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Overview of the course

Day 1

Lecture 1: Introduction to Bayesian Inference

Lecture 2: Bayesian analysis for single parameter models

Lecture 3: Priors distributions single parameters



Day 2

Lecture 4: An introduction to WinBUGS

Lecture 5: Bayesian analysis for multi-parameters models

Lecture 6: Bayesian regression models



Day 3

Lecture 7: Markov Chain Monte Carlo Computations

Lecture 8: Hierarchical statistical modeling

Lecture 9: Longitudinal and multilevel data



Learning objectives and style

I Learning objectives:

I Understanding of the potential role of Bayesian methods for
making inference about real-world problems

I Learning Bayesian statistical analysis with R and WinBUGS

I An interest in using Bayesian methods in your own field of work

I Style:

I Immediately applicable methods rather than latest theory

I Attention to real problems: case studies

I Case studies and examples implemented in R and WinBUGS

I Emphasis to the complementary aspects of Bayesian Statistics
to Classical Statistics rather than one vs. the other



Recommended bibliography

I The BUGS Book: A Practical Introduction to Bayesian
Analysis. David Lunn; Chris Jackson; Nicky Best; Andrew
Thomas; David Spiegelhalter. CRC Press, October 3, 2012.

I Bayesian Data Analysis (Third edition). Andrew Gelman,
John Carlin, Hal Stern and Donald Rubin. 2004 Chapman &
Hall/CRC.

I Bayesian Computation with R (Second edition). Jim
Albert. 2009. Springer Verlag.

I An introduction of Bayesian data analysis with R and
BUGS: a simple worked example. Verde, PE. Estadistica
(2010), 62, pp. 21-44



Lecture:

Introduction to Bayesian Inference

”I shall not assume the truth of Bayes’ axiom (...)
theorems which are useless for scientific purposes.”

-Ronald A. Fisher (1935) The Design of Experiments, page 6.



Let’s start

I Finals of the football World Cup 2014 in Brazil:

I Argentina played with Germany
I The German team won!

I Let be y ∼ Binomial(θ) with y = 1 if the German team wins

I After observing this result, the estimated probability that the
German team wins against Argentina is ... θ̂ = 100%
(maximum likelihood estimate: y/n = 1/1)

I Now, ... if you think that θ is not 100 % then ... you are
doing Bayesian statistical inference

I ...



Probability modeling

Example: surgical procedure

I Suppose a hospital is considering a new high-risk operation

I Experience in other hospitals indicates that the risk θ for each
patient is around 10 %

I It would be surprising to be less than 3% or more than 20%

I We can directly express uncertainty about the patient risk θ
with a probability distribution
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Pr(θ > 0.15) = 0.17



Why a direct probability distribution?

I Tells us what we want: what are plausible values for the
parameter of interest?

I No P-values: just calculate relevant tail areas

I No confidence intervals: just report central area that contains
95% of distribution

I Easy to make predictions (see later)

I Fits naturally into decision analysis / risk analysis /
cost-effectiveness analysis

I There is a procedure for adapting the distribution in the light
of additional evidence: i.e. Bayes theorem allows us to learn
from experience



What about disadvantages?

I Requires the specification of what we thought before new
evidence is taken into account: the prior distribution

I Explicit allowance for quantitative subjective judgment in the
analysis

I Analysis may be more complex than a traditional approach

I Computation may be more difficult

I Currently no established standards for Bayesian reporting



Why does Bayesian statistics is popular today?

I Bayesian methods optimally combine multiple sources of
information in a common model

I The computational revolution produced by the rediscovery of
Markov chain Monte Carlo (MCMC) techniques in statistics

I Free available software implementation of MCMC (e.g.
WinBUGS, JAGS, STAN, large number of packages in R, etc.)

I As a result, we can routinely construct sophisticated statistical
models that may reflect the complexity for phenomena of
interest



Bayes theorem for observable quantities
Let A and B be events; then it is provable from axioms of
probability theory that

P(A|B) =
P(B|A)P(A)

P(B)

I P(A) is the marginal probability of A, i.e., prior to taking
account of the information in B

I P(A|B) is the conditional probability of A given B, i.e.,
posterior to taking account of the value of B

I P(B|A) is the conditional probability of B given A

I P(B) is the marginal probability of B

I Sometimes is useful to work with
P(B) = P(A)P(B|A) + P(Ā)P(B|Ā), which is curiously called
”extending the conversation” (Lindley 2006, pag. 68)



Example: Security risk analysis in airports

I A new anti-terrorist alarm system in an airport claimed to
have 99.9 % sensitivity (true positive rate) and 99.8%
specificity (true negative rate)

I Suppose that a-priory the chance that passenger is suspected
to be a terrorist is 1/10,000

I Now, a passenger has triggered the alarm system and the
security personal take control over this person

Question: What is the chance that this passenger is actually a
terrorist ?



