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In this paper, the Allee effect is incorporated into a predator–prey model with Holling type
II functional response. Compared with the predator–prey model without Allee effect, we
find that the Allee effect of prey species increases the extinction risk of both predators
and prey. When the handling time of predators is relatively short and the Allee effect of
prey species becomes strong, both predators and prey may become extinct. Moreover, it
is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic
bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is
also found that the positive equilibrium of the model could change from stable to unstable,
and then to stable when the strength of Allee effect or the handling time of predators
increases continuously from zero, that is, the model admits stability switches as a param-
eter changes. When the Allee effect of prey species becomes strong, longer handling time of
predators may stabilize the coexistent steady state.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

Both positive and negative interactions among species are common in communities [1,2]. For example, synchronous
breeding is an important mechanism by which colonial guillemots (Uria aalge) increase reproductive success. Many carni-
vore species are better able to capture large prey by cooperative hunting and group living may thus be favored in areas with
abundant large prey [3]. Historically, attention has focused on negative interactions, such as competition. However, for the
last decade, the importance of positive interactions such as the Allee effect [4] has recently been recognized [1,5]. The Allee
effect [4], and more recently as depensation [6] or inverse density dependence [7], refers to a decrease in per capita fertility
rate at low population densities. Allee effect may occur under several mechanisms, such as difficulties in finding mates when
population density is low [8,9], social dysfunction at small population sizes and increased predation risk due to failing flock-
ing or schooling behavior [10,11]. When such mechanisms operate, the per capita fertility rate of a species increases with
density, that is, positive interactions among species occur. The primary consequence of the Allee effect is that it creates a
threshold density below which a population cannot survive. For example, this might correspond to the density below which
it is so difficult to find a mate that reproduction does not compensate mortality. Each population whose density stochasti-
cally goes below this threshold is fated to extinction and species experiencing Allee effect are therefore more extinction
prone [11]. The phenomenon has received considerable attention from ecologists [12,13]. The importance of this dynamic
process in ecology has been under-appreciated and recent evidence [14] now suggests that it might have an important influ-
ence on the population dynamics of many plants and animal species. Therefore, the investigation of Allee effects is important
for conservation biology [15].
2010 Published by Elsevier Inc. All rights reserved.
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Interactions among species in a food web are multiform. Among these, the interactions between predators and prey are
important. Predator–prey interactions are ubiquitous in nature and the dynamical behaviors of predator–prey system are
very complex. Many forces may influence the dynamical behaviors of the predator–prey system [11,12]. It has been shown
that a predator–prey model can lead to oscillatory behavior because of a nonlinear functional response. Interest in the sta-
bility of predator–prey system has continued unabated since the theoretical work of Lotka [16], Volterra [17] and the exper-
imental work of Gause [18]. Theoreticians and experimentalists have proceeded to investigate the processes that affect the
stability of predator–prey system [19,20]. Among the many processes that the Lotka–Volterra model ignores, the Allee effect
may be the most important [21]. The Allee effect increases the likelihood of local and global extinction. But there have been
few papers discussing its stabilizing or destabilizing effects on the predator–prey system (except for [21,22,33]). Kent et al.
[22] conclude that the predator–prey system is stabilized by an influx of prey in the form of a rescue effect, and destabilized
by an out flux of Allee effect. By combining mathematical analysis with numerical simulation, Zhou et al. [21] have shown
that the Allee effect may be a destabilizing force in predator–prey system. However, the Lotka–Volterra model they consid-
ered does not consider the density-dependent effect of prey and the functional response is linear. Functional response is a
double rate: it is the average number of prey killed by per individual predator per unit of time. In general, the functional
response can be classified into two types: prey-dependent and predator-dependent. Prey-dependent means that the func-
tional response is only a function of the prey’s density, while predator-dependent means that the functional response is a
function of both densities of the prey and predators. Functional response that is strictly prey-dependent, such as the Holling
family, is predominant in the literature. For example, since 1959, Holling’s prey-dependent type II functional response has
served as the basis for many literatures on predator–prey theory. Therefore, the predator–prey model with Holling type II
functional response is more realistic. However, the impact of the Allee effect on the stability of a predator–prey system with
Holling type II functional response is poorly understood both empirically and theoretically.

The purpose of this paper is to show that the Allee effect of prey species has significant effects on the dynamics of pred-
ator–prey model with Holling type II functional response. We will investigate how predator and prey species are threatened
by extinction when the population density of prey becomes low. Moreover, we will show that the predator–prey model with
Allee effect and Holling type II functional response undergoes a sequence of bifurcations including supercritical Hopf bifur-
cation, subcritical Hopf bifurcation and heteroclinic bifurcation. We will also present a global analysis of the model by means
of numerical simulations.

The organization of this paper is as follows. In the next section, we present the formulations of mathematical model with
Allee effect. In Section 3, we present a qualitative analysis of the model. In Section 4, we use numerical simulations to reveal
the global bifurcation structures and the influence of Allee effect on the dynamical behaviors of the model. A brief discussion
is given in Section 5.

2. Model formulations

In this section, we first introduce the Rosenzweig–MacArthur predator–prey model with Holling type II functional re-
sponse. Based on this model, we will construct a predator–prey model with Allee effect on prey species.

2.1. Rosenzweig–MacArthur predator–prey model

The objective of this subsection is to introduce the predator–prey model with Holling type II functional response and
summarize its dynamical behaviors.

