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We consider a pair of neurons modelled by Fitzhugh-Nagumo equations with electrical coupling. When
the neurons are identical, we show how the symmetry of the system leads to the coexistence multiple,
stable periodic orbits. As the coupling between the neurons is strengthened, these periodic orbits can
undergo various bifurcations, leading to the coexistence of multiple, stable chaotic attractors. We show
that this behaviour persists when the neurons are close to, put no longer exactly, identical.

1. Introduction

The Fitzhugh-Nagumo [1,2] equations are an set of simple equations which exhibit the qualitative
behaviour observed in neurons, namely: quiescence, excitability and periodic behaviour. The form we
will use here
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i‘:c(y—i—x—%—l—z(t)), y:—%(aj—a—l—by), (1)
was introduced in [1] by modifying the equations of the van der Pol relaxation oscillator [3]. Although
the variables have no exact physiological interpretation, for appropriate parameter values (see section
two), the qualitative behaviour of x is similar to that of the voltage variable in the Hodgkin Huxley
equations [4] and that of y to the “recovery” or gating variables. The function z(¢) represents the forcing
of the cell by an external stimulus. We will be interested in the case when there is no external forcing,
z(t) = 0, so we may focus on effects of coupling two such neurons together. In section two we will review
the possible behaviour which may occur in (1) as the parameters a, b, ¢ are varied. This will allow us to
choose reasonable range of values for our coupled neuron studies.

Our study is designed to emulate two neurons linked with electrical coupling, i.e. coupling via the
flow of ions through the gap junctions between neurons. We thus follow [5] in choosing the form of this
coupling to be a constant times the difference in the voltage of the two cells. As in this work (and differing
from [6]) we couple the neurons only through their voltage equation. This leads to a set of four coupled,
nonlinear ordinary differential equations:
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By = ealy2+ a2 — ?)-1-’721(1‘2—901), g2 = —c—(l‘2 — ag + bays).
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From a biological standpoint, if we consider the two neurons to be in a similar region of the brain, it
is likely that the parameter values will be similar but not identical. Thus our focus will be on the case
where the parameter values are such that both neurons will be capable of exhibiting the same qualitative
behaviour.
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To give us a basis from which to start, we consider, in section three, the behaviour when two neurons
with identical parameters are coupled together (i.e. (2) with a1 = a3, by = b2, ¢1 = ¢2 and 12 = v21).
We will focus on parameter values such that the neurons may display either a single stable steady state
or periodic behaviour. This will lead us to section 4, where we study the case of near-identical neurons,
i.e neurons where the parameters differ by a small amount. In section 5 we discuss our results in relation
to some other similar studies.

2. Single Neuron

Consider equation 1 with no external forcing
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Equilibrium solutions, (x(t), y(t)) = (%, y), must satisfy
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for b # 0 and (z,y) = (a,a®/3—a) when b = 0. We will restrict our analysis to b > 0 since the expressions
for the equilibrium points are well behaved in this interval, and since this will be the relevant parameter
range for the studies of subsequent sections.

One, two or three solutions to (4) can exist, depending on whether the quantity D = a® 4+ 4(1 — b)/9b
is positive, zero or negative, respectively. Verifying the standard conditions it can be shown that a saddle
node bifurcation occurs along the set of parameter values where D = 0.

The Jacobian of linearization of (3) about an equilibrium is

(@) = [ (1 —;2) c% ] ’ 5)

which has eigenvalues

/\:% 0(1—x2)—§i\/<0(1—l‘2)—2> +4(b(1—2%) - 1)

Therefore, a Hopf bifurcation of the equilibrium point (z, %) can occur when b? < ¢? and
b
_2 _

Using (4) shows that this will occur when b% < ¢? and

+ 1_6%[§<1—c%>+1—b]_a:o. (7

We will focus on parameter values where only one equilibrium point exists, but this point may undergo
a Hopf bifurcation. This is the parameter range chosen for biological reasons by Fitzhugh [1]. Clearly this
corresponds 0 < b < min(1, |¢]). For any fixed b in this range there can be up to two Hopf bifurcations of
the equilibrium as a is varied.