I Let A be the event that passenger is truly a terrorist

I Let B be the event that the passenger triggered the alarm
system

I We want p(A|B)

I 99.9% sensitivity means that p(B|A) = 0.999

I 99.8% specificity means that p(B|A) = 1− 0.998 = 0.002

Now Bayes theorem says

p(A|B) =
0.999× 0.0001

0.999× 0.0001 + 0.002× .9999
= 0.048.

Answer: With this alarm system 95% of alarms are in fact, false
alarms!



Example: Problems with statistical significance

I Suppose that a priory only 10% of clinical trials are truly
effective treatments

I Assume each trial is carried out with a design with enough
sample size such that α = 5% and power 1− β = 80%

Question: What is the chance that the treatment is true effective
given a significant test results?

p(H1|”significant results”)?



I Let A be the event that H1 is true, then p(H1) = 0.1

I Let B be the event that the statistical test is significant

I We want p(A|B) = p(H1|”significant results”)

I We have: p(B|A) = p(”significant results”|H1) = 1− β = 0.8

I We have: p(B|A) = p(”significant results”|H0) = α = 0.05

I Now, Bayes theorem says

p(H1|”significant results”) =
(1− β)× 0.1

(1− β)× 0.1 + α× 0.9
= 0.64

Answer: This says that if truly effective treatments are relatively
rare, then a ”statistically significant” results stands a good chance

of being a false positive.



Some comments

I These examples illustrated that our intuition is poor when
processing probabilistic evidence

I Bayes theorem applied to observable quantities (e.g.
diagnostic testing) is uncontroversial and well established

I More controversial is the Bayesian Inference, i.e., the use of
Bayes theorem in general statistical analysis, where
parameters are the unknown quantities and their prior
distribution needs to be specified.



Bayesian inference for unknown quantities

I Makes fundamental distinction between:

I Observable quantities y , i.e., data.

I Unknown quantities θ, that can be statistical parameters,
missing data, predicted values, mismeasured data, indicators of
variable selected, etc.

I Technically, in the Bayesian framework parameters are
treated as values of random variables.

I Differences with classical statistical inference:

I In Bayesian inference, we make probability statements about
model parameters

I In the classical framework, parameters are fixed non-random
quantities and the probability statements concern the data



Bayesian Inference
I Suppose that we have observed some data y

I We want to make inference about unknown quantities θ:
model parameters, missing data, predicted values,
mismeasured data, etc.

I The Bayesian analysis starts like a classical statistical analysis
by specifying the sampling model:

p(y |θ)

this is the likelihood function.

I From a Bayesian point of view, θ is unknown so should have a
probability distribution reflecting our uncertainty. We specify
a prior distribution

p(θ)

I Together they define a full probability model:

p(y , θ) = p(y |θ)p(θ)



Then we use the Bayes theorem to obtain the conditional
probability distribution for unobserved quantities of interest given
the data:

p(θ|y) =
p(θ)p(y |θ)∫
p(θ)p(y |θ)dθ

∝ p(θ)p(y |θ)

This is the posterior distribution for θ,

posterior ∝ likelihood× prior.



Inference with binary data

Example: Inference on proportions using a discrete prior

I Suppose I have 3 coins in my pocket:

1. A biased coin: p(heads) = 0.25

2. A fair coin: p(heads) = 0.5

3. A biased coin: p(heads) = 0.75

I I randomly select one coin, I flip it once and it comes a head.

I What is the probability that I have chosen coin number 3 ?



Inference with binary data

1. Let y = 1 the event that I observed a head

2. Let θ denote the probability of a head: θ ∈ (0.25, 0.5, 0.75)

3. Prior: p(θ = 0.25) = p(θ = 0.5) = p(θ = 0.75) = 1/3

4. Sampling distribution:

y |θ ∼ Binomial(θ, 1),

with likelihood

p(y |θ) = θy (1− θ)(1−y).



I If we observe a single positive response (y = 1), how is our
belief revised?