The classical Lotka–Volterra predator–prey model did not contain saturating effect. More realistically, the functional re-
sponse of predator population is nonlinear. The Rosenzweig–MacArthur predator–prey model with Holling type II functional
response is as follows:
dN
dt
¼ Nðb� d1 � aNÞ � sNP

1þ sh1N
;

dP
dt
¼ c1sNP

1þ sh1N
� d2P;

8>><
>>: ð1Þ
where N and P denote the population densities of prey and predators at time t, respectively, b is the per capita maximum
fertility rate of prey population, di (i = 1,2) are the per capita death rates of prey and predators respectively, a denotes
the strength of intra-competition of prey population, s denotes the effective search rate, h1 denotes the handling time of pre-
dators, and c1 denotes the conversion efficiency of ingested prey into new predators. The product, sN/(1 + sh1N), represents
the predator’s functional response, i.e. the relationship between prey density, N, and the amount ingested by an average
predator. All the parameters are positive constants. Further, we assume that the growth rate of prey must exceed its death
rate, i.e., b > d1, otherwise, both prey and predators will become extinct. In addition, the maximum growth rate of predator
population must exceed its death rate, i.e., c1/h1 > d2. If not, prey population will never be able to sustain predators, which
will go to extinction. In model (1), if the carrying capacity of prey (b � d1)/a is low, i.e.,
0 <
b� d1

a
<

d2

sðc1 � h1d2Þ
; ð2Þ
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then the attractor is the trivial equilibrium ((b � d1)/a,0), i.e., predator population goes extinct. By contrast, for intermediate
value of the carrying capacity
d2

sðc1 � h1d2Þ
<

b� d1

a
6

d2 þ c1=h1

sðc1 � h1d2Þ
;

stationary stable coexistence occurs at the strictly positive equilibrium
ðN�1; P
�
1Þ ¼

d2

sðc1 � h1d2Þ
;
ð1þ sh1N�1Þðb� d1 � aN�1Þ

s

� �
; ð3Þ
while for high value of the carrying capacity of prey, i.e.,
b� d1

a
>

d2 þ c1=h1

sðc1 � h1d2Þ
;

predator and prey populations coexist on a limit cycle and the limit cycle is globally stable. Moreover, the trivial equilibrium
(0,0) is always a saddle point in model (1). Therefore, the equilibrium ðN�1; P

�
1Þ given by (3) is critically stable and the pop-

ulations are balanced between stationary and cyclic coexistence.
Next, based on the predator–prey model (1), we construct a predator–prey model with Allee effect on prey species and

study its impact on the stability of predator–prey system.

2.2. Predator–prey model with Allee effect on prey species

Because of difficulties in finding mates when prey population density becomes low, Allee effect may occur in prey species
[9]. For example, this might correspond to the density below which it is so difficult to find a mate that reproduction does not
compensate for mortality. Let f(N) be the fertility rate of a species that has N adults in an isolated patch, then the fertility rate
increases with population density, which is described by
f ðNÞ ¼ bN
A1 þ N

;

where b is the per capita maximum fertility rate of the species, A1 is the Allee effect constant of the species [23]. If A1 > 0, the
fertility of the species is therefore zero when N is zero and approaches to b when N becomes very large. How fast f(N) in-
creases with N depends on the parameter A1. The bigger A1 is, the stronger the Allee effect will be. Biologically, A1 is the pop-
ulation density at which a species reaches half its maximum fertility (i.e., f(A1) = b/2). When A1 = 0, the fertility rate is density
independent, with f(N) = b.

When prey population is subject to Allee effect, the predator–prey model becomes
dN
dt
¼ N

bN
A1 þ N

� d1 � aN
� �

� sNP
1þ sh1N

;

dP
dt
¼ c1sNP

1þ sh1N
� d2P;

8>><
>>: ð4Þ
where A1 is a positive parameter denoting Allee effect imposed on prey population. If
b > d1; c1 > h1d2;
b� d1

a
>

d2

sðc1 � h1d2Þ
;

0 < A1 <
d2ðsðb� d1Þðc1 � h1d2Þ � ad2Þ

sðc1 � h1d2Þðd1sðc1 � h1d2Þ þ ad2Þ
;

then model (4) yields one non-trivial equilibrium
ðN�2; P
�
2Þ ¼

d2

sðc1 � h1d2Þ
;
ð1þ sh1N�2ÞðbN�2=ðA1 þ N�2Þ � d1 � aN�2Þ

s

� �
: ð5Þ
It is obvious that now the equilibrium density of prey population is the same as that obtained from Eq. (1), however, the
equilibrium density of predator population is smaller than that obtained from Eq. (1). That is to say, a decrease of predator
population density at the equilibrium is caused by the Allee effect of prey population. Next, we investigate model (4) by way
of mathematical analysis and numerical simulations. First, we perform a global qualitative analysis of system (4).

3. Qualitative analysis

In order to reduce parameters, we perform the following transformations:
X ¼ aN
b
; Y ¼ sP

b
; s ¼ bt:
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For simplicity, we still use variables N, P, t instead of X, Y, s. Then we obtain
0
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0

0

0
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Fig. 1.
A = 0.01
dN
dt
¼ N

N
Aþ N

�m1 � N � P
1þ hN

� �
;

dP
dt
¼ P

cN
1þ hN

�m2

� �
;

8>>><
>>>:

ð6Þ
where
A ¼ A1a
b
; m1 ¼

d1

b
; h ¼ sh1b

a
; c ¼ c1s

a
; m2 ¼

d2

b
;

A corresponds to the re-scaled strength of the Allee effect and m1 is a re-scaled death rate of prey population. All the param-
eters are positive constants. Note that b > d1, so 0 < m1 = d1/b < 1 and we shall assume that this is the case in this paper.