3. Coupled, Identical Neurons

We now turn to the situation where two identical neurons are coupled together. The model for this
case is (2) with a; = a, b; = b, ¢; = ¢; j = 1,2. We further assume that the coupling is symmetric, i.e.
Y12 = Y21 = 7, vielding the equations
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Note that a consequence of the form of the coupling and the assumption that the neurons are identical is
the invariance of the equations under the transformation (z1, y1, z2, y2) © (%2, y2, 1, y1). This symmetry
can also be observed in the existence of an invariant subspace for the equations 7 = {(x1, y1, %2, y2)|z1 =
z2,y1 = y2}. We will refer to solutions which lie in Z as symmetric and those which do not lie in 7 as
non-symmetric solutions. Physically, the invariance of this subspace means that if the two neurons start
with identical initial conditions then their subsequent behaviour will also be identical; such solutions are
sometime referred to as in-phase.

To facilitate our study of these equations we will perform a simple, linear change of variables

Xy = %($1_x2) Yi= %(yl—yZ) Xy = %(1’1‘1‘952) Y= %(yl"'y?) (9)
leading to the new equations
X1 = eV +X— X; — X1 X))+ 29X, Y = —%(X1 + bY7), )
X, = c(Y2+X2—XTS—XfX2), Y, = —%(Xg—a—l—ng).
In the new variables the symmetry is
(X1,Y1,X2,Y2) & (—X1,-Y1, X3, Y2) (11)

and the invariant subspace (and hence the symmetric solutions) have the simple form Z = {( X1, Y7, X2,¥3) | X1 = Y1 = 0}.
A further symmetry is also evident

(X1, Y1, X2, Y25a) & (X1,Y1, — X9, — Y55 —a). (12)

Once again, we begin our study by determining the equilibrium points of the equations. Symmetric
equilibrium points are of the form

(X17Y17X27Y2) = (anaia g) (13)

where z and g satisfy (4). Non-symmetric equilibrium points are given by

(X1, Y1, X2, Y3) = (X1, 4Y7, Xa, V5) (14)
where
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The Jacobian of the linearization of (10) about the symmetric equilibrium is
c(1—-2%)+2y ¢ 0 0
_ -1 ~L 0 0
I(@) = 0 0 c(1-2%) ¢ (17)
0 0 -1 —b

Clearly, the four eigenvalues of this matrix come in two pairs.

The symmetric eigenvalues have eigenvectors lying in the invariant subspace T and satisfy A* — gz )\ +
az =0, with 87 = ¢(1 — 2?) — b/c and a7 = 1 — b(1 — 2?). Bifurcations associated with these eigenvalues
will result in new solutions which remain in Z. We will refer to these as symmetry preserving bifurcations.
These bifurcations are just the bifurcations of the Fitzhugh-Nagumo equations studied in the section two.
Recall that the saddle node bifurcation occurs on
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while a Hopf bifurcation can occur on

/ b [b b _ 072 2
+ 1_0—2[§<1—c—2>—|—1—b]—a—0, if b* < c”. (18)

The non-symmetric eigenvalues have eigenvectors which lie in the complement of Z and satisfy \* —
By A+ ay =0 with By = e(1 —22) —b/c+ 2y and ay = 1 — b(1 — £2) — 2b/cy. Bifurcations associated
with these eigenvalues will result in new solutions which no longer lie in Z. We will refer to these as
symmetry breaking bifurcations. Proceeding in a similar manner to the last section, we find that there
can be a Hopf bifurcation when gy = 0 if ayr > 0, that is when
i2—1+£—2%:0, if % < c?. (19)
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Using the expression for the equilibrium points (4) this becomes
b 2y [b b 2
+ 1——2+—7[ <1——2+—7>+1—b]—a:0, ifb? <. (20)
c ¢ c ¢
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Further, there can be a steady state bifurcation when o = 0, which upon using (4) becomes

[ 1 2 [b 1 2
+ 1_54_27[5(1—5-1—;7)—1—1—[)]—a_O. (21)

Consideration of the form of the equilibria (14) (which is a consequence of the symmetry (11) of the
equations), we see that this must be a pitchfork bifurcation.

Note that when v = 0, both (18) and (20) will be satisfied simultaneously. At such parameter values, the
equilibrium point will have a repeated pair of pure imaginary eigenvalues: A = +iy/1 — g—z. Consideration
of the Jacobian of the linearization at such parameter values,

M o0 . b _[o o
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shows that these are points of Dy symmetric Hopf bifurcation. As shown in [16], such points can be the
source of more complicated dynamics resulting from secondary bifurcations.