Coin θ Prior Likelihood Likelihood × prior Posterior
p(θ) p(y = 1|θ) p(y = 1|θ)p(θ) p(θ|y = 1)

1 0.25 0.33 0.25 0.0825 0.167
2 0.50 0.33 0.50 0.1650 0.333
3 0.75 0.33 0.75 0.2475 0.500∑

1.0 1.50 0.495 1.0

I So, observing a head on a single flip of the coin means that
there is now a 50% probability that the chance of heads is
0.75 and only a 16.7% that the chance of heads is 0.25.

I Note that if we normalize the likelihood p(y = 1|θ) we have
exactly the same results.



Posterior predictive distributions

The predictive posterior distribution for a new observation ynew is
given by

p(ynew |y) =

∫
p(ynew |y , θ)p(θ|y)dθ.

Assuming that past and future observations are conditionally
independent given θ,
this simplify to

p(ynew |y) =

∫
p(ynew |θ)p(θ|y)dθ.

For the discrete case of θ, integrals are replaced by sums:

p(ynew |y) =
∑
θi

p(ynew |θi )p(θi |y)

where the p(θi |y) can be thought of as ”posterior weights”.



Example: Three coins continue ...

Suppose we want to predict the probability that in the next toss is
a head. We have:

p(ynew = 1|y = 1) =
∑
θi

θi , p(θi |y = 1)

= (0.25× 0.167) + (0.50× 0.333) + (0.75× 0.5)

= 0.5833



Sequential learning

Suppose we obtain data y1 and form the posterior p(θ|y1) and
then we obtain further data y2. The posterior based on y1, y2 is
given by:

p(θ|y1, y2) ∝ p(y2|θ)× p(θ|y1).

Today’s posterior is tomorrow’s prior!

The resultant posterior is the same as if we have obtained the data
y1, y2 together:

p(θ|y1, y2) ∝ p(y1, y2|θ)× p(θ).



Example: Three coins continue ...

I Now suppose that after observing y1 = 1 we observe y2 = 1,
how is our belief revised?

Coin θ Prior Likelihood Likelihood × prior Posterior
p(θ) p(y = 1|θ) p(y = 1|θ)p(θ) p(θ|y = 1)

1 0.25 0.167 0.25 0.042 0.071
2 0.50 0.333 0.50 0.167 0.286
3 0.75 0.500 0.75 0.375 0.644∑

1.0 1.50 0.583 1.0

I After observing a second head, there is now a 64.4%
probability that the chance of heads is 0.75 and only a 7.1%
that the chance of heads is 0.25.



A bit of philosophy: Probability ”for” and probability ”of”

I The prior distribution p(θ), expresses our uncertainty about θ
before seeing the data, that could be objective or subjective

I The Bayesian inference allows the combination of different
types of probabilities

I Subjective probability implied a mental construct where
probabilities are used to express our uncertainty. This is why
we use a pedantic: ”probability for an event...”

I In the classical setting probabilities are defined in terms of
long run frequencies and are interpreted as physical properties
of systems. In this way we use: ”probability of ...”

I In general we follow Bayesian Statistical Modeling, which is
dynamic view of data analysis, which includes model building
and model checking as well as statistical inference



Summary

Bayesian statistics:

I Formal combination of external information with data model
by the Bayesian rule

I Uses of subjective probability to make inductive inference

I Straightforward inference by manipulating probabilities

I No need of repeated sampling ideas

I Specification of prior or external evidence may be difficult or
controversial

I Prediction and sequential learning is straightforward.



Practical with R

I Exercise 1: Repeat the calculations of this lecture with R

I Exercise 2: Investigate the shape of the Beta distribution in R
using the function curve() and dbeta(). Take a look in the R
help of these functions.



Solution Exercise 1:

theta <- c(0.25, 0.5, 0.75)

prior <- rep(1/3, 3)

plot(theta, prior, type = "h", ylim=c(0,.6),

ylab="Probability",

xlab = expression(theta))

# Likelihood

lik <- function(theta, x)

{theta^x*(1-theta)^(1-x)}

curve( lik(x, 1)/sum(lik(theta, 1)),

from=0, to =1, add=TRUE,

col="red", lwd=2, lty=2)

product <- prior * lik(theta, 1)

posterior <- product / sum(product)

points(theta, posterior, col="blue", cex=2, pch=19)

legend(0.3, 0.5, col=c("black", "red", "blue"),

legend=c("prior", "likelihood", "posterior"), lty=c(1,2,1))