For simplicity of computation, we consider the above system (6), which is equivalent to (4). Henceforth, we perform a
qualitative analysis of system (6). We start by studying the local stability of equilibriums of system (6).

3.1. Extinction equilibrium

First, we consider the stability of trivial equilibrium E0 = (0,0). Because the stability of E0 = (0,0) is important to under-
stand the qualitative behavior of model (6) influenced by the Allee effect of prey population. The Jacobian matrix of system
(6) at E0 is
M1 ¼
�m1 0

0 �m2

� �
:

It can be seen that E0 is always a locally stable node, which implies that both prey and predators will become extinct when
their population densities lie in the attraction region of E0. In particular, if the population density of prey becomes low, then
both predators and prey will go extinct (see Fig. 1). Compared with the predator–prey model without Allee effect, we can see
that the Allee effect of prey population increases the extinction risk of both predators and prey. Further, if model (6) does not
have interior equilibrium and other boundary equilibriums, i.e., the Allee effect of prey population is very strong, then E0 is
globally asymptotically stable. Any positive orbit converges to E0 as t tends to infinity, i.e., prey and predators cannot coexist
even if the initial population density of prey is abundant. A typical phase portrait is shown in Fig. 1a.

3.2. Boundary equilibriums

In order to find positive equilibriums for prey population, set
D1 ¼ ð1� A�m1Þ2 � 4Am1 ¼ A2 � 2Aðm1 þ 1Þ þ ðm1 � 1Þ2:
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Phase portraits of model (6). Isoclines are shown as dashed lines. (a) E0 is a global attractor when A = 0.0880. (b) Both E0 and E2 are attractors when
60. Other parameter values: h = 11.2500, m1 = 0.5000, c = 2.5000, m2 = 0.2000.
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Then we can see that there exist two boundary equilibriums E1 = (N1,0) and E2 = (N2,0) if D1 > 0 and A < 1 �m1, where
N1 ¼
1
2

1� A�m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� �
;

N2 ¼
1
2

1� A�m1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� �
:

We first determine the local stability of E1. Note that N1/(A + N1) �m1 � N1 = 0, then the Jacobian matrix of system (6) at E1 is
M2 ¼

1� A�m1 � 2N1

Aþ N1
� N1

1þ hN1

0
cN1

1þ hN1
�m2

2
664

3
775:
The determinant of Jacobian matrix M2 is given by
detðM2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q
ðc �m2hÞN1 �m2ð Þ

ðAþ N1Þð1þ hN1Þ
:

It can be seen that the determinant of the Jacobian matrix M2 may be positive or negative. The trace of Jacobian matrix M2 is
trðM2Þ ¼
1� A�m1 � 2N1

Aþ N1
þ cN1

1þ hN1
�m2

� �
;

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q
Aþ N1

þ ðc �m2hÞN1 �m2

1þ hN1
:

When det(M2) > 0, the trace of Jacobian matrix M2 is always positive. Therefore, we obtain the following results on the sta-
bility of E1.

Theorem 1. Assume that 0 < m1 < 1 and 0 < A < ð1� ffiffiffiffiffiffiffi
m1
p Þ2. Then

(i) E1 is a saddle point if
h > c=m2 � 2 1� A�m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� ��
:

(ii) E1 is unstable if
0 < h < c=m2 � 2 1� A�m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� ��
: ð7Þ
Next, we analyze the stability of E2. The Jacobian matrix of system (6) at E2 is
M3 ¼

1� A�m1 � 2N2

Aþ N2
� N2

1þ hN2

0
cN2

1þ hN2
�m2

2
664

3
775:
By a similar argument as above, we have the following results on the stability of E2.

Theorem 2. Assume that 0 < m1 < 1 and 0 < A < ð1� ffiffiffiffiffiffiffi
m1
p Þ2. Then

(i) E2 is a saddle point if
0 < h < c=m2 � 2 1� A�m1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� ��
: ð8Þ
(ii) E2 is locally asymptotically stable if
h > c=m2 � 2 1� A�m1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A�m1Þ2 � 4Am1

q� ��
:

If model (6) does not have interior equilibrium, i.e., the carrying capacity of prey is low, then its asymptotic behavior is
determined by the local stability of E0, E1 and E2. Note that A corresponds to a re-scaled strength of the Allee effect and h
corresponds to a re-scaled handling time of predator population. From Theorems 1 and 2, it can be seen that if the Allee effect
of prey is relatively weak and the handling time of predators is relatively long, then E1 is a saddle point and E2 is asymptot-
ically stable. The stable manifold of E1, which is the threshold induced by the Allee effect of prey population, divides the first
quadrant into two parts, one is the attraction region of E0, the other is the attraction region of E2 (see Fig. 1b). From Fig. 1b, it
can be seen that if the population density of prey becomes low, then both predators and prey will become extinct. This
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dependence on the initial population densities is very important. A slight difference in the initial population densities makes
the asymptotic state very different [24]. On the contrary, if the Allee effect of prey is relatively strong and the handling time
of predators is relatively short, then E1 is unstable and E2 is a saddle point, any positive orbit converges to E0 as t tends to
infinity, i.e., E0 is globally asymptotically stable, both predators and prey will go extinct independent of the initial population
densities (see Fig. 2 a). Therefore, if model (6) does not have interior equilibrium, then depending on the strength of Allee
effect, the handling time of predators and the initial population densities, either predator population becomes extinct or both
predators and prey go extinct.