Now consider the non-symmetric equilibria. Clearly, there can be one, two or three solutions of (16).
The transition from one to three corresponds to a saddle node bifurcation of the non-symmetric equilib-
rium points. This will occur when the discriminant of (16) equals zero, which occurs when the

() (-2 =

The Jacobian of the linearization of (10) about the non-symmetric equilibrium points is

c(l—X%—X%)—I—Q'y c —2¢X1X, 0
_ _1 _b 0 0
J(A0, Xe) = _9eX 1 X 0 (1—X2—X2) ¢ |’
0 0 -1 b
and the corresponding characteristic equation is
b 2¢ _ 2b _ 2b b 2¢ - 2b _
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; 1 1., 2 b
—4beX? <1—Z—§Xf—|—%> </\+E> =0.

To determine parameter values where a Hopf bifurcation may occur, we let A = 7w in this equation,
separate into real and imaginary parts and eliminate w. This gives a constraint on the parameters for the
existence of a Hopf bifurcation: p4(7;a,b,¢)X3 + ps(v;a,b,¢) X2 + ps(y;a,b,¢) = 0, where p;(v;a,b,c)
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Figure 1. (a) Bifurcation sets in v, a plane for coupled identical oscillators (10). Here b = 0.4 and
¢ = 2, but the diagram would be similar for any b, ¢ satisfying b < min(1, |c|). (b) Bifurcation diagram
of Xy vs vy for the same parameter values and a > H; fixed (a = 0.7). Solid (dashed) lines correspond
to stable (unstable) equilibrium points, closed (open) circles correspond to the maximum amplitude of
stable (unstable) periodic orbits.

is a j order polynomial in v with coefficients which are functions of a, b, ¢. Using the equilibrium point
equation, we can then derive an implicit Hopf bifurcation set involving v, a, b, c. Due to its length, we do
not reproduce the expression here.

We illustrate our results by fixing b and ¢ and drawing the curves corresponding to the bifurcation
sets described above in the v, a plane (Fig. 1). We have chosen the case where 0 < b < 1 < ¢. Thus in
the absence of coupling (y = 0), each neuron can exhibit either steady state or periodic behaviour. The
labelling of curves is as follows H; — symmetry preserving Hopf bifurcation, H, — symmetry breaking
Hopf bifurcation, H, — Hopf bifurcation of non-symmetric equilibrium point, P — pitchfork bifurcation,
SN, — saddle node bifurcation of non-symmetric equilibrium point. Recall from the analysis of section
two that the saddle node of the symmetric equilibrium point cannot occur for these parameter values.

Numerical investigations near the symmetric Hopf bifurcation points (the intersections of the lines H,
with the curve Hy in Fig. 1(a)) reveal that secondary bifurcations arise from these points. For example,
the bifurcation diagram of Fig. 1(b) shows period doubling and pitchfork bifurcation of limit cycles.
These bifurcations lead to the coexistence of multiple stable limit cycles (Fig. 2(a)) and of a stable limit
cycle with more complicated attractors (Fig. 2(b)).

4. Coupled, Near-Identical Neurons

It is clear from the last section that the symmetric Hopf bifurcations which resulted from using identical
models for the two neurons can be a source of multistability. It should be expected that when the neurons
are no longer identical this symmetric Hopf bifurcation point will no longer exist. A little reflection reveals
two possible situations in the non-symmetric case: (a) the symmetric Hopf bifurcation point is replaced
by a non-symmetric Hopf-Hopf interaction point (b) there is no Hopf-Hopf interaction point at all. We
show below that the former occurs if only the coupling parameters are different for the two neurons, but
the latter occurs if just one of the parameters differs between the equations modelling the two neurons.

The simplest case occurs when all the parameters of the neurons are the same, only the coupling
parameters differ. The model for this case is (2) with a; = a, b; = b, ¢; = ¢; j = 1,2. For comparison
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Figure 2. Numerical simulations of (10) with « = 0.7, 6 = 0.4 and ¢ = 2 for three initial conditions
resulting in three different attractors. (a) Attractors are all limit cycles for v = 0.086. (b) Two attractors
have undergone period doubling bifurcations by v = 0.087.

with the symmetric case we also set y12 = v and v21 = v + €, yielding

) x5 . 1

ry = C(y1+l‘1—?1)+’y(l‘1—l‘2), y = __(xl_a'i'byl)a

- | ; (24)
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Applying the transformation (9), these become
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Xl = C(Y1—|—X1—Tl—XlXZZ)—i—(Q’y—i—G)Xl, Yl = —E(Xl—i—byl), (25)
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X, = c(Yg—i—Xg—?Z—XfXg)—eXl, Yy = —o(Xp—a+tbhy).