Solution Exercise 2:

# Beta flexibility

par(mfrow=c(2,2))

curve(dbeta(x, 1, 1), from =0, to=1, lty = 1, lwd=2,

main="Beta(1, 1)", xlab=expression(theta))

curve(dbeta(x, 1/2, 1/2), from = 0, to = 1, lty = 2,

lwd=2, col="red", main="Beta(1/2, 1/2)",

xlab=expression(theta))

curve(dbeta(x, 2, 5), from = 0, to = 1, lty = 2, lwd=2,

col="blue", main="Beta(2, 5)",

xlab=expression(theta))

curve(dbeta(x, 2, 2), from = 0, to = 1, lty = 2,

lwd=2, col="green", main="Beta(2, 2)",

xlab=expression(theta))

par(mfrow=c(1,1))



Lecture :

Bayesian Inference for Single Parameter
Models



Summary

1. Conjugate Analysis for:

I Binomial model

I Normal model known variance

I Normal model known mean

I Poisson model

2. Using R for:

I Graphical visualization of posteriors

I Direct Monte Carlo Simulation Methods

I Calculations of posteriors for functional parameters



Inference of proportions using a continuous prior
Suppose we observe r positive responses out of n patients.
Assuming patients are independent, with common unknown
response rate θ, leads to a binomial likelihood

p(r |n, θ) =

(
n
r

)
θr (1− θ)n−r ∝ θr (1− θ)n−r

We consider the response rate θ to be a continuous parameter,
i.e., we need to give a continuous prior distribution.

Suppose that before the data is observed we believe all values for θ
are equally likely (very unrealistic!), then we give θ ∼ Unif(0, 1),
i.e., p(θ) = 1.

Posterior is then

p(θ|r , n) ∝ θr (1− θ)n−r × 1

this has a form of the kernel of a Beta(r + 1, n − r + 1).



To represent external evidence that some response rates are more
plausible than others, it is mathematical convenient to use a
Beta(a, b) prior distribution for θ

p(θ) ∝ θa−1(1− θ)b−1

Combining this with the binomial likelihood gives a posterior
distribution

p(θ|r , n) ∝ p(r |θ, n)p(θ)

∝ θr (1− θ)n−r

= θr+a−1(1− θ)n−r+b−1

∝ Beta(r + a, n − r + b).



I When the prior and posterior come from the same family of
distributions the prior is said to be conjugate to the likelihood

I A Beta(a, b) distribution has

E (θ) = a/(a + b)

var(θ) = ab/[(a + b)2(a + b + 1)]

Hence the posterior mean is E (θ|r , n) = (r + a)/(n + a + b)

I a and b are equivalent to observing a prior a− 1 successes in
a + b − 2 trials, then it can be elicited.

I With fixed a and b, as r and n increase, E (θ|r , n)→ r/n (the
MLE).

I A Beta(1,1) is equivalent to Uniform(0,1).



Shape of the Beta density function

The Beta(a, b) prior is a flexible distribution.
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Example: drug investigation

I Consider an early investigation of a new drug

I Experience with similar compounds has suggested that
response rates between 0.2 and 0.6 could be feasible

I Interpret this as a distribution with mean=0.4 and standard
deviation 0.1

I A Beta(9.2, 13.8) distribution has these properties

I Suppose we treat n = 20 volunteers with the compound and
observe r = 15 positive responses.

I Then we update the prior and the posterior is Beta(15 + 9.2,
5 + 13.8)



R script to perform the analysis:

> par(mfrow=c(3,1)) # graphical output: 3 by 1 panels

# draw a curve for a beta density

> curve(dbeta(x,9.2, 13.8),from=0, to =1,

xlab= "prob of success",main="Prior")

# draw a curve for a binomial density

> curve(dbinom(15, 20,x),from=0, to =1,

col="blue", xlab="prob of sucess",

main="Likelihood")

# draw the posterior

> curve(dbeta(x, 24.2, 18.8),from=0, to =1,

col="red", xlab="prob of sucess",

main="Posterior")

> par(mfrow=c(1,1))
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Monte Carlo Simulation

I If we are able to sample values θ∗ from the posterior p(θ|r , n),
then we can extend the inferential scope.

I For example, one important application of this simulation
process is when we need to estimate the posterior of a
functional parameter, e.g., the odds ratio:

φ = f (θ) =
θ

1− θ

I For simple models we can directly simulate from the posterior
density and use this values to empirically approximate the
posterior quantiles.