3.3. Coexistent equilibrium

To obtain the positive equilibrium E3 = (N*, P*) of system (6), we propose the following assumption:
0 < m1 < 1; c >
m2ð1þ ð1�m1ÞhÞ

1�m1
;

0 < A <
m2ððc �m2hÞð1�m1Þ �m2Þ
ðc �m2hÞðm2 þm1ðc �m2hÞÞ :

ð9Þ
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Then set
cN
1þ hN

�m2 ¼ 0;

N
Aþ N

�m1 � N � P
1þ hN

¼ 0;

8>><
>>:
which yields
N� ¼ m2

c �m2h
;

P� ¼ c
c �m2h

m2

m2 þ Aðc �m2hÞ �
m2

c �m2h
�m1

� �
:

8>><
>>:
The Jacobian matrix of system (6) at (N*, P*) is
M4 ¼
N�

A

ðAþ N�Þ2
þ hP�

ð1þ hN�Þ2
� 1

 !
� N�

1þ hN�

cP�

ð1þ hN�Þ2
0

2
66664

3
77775:
Thus, we have
trðM4Þ ¼ N�
A

ðAþ N�Þ2
þ hP�

ð1þ hN�Þ2
� 1

 !
;

detðM4Þ ¼
cN�P�

ð1þ hN�Þ3
:

When condition (9) is valid, it can be seen that det(M4) is always positive, but tr(M4) may be positive or negative. Therefore,
the locally asymptotic stability of E3 is decided by the sign of tr(M4). Substitute N* and P* into tr(M4), we obtain
trðM4Þ ¼
m2 a1A2 þ a2Aþ a3

� 	
cðc �m2hÞðAhm2 � Ac �m2Þ2

; ð10Þ
where
a1 ¼ �ðm1hðc �m2hÞ þ c þm2hÞðc �m2hÞ2;
a2 ¼ ðc �m2hÞð�2m1m2hðc �m2hÞ þ ðc2 �m2

2h2Þ � 2m2ðc þm2hÞÞ;
a3 ¼ ð�m1hðc �m2hÞ þ hðc �m2hÞ � ðc þm2hÞÞm2

2:

ð11Þ
Note that c > m2h, so the sign of tr(M4) is determined by the sign of F(A), where F(A) is a quadratic function of A, i.e.,
FðAÞ ¼ a1A2 þ a2Aþ a3:
Because a1 < 0, in order to determine the sign of F(A), we further assume that a2 > 0 and a3 < 0, i.e.,
c > m2ð2þ hÞ;
hðc �m2hÞ � ðc þm2hÞ

hðc �m2hÞ < m1 <
ðc2 �m2

2h2Þ � 2m2ðc þm2hÞ
2m2hðc �m2hÞ ;

ð12Þ
and set
D2 ¼ a2
2 � 4a1a3 ¼ �ðc �m2hÞ3 4cm1m2hðc �m2hÞ þ ðc þm2hÞð4cm2 þm2

2h2 � c2Þ
� 	

: ð13Þ
When conditions (12) hold and D2 > 0, then F(A) = 0 admits two positive solutions A* and A**, where
A� ¼ � a2 �
ffiffiffiffiffiffi
D2
p

2a1
; A�� ¼ � a2 þ

ffiffiffiffiffiffi
D2
p

2a1
:

In this case, if 0 < A < A* or A > A**, then F(A) < 0, i.e., tr(M4) < 0, E3 is locally asymptotically stable. When conditions (12) hold
and D2 < 0, then F(A) < 0 for all A > 0, i.e., E3 is always locally asymptotically stable. Set
m�1 ¼
ðc þm2hÞðc2 � 4cm2 �m2

2h2Þ
4cm2hðc �m2hÞ ;

Ac ¼
m2ððc �m2hÞð1�m1Þ �m2Þ
ðc �m2hÞðm2 þm1ðc �m2hÞÞ ;
then we have the following results on the local stability of E3 if (9) and (12) hold (see Table 1).



Table 1
The local stability of the positive equilibrium E3 of model (6).

Range of
parameter m1

Range of Allee
effect parameter A

The stability
of (N*, P*)

0 < m1 < m�1 0 < A < A* or A** < A < Ac Asymptotically stable
A* < A < A** Unstable
A = A* or A = A** Center