The analysis of this case is very similar to the symmetric case. In particular, the subspace 7 is still
invariant and the symmetric fixed points are given by (13) and (4).
The Jacobian of the linearization about these fixed points is

c(1—2%)+2v+e ¢ 0 0
35) = ‘% LI (26)
v = —€ 0 c(1—-2%) ¢
0
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o

Similarly to the symmetric case the eigenvalues split into those with eigenvectors in 7 and those with
eigenvectors not strictly in Z. Proceeding as in section three, we find that the symmetry preserving Hopf
bifurcation can occur on

b [b b e 72 2

and the symmetry breaking Hopf bifurcation on
b 2 b b 2
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Thus when v = —¢/2, equations (27) and (28) may be satisfied simultaneously. By contrast with the
symmetric case, the Jacobian of the linearization at such points in this case is
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Figure 3. (a) Bifurcation sets in v, @ plane for identical oscillators with non-identical coupling (25). Here
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Figure 4. Numerical simulations of (25) with a« = 0.7, 6 = 0.4, ¢ = 2 and e = —0.2. (a) A torus and a
limit cycle coexist at ¥ = 0.1337. (b) Two limit cycles coexist at y = .24

Hence the points correspond to one-to-one resonant Hopf-Hopf interactions. Resonant Hopf bifurcations
have been studied in [7], where it is shown that such secondary bifurcations as saddle node bifurcation
of limit cycles and Neimark-Sacker bifurcations can result.

The other bifurcations, including those of the non-symmetric fixed points, can be analyzed using a
similar approach as was used in section three. However, since we are primarily interested in the presence
of multistability in these equations, we don’t present this analysis here. Instead we show a numerically
generated bifurcation set for (24) in the 4, a plane for b = 0.4,¢ = 2 and € = 0.2 in Fig. 3(a). The labelling
of curves is as in Fig. 1(a). Note that the intersection points of the symmetry preserving and symmetry
breaking Hopf bifurcations have been shifted to the right as predicted by our analysis.

Fixing a at a value slightly above H; and varying ~ close to the intersection point reveals secondary
bifurcations (Fig. 3(b)), which lead to multistability (Fig. 4).

To study what happens when the parameters in the models for the two neurons are different, we
consider the case where all the parameters in the equations for the neurons are the same except for the
c;. We take this case in particular as maintaining the equality of the a’s and b’s means that this model



will still admit symmetric equilibria, which renders the analysis simpler. It also means that this is the
“least harmful” way of breaking the symmetry of these equations. The resulting model is
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One could also write equations for the transformed variables (X1, Y1, X3,Y3) defined by (9), however
these are considerably more complicated than (30). For comparison with section three, we will use the
transformed variables to represent solutions graphically.

A brief analysis of (30) reveals that although the subspace 7 is no longer invariant, the symmetric
equilibria still exist and are identical to those of (8), i.e. they are given by (%1, y1, %2,92) = (%, ¥, Z, ¥),
with Z, y solutions of (4). The Jacobian of the linearization of (30) about these equilibria is

a(l—2)+y — 0
I(z) = “u —a 0 ! 31
(7) = — 0 e2(1=2%) 4+ e ’ (31)
T

where z is a solution of (4). The characteristic equation for this system is then
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Clearly, when v = 0, the characteristic polynomial factors into two quadratics, yielding two charac-
teristic equations A\? + (b/cj +cj(2% - 1)) A+ 14 b(z? — 1) = 0, one for each neuron. For fixed b and
¢1 # ¢z, the Hopf bifurcations of the two uncoupled neurons now occur at two distinct values of a

b |b b def

a=4 1—;[5(1—§)+1—b]:af1j, (33)
J J

When ~ is nonzero, one might expect that there will still be two sets of parameter values along which

a Hopf bifurcation occurs, corresponding to the two sets above. To find the expressions for the sets of

parameters along which a Hopf bifurcation can occur, we put A = w into the characteristic equation (32)
and separate the resulting equation into real and imaginary parts. Isolating v yields

bz —1)+1—w?