Example: Posterior for the odds ratio

The posterior of

φ =
θ

1− θ
is calculated in R as follows:

> theta.star <- rbeta(20000, 24.2, 18.8)

> odds.star <- theta.star/(1-theta.star)

> quantile(odds.star, prob = c(0.05, 0.5, 0.75, 0.95))

5% 50% 75% 95%

0.7730276 1.2852558 1.5784318 2.1592678

> hist(odds.star, breaks=100, xlab="odds ratio",

freq=FALSE, xlim=c(0, 4))

> lines(density(odds.star), lwd =2, lty = 1, col ="red")
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Making predictions for binary data

I Suppose that we want to make predictions from the model

I The predictive posterior distribution for rnew (the number of
successes in m trials) follows a Beta-Binomial distribution
with density:

p(rnew ) =
Γ(a + b)

Γ(a)Γ(b)

(
m

rnew

)
Γ(a + rnew )Γ(b + m − rnew )

Γ(a + b + m)

I In R:

# Beta-binomial density

betabin <- function(r,a,b,m)

{

gamma(a+b)/(gamma(a)*gamma(b)) * choose(m,r) *

gamma(a+r)*gamma(b+m-r)/gamma(a+b+m)

}



Example: drug investigation continue ...

I Suppose that we are interested in the predictive posterior of
the number of success in the next 40 trials:

I Using the betabin function in R we have:

# Beta-binomial distribution of the number of

# successes x in the next

# 40 trials with mean 22.5 and standard deviation 4.3

x <- 0:40; px <- betabin(0:40, a=24.2,b=18.8,m=40)

plot(x, px, type="h", xlab="number of successes out

of 40", main="Predictive Posterior")
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Example: drug investigation continue ...

I Suppose that we would consider continuing a development
program if the drug managed to achieve at least a further 25
successes out of these 40 future trials

I In R we can calculate:

# probability of at least 25 successes out of

# 40 further trials:

> sum(betabin(25:40,24.2,18.8,m=40))

[1] 0.3290134

>



Simulations for predictive data

Instead of using the analytical approximation based on the
Beta-Binomial distribution, we can simulate predicted observations
in the following way:

I We simulate θ∗1, . . . , θ
∗
B from the posterior Beta(24.2, 18.8)

I Then we simulate y∗ from a binomial distribution with rate θ∗

and n = 40.

I We tabulate and normalize predictive frequencies.



Simulations for predictive data

In R notation

> # Simulation of predictive data with a Beta-Binomial model

> theta.star <- rbeta(10000, 24.2, 18.8)

> y <- rbinom(10000, 40, theta.star)

> freq.y <- table(y)

> ys <- as.integer(names(freq.y))

> predprob <- freq.y/sum(freq.y)

> plot(ys, predprob, type = "h", xlab = "y",

+ ylab = "Predictive Probability")

>

> # Probability of at least 25 out of future 40 trials.

> sum(predprob[ys>24])

[1] 0.3244
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Bayesian analysis for Normal data

Known variance, unknown mean

Suppose we have a sample of Normal data

yi ∼ N(µ, σ2), i = 1, . . . , n

where σ2 is known and µ is unknown. The conjugate prior of µ is

µ ∼ N(µ0, τ
2).

It is convenient to write τ2 as σ2/n0, where n0 represents the
”effective number of observations” in the prior distribution.



Then the posterior distribution for µ is given by

p(µ|y) = N

(
n0µ0 + nȳ

n0 + n
,

σ2

n0 + n

)
I Prior variance is based on an ”implicit” sample size n0

I As n0 tends to 0, the distribution becomes ”flatter”

I Posterior mean is a weighted average of the prior mean µ0
and parameter estimate x̄ , weighted by their precisions, i.e.,
relative sample sizes.

I Posterior variance is based on an implicit sample size n0 and
the data sample size n.



Alternative expressions for the posterior mean µn are :

µn = wµ0 + (1− w)ȳ where w =
n0

n + n0
,

µn = µ0 + (ȳ − µ0)
n

n + n0
,

µn = ȳ − (ȳ − µ0)
n0

n + n0
.

That shows ”shrinkage” towards prior mean.