m1 > m�1 For all 0 < A < Ac Asymptotically stable
m1 ¼ m�1 A ¼ � a2

2a1
Center

A – � a2
2a1

Asymptotically stable
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Fig. 3. Phase portraits of model (6). Isoclines are shown as dashed lines. (a) E3 is locally asymptotically stable when A = 0.0200. (b) E3 is unstable and there is
stable limit cycle in model (6) when A = 0.0500. (c) E3 is locally asymptotically stable when A = 0.0720. Other parameter values are the same as in Fig. 1
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From Table 1, we can conclude that the positive equilibrium of model (6) could change from asymptotically stable to unsta-
ble, and then to stable when the Allee effect parameter A varies continuously from zero and 0 < m1 < m�1. As an example, we
fix m1 = 0.5000, h = 7.8000, c = 2.5000, m2 = 0.2000. Then 0 < m1 < m�1 ¼ 0:5029, conditions (9) and (12) hold. In this case,
A* = 0.0362, A** = 0.0638 and Ac = 0.0857. Thus, Table 1 shows that E3 is locally asymptotically stable when
0 < A = 0.0200 < A*, which is shown in Fig. 3a. E3 is unstable and there is a stable limit cycle when A* < A = 0.0500 < A**, which
is shown in Fig. 3b. E3 is locally asymptotically stable when A* < A = 0.0720 < Ac, which is shown in Fig. 3c. From Fig. 3, it can be
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seen that when the handling time of predators is relatively long, larger A stabilizes the positive equilibrium. This is because the
Allee effect of prey species and type II functional response creates a hump in the prey isocline, there appears positive density
dependence in a part of the prey isocline and higher predator density becomes necessary for suppression of the prey growth.
This phenomenon destabilizes the positive equilibrium and a limit cycle appears. However, increasing Allee effect decreases
the equilibrium predator density. Larger A increases boundary equilibrium E1 and decreases E2, two isoclines tend to cross in
the right hand side of the hump for larger A and negative density dependence appears again. This is the mechanism why the
positive equilibrium changes from stable to unstable, and again to stable as the strength of Allee effect changes.

If model (6) does not have a limit cycle, its asymptotic behavior is determined by the local stability of E0, E1, E2 and E3.
Specifically, if E3 is unstable and E1 and E2 are saddle points, i.e., the Allee effect of prey species is relatively strong, any po-
sitive orbit except the positive equilibrium and the stable manifolds of E1 and E2 converges to E0 as t tends to infinity, i.e.,
prey and predators cannot coexist even if the initial population density of prey is abundant (see Fig. 2b). If E3 is stable
and E1 and E2 are saddle points, i.e., the Allee effect of prey population is weak, because the origin is always locally stable,
then there exists a stable coexistent region divided by the stable manifold of E1, which is the threshold induced by the Allee
effect of prey species. If the initial position lies outside the region, positive orbits converge to E0 as t tends to infinity; if the
initial position lies in the stable region, positive orbits converge to E3 as t tends to infinity (see Figs. 2d and 4b). In Fig. 2, it can
be seen that the stable coexistent region of predators and prey will shrink when the strength of Allee effect increases. If the
handling time of predator population is relatively short, the Allee effect of prey species is a destabilizing force in the pred-
ator–prey system. A slight difference in the initial population densities makes the asymptotic state very different [24]. There-
fore, prey and predator populations can coexist only if the initial position lies in the stable region and will go to extinction if
the initial position lies outside this region.

Let us now consider the nonexistence of limit cycle in model (6). Note that E3 is a node, a focus or a center. A limit cycle of
(6) must include E3. Take a Dulac function D = (A + N)(1 + hN)/(NP) and denote the right-hand sides of (6) by R and Q, respec-
tively. We have
@ðDRÞ
@N

þ @ðDQÞ
@P

¼ �3hN2 þ 2 Ahþm1h� hþ 1ð ÞN þ ð 1þm1hð ÞAþm1 � 1Þ þ P
P

; ð14Þ
which is negative in the first quadrant if the following condition holds:
A > max
1�m1

1þm1h
;
hð1�m1Þ � 1

h


 �
: ð15Þ
Hence, we obtain the following results.

Theorem 3. Let (15) hold. Then system (6) does not admit limit cycle in the first quadrant.

Condition (15) will be satisfied if the Allee effect of prey is relatively strong or the handling time of predator is relatively
long. Therefore, Theorem 3 essentially means that there is no limit cycle in system (6) if the Allee effect of prey population is
relatively strong or the handling time of predator is relatively long.
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From Theorems 1–3 and Table 1, we can obtain the following results on the global stability of E0. Three typical phase por-
traits are shown in Figs. 1a and 2a and b.

Theorem 4. E0 is a global attractor of system (6) in the first quadrant if any one of the following conditions holds:

(i) A > 1 �m1 and one of the opposite inequalities of (9) holds;
(ii) 0 < A < ð1� ffiffiffiffiffiffiffi

m1
p Þ2, (7), (8) and one of the opposite inequalities of (9) hold;

(iii) 0 < A < ð1� ffiffiffiffiffiffiffi
m1
p Þ2;0 < m1 < m�1, A* < A < A**, (7), (8), (9) and (15) hold.

3.4. Hopf bifurcation

From Table 1, it can be seen that when the Allee effect coefficient A increases continuously from zero and 0 < m1 < m�1,
then E3 undergoes stable state, unstable state and stable state. This suggests a possibility that model (6) admits a Hopf bifur-
cation. If model (6) has limit cycles, the dynamical behavior of the model is determined by the stability of E3 and the number
of limit cycles. We first verify the existence of a Hopf bifurcation in (6) and determine its direction. Set
r ¼ ððc2 �m2
2h2 þm1hc2 � 2cm1m2h2 þm1m2

2h3ÞA� � c2 þm2
2h2 þm1c2 �m1m2

2h2 þ 2m2c þ hm2
2Þðð�2m2h2

þ 2chÞðA�Þ2 þ ð�2chþ 2m2h2 � 2m1m2h2 þ 6m2hþ 2cm1hþ 2cÞA� þm2h�m2 �m2m1hÞ; ð16Þ
where A� ¼ ð�a2 þ
ffiffiffiffiffiffi
D2
p
Þ=ð2a1Þ, a1, a2 and D2 are described as in (11) and (13). Then we have the following results on the

Hopf bifurcation of model (6).

Theorem 5. Let (9), (12) hold and 0 < m1 < m�1.