= 72— 1)+b 4
= et el = U ) e ) 1 2 1 2eres (1= o) (34
where w satisfies

1 b2 2 2 b2
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F2b(22 — 1) + —os (267 — 3(c2 + 2)) + 3] W 4 (b(E2 — 1) +1)? <w - 1> — 0.

2cics 2cics

Thus solving (4) for # and (35) for w and substituting in (34) yields the desired expression for v as a
function of @, b and the c;. This expression is quite lengthy, so we don’t reproduce it here, instead we
show a graph of v versus @ with 6 =0.4,¢; = 2,¢5 = 2.1 (Fig. 5). Clearly two curves of Hopf bifurcation
persist, but they no longer intersect. The picture is similar for other values of the parameters, with the
distance between the curves being a function of the difference between ¢; and ¢3. A measure of this
distance (at v = 0) is ag1 — a2 where the ap; are given by (33).
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Figure 5. (a) Hopf bifurcation sets in v, a plane for non-identical oscillators (30). Here b = 0.4, ¢y = 2,
¢y = 2.1, but the picture would be qualitatively similar for any b < min(1, |¢;|), ¢1 # ¢2. (b) Bifurcation
&ﬁgram of X7 vs v for the same parameter values at®a = 0.7.
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Figure 6. Numerical simulations of (30) with @ = 0.7, b = 0.4, ¢; = 2 and ¢; = 2.1 for three initial
conditions resulting in three different attractors. (a) Attractors are all limit cycles for v = 0.05 (b) Two
attractors have undergone period doubling bifurcations at v = 0.076.

As discussed above, changing the value of ¢’s in the model is the “least harmful” way of breaking the
symmetry of the equations. Since this resulted in a loss of Hopf interaction points we might expect the
same to occur for other changes to the parameters. Indeed, this is what we observe when we change
either the b‘s or the a’s.

Appealing to the continuous dependence on parameters of solutions of well behaved ODE’s, we might
expect that behaviour in the symmetric system would persist in the non-symmetric system if the param-
eters of the two neurons are close. In fact, for the parameter values near to the “closest approach” of
the two Hopf curves of Fig. 5 we observe the coexistence of three limit cycles in the systems. For slightly
large values of the coupling parameter v we observe the coexistence of a large amplitude limit cycles with
two smaller amplitude high period attractors (Fig. 6). For a larger difference between the ¢;’s we observe
bistability between two limit cycles or a limit cycle and a more complicated attractor or two complicated
attractors. This behaviour exists for small values of the coupling even if the the difference between the
two parameters is up to 20% of the size of the parameter. We observe similar behaviour when the a’s or
the b’s are chosen to differ and when multiple parameters differ.

5. Discussion

There have been many studies of coupled relaxation oscillators, including the Fitzhugh-Nagumo [6]
and van der Pol [8-15] models (see also references therein). Much of this work concerns the existence
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and stability of various types (in phase, out of phase, phase locked) of periodic motions, often in the case
identical oscillators. By contrast, our work focussed primarily of the origin of multistability in a model
with identical neurons and whether this multistability persists when the neurons are no longer identical.

We have shown that the coexistence of multiple stable limit cycles or stable limit cycles and other more
complicated attractors result from a symmetric Hopf bifurcation when two identical neurons are coupled
together. Similar behaviour has been observed in nonlinearly coupled van der Pol oscillators [15] and
Fitzhugh-Nagumo equations with electrical coupling in both the z; and y; [6]. In fact such behaviour
can be expected to occur for any model which can undergo a Hopf bifurcation [16].

When the neural models are identical, but the coupling is no longer symmetric we have shown that
the symmetric Hopf bifurcation becomes a one-to-one resonant Hopf-Hopf interaction, and multistability
still occurs. This result also only depends on having two identical neurons which can undergo a Hopf
bifurcation, and thus should also hold for other neural models.

Finally we showed that when the slightest change in one of the parameters in the neural models is
introduced the Hopf interaction point is totally lost. However, if the difference of the parameters is no
too great the multistability remains. We conjecture that this result will also hold for arbitrary neural
models with electrical coupling.

We have not emphasized the fact, but it should be clear that the multistability we have observed occurs
close to the interaction points. Generally, this means that the coupling between the neurons must be
small to observe such behaviour. This is in agreement with the work in [?].
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