Prediction

Denoting the posterior mean and variance as µn and
σ2n = σ2/(n0 + n), the predictive posterior distribution for a new
observation y∗ is

p(y∗|y) =

∫
p(y∗|y , µ)p(µ|y)dµ

which is generally equal to

p(y∗|y) =

∫
p(y∗|µ)p(µ|y)dµ

which can be shown to give

p(y∗|y) ∼ N(µn, σ
2
n + σ2)

The predictive posterior distribution is centered around the
posterior mean µn with variance equal to sum of the posterior
variance of µ plus the data variance.



Bayesian inference for Normal data

Unknown variance, know mean

Suppose we have sample of Normal data

yi ∼ N(µ, σ2), i = 1, . . . , n,

where µ is known and σ2 is unknown.
It is convenient to change parameterization to the precision
w = 1/σ2. The conjugate prior for w is then

w ∼ Gamma(α, β),

where
p(w) ∝ wα−1 exp(−βw).

Then σ2 is then said to have an inverse-gamma distribution.



The posterior distribution for w takes the form

p(w |µ, y) ∝ wα−1 exp(−βw)× w
n
2 exp

[
−w

2

n∑
i=1

(yi − µ)2

]
.

Collecting terms gives

p(w |µ, y) = Gamma

(
α +

n

2
, β +

1

2

n∑
i=1

(yi − µ)2

)
.



I Clearly we can think of α = n0/2, where n0 is the ”effective
prior sample size”.

I Since
∑n

i=1(yi − µ)2/n estimate σ2 = 1/w , then we interpret
2β as representing n0 × prior estimate ofσ20.

I Alternative, we can write our conjugate prior as

w ∼ Gamma

(
n0
2
,
n0σ

2
0

2

)
,

which can be seen as a scale χ2
n0

distribution. This is useful
when assessing prior distributions for sample variances.



Bayesian inference with count data

Suppose we have an independent sample of counts y1 . . . , yn which
can be assumed to follow a Poisson distribution with unknown
mean µti , where µ is the rate per unit t :

p(y |µ) =
∏

i

(µti )
yi exp(−µti )

yi !

The kernel of the Poisson likelihood as a function of µ has the
same form as a Gamma(a, b) prior for µ:

p(µ) ∝ µa−1 exp(−bµ).



This implies the following posterior

p(µ|y) ∝ p(µ)p(y |µ)

∝ µ(a−1)e−bµ
n∏

i=1

e−µtiµy
i

∝ µa+Yn−1e−(b+Tn)µ

= Gamma(a + Yn, b + Tn).

where Yn =
∑n

i=1 yi and Tn =
∑n

i=1 ti .



The posterior mean is:

E (µ|y) =
a + Yn

b + Tn
=

Yn

Tn

(
n

n + b

)
+

a

b

(
1− n

n + b

)
.

The posterior mean is a compromise between the prior mean a/b
and the MLE Yn

Tn
.

Thus b can be interpreted as an effective exposure and a/b as a
prior estimate of the Poisson mean.



Example: Annual number of cases of haemolytic
uraemic syndrome Henderson and Matthews, (1993)

Annual numbers of cases were available from two a specialist
center at Birmingham, from 1970 to 1988. For analysis we
consider observed values from the first decade.

year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
cases, xi 1 5 3 2 1 0 0 2 1 1

Because we are interested in counts of disease over time, a simple

model is a Poisson process.

yi |µ ∼ Poisson(µ) i = 1, . . . , 10.



Similar data is collected by another centre, given a mean rate of
2.3 with s.d. 2.79.

I with prior mean a/b = 2.3

I prior sd
√
a/b = 2.79

I Solving for a and b, this information can be translated to a
prior Gamma(0.679, 0.295) distribution

Then

p(µ|y) = Gamma(
∑

i

xi + 0.679, 10 + 0.295) = Gamma(16.679, 10.295)

E (µ|y) =
16.679

10.295
= 1.620; sd(µ|y) =

√
16.679

10.295
= 0.396
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The predictive posterior distribution for a new count y∗ is

y∗|y ∼ Negative-Binomial(a + nȳ , b + n)

If we ask what is the probability to observe 7 or more cases in the
next year we have

> sum(dnbinom(6:17, prob=10.295/(1+10.295), size=16.679))

[1] 0.0096

>

Note: the observed values for the following years were
7,11,4,7,10,... Indicating a possible structural break.