(i) If r < 0, then there is a family of stable limit cycles in (6) as A increases from A*.
(ii) If r > 0, then there is a family of unstable limit cycles in (6) as A decreases from A*.
Proof. Suppose A = A*, then tr(M4) = 0. Set x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM4Þ

p
; then the eigenvalues of M4 are k1 = xi and k2 = �xi.

For simplicity of computation, we consider the following system which is equivalent to (6):
dN
dt
¼ NðNð1þ hNÞ � ðm1 þ NÞðAþ NÞð1þ hNÞ � PðAþ NÞÞ;

dP
dt
¼ PðAþ NÞððc �m2hÞN �m2Þ:

8>><
>>: ð17Þ
Make a transformation of x = N � N*, y = P � P* to translate (N*, P*) to the origin. Then (17) becomes
dx
dt
¼ a11xþ a12yþ f1ðx; yÞ;

dy
dt
¼ a21xþ a22yþ f2ðx; yÞ;

8>><
>>: ð18Þ
where fi(x,y) (i = 1,2) represent the higher order terms and
a11 ¼ N ��ð1þ 2hN� � ðm1 þ N �ÞðAþ N �Þh� ðm1 þ Aþ 2N �Þð1þ hN �Þ � P�Þ;
a12 ¼ �N�ðAþ N�Þ;
a21 ¼ ðc �m2hÞðAþ N �ÞP�;
a22 ¼ 0:
Setting
u ¼ x;

v ¼ � a11x
x
� a12y

x
;

ð19Þ
and using
trðM4Þ ¼ a11 þ a22 ¼ 0; x2 ¼ detðM4Þ ¼ �a12a21;
we obtain
du
dt
¼ �xv þ f ðu; vÞ;

dv
dt
¼ xuþ gðu; vÞ;

8>><
>>: ð20Þ
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where
f ðu;vÞ ¼ f1 u;� a11uþxv
a12

� �
;

gðu;vÞ ¼ � a11

x
f1 u;� a11uþxv

a12

� �
� a12

x
f2 u;� a11uþxv

a12

� �
;

which represent the higher order terms. Let
l ¼ 1
16
ðfuuu þ fuvv þ guuv þ gvvvÞ þ

1
16x

ðfuvðfuu þ fvvÞ � guvðguu þ gvvÞ � fuuguu þ fvvgvvÞ;
where fuv denotes (@2f/(@u@v))(0,0), etc. Using the fact that A = A*, with the aid of software MAPLE13, we obtain
l ¼ m2ððc �m2hÞA� þm2Þr
8x2ðc �m2hÞ4

: ð21Þ
Since c > m2h, we can see that the sign of l is determined by r. The conclusion of this Theorem follows from Theorem 3.4.2
and formula (3.4.11) of Guckenheimer and Holmes [25]. h

As an example, we fix m1 = 0.5000, h = 0.3125, c = 2.5000, m2 = 0.2000. Then (9), (12) and 0 < m1 < m�1 hold. By (16), we
have r = 0.2799 > 0. Theorem 5 shows that there is an unstable limit cycle when A decreases from A* = 0.0071, which is
shown in Fig. 2c when A = 0.0040. Therefore, we can see that the stable coexistent region of predators and prey collapses
with the disappearance of the unstable limit cycle. In addition, if the handling time of predators is long, such as
h = 7.8000, then we have r = �0.2845 < 0. Thus, there is a stable limit cycle when A increases from A* = 0.0362, which is
shown in Fig. 3b when A = 0.0500. This analysis reveals that the unstable or stable periodical oscillation can be caused by
the Allee effect of prey species.

If model (6) has a unique limit cycle, its asymptotic behavior is determined by the stability of E0, E1, E2, E3 and the limit
cycle. Specifically, if E1 and E2 are saddle points and E3 is unstable, then there exists a stable limit cycle. The stable manifold
of E1, which is the threshold induced by the Allee effect of prey, divides the first quadrant into two parts, any positive orbit
between the stable limit cycle and the stable manifold of E1 converges to the limit cycle as t tends to infinity. Positive orbits
outside the stable manifold of E1 converge to E0 as t tends to infinity, i.e., prey and predators cannot coexist if the initial pop-
ulation densities of prey and predators lies outside the stable manifold of E1 (see Fig. 3b). If E1 and E2 are saddle points and E3

is stable, there exists an unstable limit cycle. Any positive orbit outside the unstable limit cycle except the stable manifold of
E1 converges to E0 as t tends to infinity (see Fig. 2c). Compared with model (1) which does not include Allee effect, we can say
that the Allee effect of prey species may be a destabilizing force in the predator–prey system when the handling time of pre-
dators is relatively short.

Next, we investigate the global bifurcation of system (4) by means of numerical simulations.

4. Global bifurcation analysis

In this section, we provide the global bifurcation analysis of model (4) by means of the software packages PPLANE8 and
MATCONT [26]. We will depict and discuss the heteroclinic cycles occurring in this model.
4.1. Local bifurcation analysis

Previous calculations show that the handling time of predators h1 and the Allee effect of prey species A1 have an impor-
tant impact on the dynamical behaviors of model (4), so we concentrate on the effect caused by the changes of A1 and h1.
Corresponding to parameter values in Figs. 1–4, we fix b = 0.5000, d1 = 0.2500, d2 = 0.1000, a = 0.0040, s = 0.0500,
c1 = 0.2000 in model (4) (we always keep four decimal places for a real number in this paper). When A1 and h1 vary contin-
uously from zero, we obtain two-parameter bifurcation diagram of model (4), which is shown in Fig. 5). It can been seen that
there exists a Bogdanov–Takens (or double-zero) point BT and a generalized Hopf bifurcation point GH (also called Bautin
point). At the generalized Hopf point GH, an equilibrium with an unstable limit cycle H+ turns into an equilibrium with a
stable limit cycle H�.

