄.
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