We can visualize the density by

plot(dnbinom(0:10, prob=p, size=16.679, type="h",

lwd=2, col="red", xlab= "counts")
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Some comments

For all these examples, we see that

I the posterior mean is a compromise between the prior mean
and the MLE

I the posterior s.d. is less that each of the prior s.d. and the
s.e. (MLE)

I As n→∞,

I the posterior mean → the MLE

I the posterior s.d. → the s.e. (MLE)

I the posterior does not depend on the prior.

These observations are generally true, when the MLE exists and is
unique.



Priors

I When the posterior is in the same family as the prior then we
have what is known as conjugacy.

I Conjugate models have the advantage that:

I Prior parameters can usually be interpreted as implied prior
sample size: n0

I They involve simple mathematical models, examples include:

Distribution of y Parameter conjugate prior

Binomial Prob. of success Beta
Poisson Mean Gamma

Exponential Reciprocal of mean Gamma
Normal Mean (variance known) Normal
Normal Variance (mean known) Inverse Gamma

I Unfortunately conjugate priors only exists for small catalog of
likelihoods.



Practical
Exercise: Conjugate inference for a binomial experiment

Drug investigation example from this Lecture

We treat n = 20 volunteers with a new compound and observe
r = 15 positive responses. We use as prior θ ∼ Beta(9.2, 13.8):

1. What is the posterior mean and median for the response rate?

2. What are the 2.5th and 97.5th percentiles of the posterior?

3. What is the probability that the true response rate is greater
than 0.6?

4. How is this value affected if a uniform prior is adopted?

5. Using the original Beta(9.2, 13.8) prior, suppose 40 more
patients were entered into the study. What is the chance that
at least 25 of them respond positively?



Solution

# 1) Posteriors mean and median

# The posterior mean is: (r+a) / (n + a+b)

> (15 + 9.2) /( 20 + 9.2 + 13.8)

[1] 0.5627907

# the posterior median is

> qbeta(0.5, 24.2, 18.8 )

[1] 0.5637731

>

# 2) Posterior percentiles:

> qbeta(0.025, 24.2, 18.8 ) # 2.5%

[1] 0.4142266

> qbeta(0.975, 24.2, 18.8 ) # 97.5%

[1] 0.7058181

>



# 3) Posterior prob that the rate is greter than 0.6

> 1 - pbeta(0.6, 24.2, 18.8 )

[1] 0.3156323

# 4) Uniform prior is beta(1,1) then the posterior

# is beta( r+1, n-r+1)

> 1 - pbeta(0.6, 15+1 ,20-15+1)

[1] 0.9042598

# 5) Posterior probability of at least 25 successes out of

# 40 further trials

> sum(betabin(25:40,24.2,18.8,m=40))

[1] 0.3290134



Lecture :

Priors Distributions for Single Parameters



Summary

I Misunderstandings about prior distributions

I Non-informative Priors and Jeffreys invariance priors

I Sensitivity analysis and making priors predictions

I Adjustment of priors based on historical data and judgement

I Mixture of priors



Misunderstandings about prior distributions
It is worth pointing out some misunderstanding regarding prior
distributions:

I The name prior suggests a temporal relationship,
however, this is misleading. The prior distribution models
the uncertainty given by the external evidence. Cox (1999)

I The prior is not necessarily unique! In a recent article
Lambert et. al. (2005) analyze the use of 13 different priors
for the between study variance parameter in random-effects
meta-analysis.

I There is no such thing as the‘correct’ prior. Bayesian
analysis is regarded as transforming prior into posterior
opinion, rather than producing ’the’ posterior distribution.

I The prior may not be completely specified. In Empirical
Bayes inference priors have unknown parameters that are
estimated from the data.



I Priors can be overparametrized. Sometimes we
intentionally overparametrized the priors in order to accelerate
convergence of simulation methods, see Gelman, Carlin, Stern
and Rubin (2004) Chapter 6.

I Inference may rely only on priors. There are situations
where no further data are available to combine with our priors
or there is no intention to update the priors. This is the
typical case of risk analysis, sample size determination in
experiments, simulation of complex process , etc. In these
analytical scenarios priors are usually used to simulate
hypothetical data and we refer to that prior predictive analysis.

I Finally, priors are not necessarily important! In many
scientific applications, as the amount of data increases, the
prior is overwhelmed by the likelihood and the influence of the
prior disappears, see Box and Tiao (1973) (pag. 20-25).



Non-informative Priors: Classical Bayesian Perspective

We may be interested to introduce an initial state of ”ignorance”
in our Bayesian analysis.