When
A1 >
ffiffiffi
b
p
�

ffiffiffiffiffi
d1

p� 	2
=a ¼ 10:7233;
i.e., in region VII, the Allee effect of prey species is very strong, then only the trivial equilibrium E0 = (0,0) is biologically rel-
evant equilibrium, which is globally asymptotically stable. All positive orbits converge to this equilibrium E0 as t tends to
infinity, that is to say, both predators and prey cannot exist in this region. A typical phase portrait in this region is qualita-
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tively similar to Fig. 1a. When A1 = 10.7233, there is a transcritical bifurcation TC1 occurring. This bifurcation is also called ‘an
extinction threshold for prey’.

Further, when
0:5
0:25=ð0:1=ð0:01� 0:005h1ÞÞ þ 0:004

� 0:1
0:01� 0:005h1

< A1 < 10:7233;
boundary equilibriums E1 and E2 are also biologically relevant. If 0 < h1 < 1.2275, that is, the handling time of predator is rel-
atively short, i.e., in region VI, then E0 is the globally stable equilibrium, E1 is unstable and E2 is a saddle point. A typical phase
portrait in this region is qualitatively similar to Fig. 2a. However, if h1 > 1.2275, that is, the handling time of predator is rel-
atively long, i.e., in region VIII, then both equilibriums E0 and E2 are asymptotically stable, E1 is a saddle point. The stable
manifold of E1, which is the threshold induced by the Allee effect of prey population, divides the first quadrant into two parts,
one is the attraction region of E0, the other is the attraction region of E2. A typical phase portrait in region VIII is qualitatively
similar to Fig. 1b. Therefore, if the Allee effect of prey is relatively strong and the handling time of predator is relatively short,
then prey population will become extinct even if the initial population density of prey is abundant.

When
A1 ¼
0:5

0:25=ð0:1=ð0:01� 0:005h1ÞÞ þ 0:004
� 0:1

0:01� 0:005h1
;

there is another transcritical bifurcation TC2 occurring. This bifurcation is also called ‘a predator invasion boundary’. When
0 < A1 <
0:5

0:25=ð0:1=ð0:01� 0:005h1ÞÞ þ 0:004
� 0:1

0:01� 0:005h1
;

equilibriums E1, E2 and E3 are biologically relevant. Thus, predators and prey may coexist in this region. In this region, there is
a supercritical Hopf bifurcation curve H� and a subcritical Hopf bifurcation curve H+, which is separated by the generalized
Hopf point GH. On the right of the supercritical Hopf bifurcation curve H�, i.e., in region I, limit cycles cannot occur, the equi-
librium E3 is asymptotically stable. That is to say, if the handling time of predator population is relatively long, then prey and
predators can coexist. A typical phase portrait in region I is qualitatively similar to Fig. 4b. However, when the handling time
of predators is relatively short, limit cycles appear. In order to find the extinction boundary in (h1,A1)-plane where the sys-
tem collapses after predator invasion, we need to proceed the global bifurcation analysis of model (4).

4.2. Global bifurcation analysis

If a limit cycle is continued in two parameters h1 and Period, where Period is the cycle period, this results in Period tending
to infinity at, for example, A1 = 2.0000, h1 = 1.0566 (see Fig. 6). At this point the non-trivial orbit connects the saddle E2 to the
saddle E1, going around the non-trivial equilibrium E3. That is, a heteroclinic cycle occurs at A = 2.0000, h = 1.0566 (see Fig. 7),
which is broken into two heteroclinic connections between the two saddle points E1 and E2. Outside the heteroclinic cycle
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the solution goes asymptotically to the stable zero state E0, while inside the heteroclinic cycle there is convergence towards
the heteroclinic cycle. When 1.0566 < h < 1.2131, there exists a stable limit cycle. The limit cycle shrinks to the positive
equilibrium E3 at 1.2131 and becomes larger and larger when h1 decreases in this interval. The disappearance of the limit
cycles is associated with the occurrence of these heteroclinic connections. If 0 < h < 1.0566, the heteroclinic orbit is broken,
all positive orbits except E3 and the stable manifold of E1 converge to E0 as t tends to infinity. The typical phase portraits are
qualitatively similar to Figs. 3b and 2b.

In Fig. 5, the continuation curve of the heteroclinic connecting orbit in the (h1,A1)-plane is depicted as G. It can readily be
seen that this curve is very close to the supercritical Hopf bifurcation curve H� when A1 is relatively large. Limit cycles are
therefore almost immediately destroyed. On the left of the supercritical Hopf bifurcation curve H�, limit cycles can occur, the
heteroclinic cycle curve G together with the Hopf bifurcation curves H� and H+ separate the (h1,A1)-plane into four parts. In
region II, there exist stable limit cycles in model (4), stable periodic oscillation behaviors occur. A typical phase portrait in
region II is qualitatively similar to Figs. 3b and 4a. It can be seen that when the Allee effect of prey becomes strong, longer
handling time of predators can maintain the cyclic coexistence. Region III is qualitatively similar to region I. That is to say, if
the Allee effect of prey is relatively weak, then the positive equilibrium E3 could change from stable, to unstable, and then
stable when the handling time coefficient h1 varies continuously from zero (see Figs. 2d and 4a and b). In region IV, there
exist unstable limit cycles in model (4), E3 is locally asymptotically stable. Inside the unstable limit cycle, any positive orbits
converge to E3 as t tends to infinity; outside the unstable limit cycle, any positive orbit converges to E0 as t tends to infinity. A



Table 2
The existence and local stability of equilibriums in different regions of Fig. 5.

Region Equilibriums

I E1 saddle, E2 saddle, E3 stable
II E1 saddle, E2 saddle, E3 unstable
III E1 saddle, E2 saddle, E3 stable
IV E1 saddle, E2 saddle, E3 stable
V E1 saddle, E2 saddle, E3 unstable
VI E1 unstable, E2 saddle, –
VII – – –
VIII E1 saddle, E2 stable, –

Note: The equilibrium E0 exists and is asymptotically stable in all regions.
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typical phase portrait in region IV is qualitatively similar to Fig. 2c. In region V, E3 is unstable, prey and predators cannot
coexist. All positive orbits except E3 and the stable manifold of E1 converge to E0 as t tends to infinity. A typical phase portrait
in region V is qualitatively similar to Fig. 2b. Therefore, if the Allee effect of prey is relatively strong and the handling time of
predator is relatively short, then prey and predators cannot coexist. From Fig. 5, it is clear that only in region I, II, III and IV,
prey and predators may coexist, and whether prey and predators can coexist or not also depends on the initial population
densities of them. When the Allee effect becomes stronger, larger h1 may stabilize the coexistent steady state.

The existence and stability of equilibriums in different regions of Fig. 5 are presented in Table 2. In all regions the equi-
librium E0 is locally stable. This implies that in all cases the solutions of system (4) can converge to the state with the extinc-
tion of both prey and predators, as long as the initial position lies in the attraction region of E0.

4.3. Implications of global bifurcation

The occurrence of a heteroclinic cycle in model (4) has important implications. According to the global bifurcation struc-
ture in Fig. 5, we can clearly get four different kinds of dynamical behaviors in model (4).

First, in regions I, II, III and IV, depending on the initial states of the system, predators and prey can coexist after predator
invasion. Especially, in region II, predators and prey coexist on a stable limit cycle. Because in region II, there exists a super-
critical Hopf bifurcation curve, where a stable limit cycle is born, which is also bounded on the other side by the global bifur-
cation curve G. In region IV, the coexistent region of predators and prey is bounded by the unstable limit cycle. It also can be
seen that longer handling time of predators may stabilize the coexistent steady state when the Allee effect of prey species
becomes strong.

Second, in region V, E3 is unstable, any predator invasion is unsuccessful. Both prey and predators will go extinct if the
initial position of them does not lie in the stable manifold of E1. That is, if the Allee effect of prey is strong and the handling
time of predators is relatively short, prey and predators cannot coexist.

Third, in region VIII, predator population cannot survive, prey population is either at carrying capacity (E2) or absent (E0),
depending on the initial states of the system.

Fourth, in regions VI and VII, only the trivial equilibrium E0 is asymptotically stable and the system collapses for all po-
sitive initial states. Both prey and predators will go extinct if the Allee effect of prey species becomes strong.

5. Discussion

In recent years, the Allee effect has drawn considerable attention in almost every aspect of ecology and conservation. The
consequences of Allee effect become more and more significant. In this paper, based on a predator–prey model with Holling
type II functional response, we investigate the impact of Allee effect on the stability of a predator–prey system when prey
population is subject to Allee effect. We show that the predator–prey model with Allee effect may admit Hopf bifurcation
and heteroclinic bifurcation. Compared with model (1) that does not include Allee effect, we can say that the Allee effect
of prey species may be a destabilizing force in predator–prey system when the handling time of predators is short. The
extinction of prey and predators occurs through the destruction of a stable limit cycle by a global bifurcation. This phenom-
enon does not occur in the standard food chain model (1) which does not include Allee effect. The global bifurcations found
in the model are heteroclinic cycles that consist of two heteroclinic connections between two saddle equilibriums in the zero
biomass plane of predators. The disappearance of the limit cycles is associated with the occurrence of these heteroclinic con-
nections. When we get the global bifurcation, it is clear for us to distinguish the stable region with unstable region in the
(h1,A1)-plane. In addition, we find that longer handling time of predators may stabilize the coexistent steady state when
the Allee effect of prey becomes strong. The positive equilibrium of model (4) could change from stable to unstable, and then
to stable when the Allee effect coefficient A1 or the handling time coefficient h1 varies continuously from zero. However,
whether the prey and predators can coexist or not also depends on the initial population densities of them when prey pop-
ulation is subject to Allee effect.

In nature, the dynamical behaviors of predator–prey system are very complex [12,27–30]. Many forces may influence the
dynamics of prey or predator populations. A model can lead to oscillatory behavior either because of a nonlinear functional
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response or because of Allee effect [31–33]. It gives insight when we may expect oscillations to occur in real predator–prey
system. Sometimes the Allee effect should not be neglected, as we have shown clearly in this paper. Conclusions in this paper
also remind us of the importance of the Allee effect. The Allee effect is probably an unstable factor in the food web [21],
which cautions us that, in nature preservation, if the prey or predators to be protected is subject to Allee effect, the measures
taken should take this into account. If the number of prey or predators is lower than a certain value range, they will become
extinct. However, a slight difference in the initial population density can make the asymptotic state very different. In addi-
tion, the Allee effect of different species, due to their different mechanisms, may affect the dynamics of populations differ-
ently [21].
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