But representing ignorance raises formidable difficulties!

There has been a long and complex search for various
”non-informative”, ”reference” or ”objective” priors during the
last century. A sort of ”off-the-shelf objective prior” that can be
applied in all circumstances.

The synthesis of this search is that those magic priors do not
exists, although useful guidance exists (Berger, 2006).



Problems with uniform priors for continuous parameters

Example: uniform prior on proportions

Let θ be the chance that a bias coin comes down heads, we assume

θ ∼ Uniform(0, 1).

Let φ = θ2 the chance that it coming down heads in both of the
next 2 throws.

Now, the density of φ is

p(φ) =
1

2
√
φ
,

which corresponds to a Beta(0.5,1) distribution and is certainly not
uniform!



Jeffreys’ invariance priors

Consider a 1-to-1 transformation of θ : φ = g(θ)

Transformation of variables: prior p(θ) is equivalent to prior on φ
of p(φ) = p(θ) | dθ

dφ |

Jeffreys proposed defining a non-informative prior for θ as

p(θ) ∝ I (θ)1/2

where I (θ) is Fisher information for θ

I (θ) = −Ex |θ

[
∂2 log p(X |θ)

∂θ2

]
= Ex |θ

[(
∂ log p(X |θ)

∂θ

)2
]
.



Non-informative priors for proportions

Data model is Binomial: we consider r successes from n trials

r |θ ∼ Binomial(θ, n)

we have

log p(x |θ) = r log(θ) + (n − r) log(1− θ) + C

then
I (θ) =

n

θ(1− θ)
.

So the Jeffreys’ prior is

p(θ) ∝ (θ(1− θ))−1/2,

which is a Beta(1/2, 1/2).



Non-informative priors for location parameters
A location parameters θ is such that p(θ|y) is a function of (y − θ)
and so the distribution of (y − θ) is independent of θ.

Example: data model is Normal with unknown mean θ and
known variance v

x1, x2, . . . , xn|θ ∼ Normal(θ, v)

then we have

log p(x |θ) = −
∑ (xi − θ)2

2v
+ C

with
I (θ) =

n

v
.

So the Jeffreys’ prior is
p(θ) ∝ 1

which is the Uniform distribution for θ.



Non-informative priors for scale parameters
A scale parameters θ is such that p(y |θ) is a function of 1/θf (y/θ)
and so the distribution of (y/θ) is independent of θ.

Example: data model is Normal with known mean m and
unknown variance θ

x1, x2, . . . , xn|θ ∼ Normal(m, θ)

then we have

log p(x |θ) = −n/2 log(θ)− s

2θ
,

where s =
∑

(xi −m)2, then

I (θ) =
n

2θ2
.

So the Jeffreys’ prior on variance is

p(θ) ∝ 1

θ

This Jeffreys’ improper prior is approximated by a Gamma(ε, ε)
with ε→ 0.



Priors for counts and rates

Data model is Poisson: x |θ ∼ Poisson(θ), then we have

log p(x |θ) = −θ + x log θ + C

with
I (θ) = 1/θ.

So the Jeffreys’ prior is

p(θ) ∝ θ−1/2.

This improper prior is approximated by a Gamma distribution with
α = 1/2 and β → 0.



Comments Jeffreys’ rule

I They are invariant, whatever the scale we choose to measure
the unknown parameter, the same prior results when the scale
is transformed to any particular scale

I Some inconsistencies associated with Jeffreys’ priors have
been discussed:

I Applying this rule to the normal case with both mean and
variance parameters unknown does not lead to the same prior
as applying separately the rule for the mean and the variance
and assuming a priori independence between these parameters.

I Although Jeffreys’ rule is suggestive, it cannot be applied
blindly. It should be thought of as guideline to consider
particularly if there is no other obvious way of finding a prior
distribution.



Predictive Prior Analysis

In practice it is not necessary to adopt a full Bayesian approach.
Sometimes is very useful to use Bayesian methods for some
analyzes and classical approaches for others.

Example: predictive distribution of the power in sample size
calculations

I a randomize trial is planned with n patients in each of two
arms.

I the response within each treatment arm is assumed to have
between-patient standard deviation σ.

I the treatment estimate θ̂ = ȳ1 − ȳ2 is approximately
distributed as Normal(θ, 2σ2/n).



Predictive Prior Analysis

I a trial designed to have two-sided Type I error α and Type II
error β in detecting a true difference of θ in mean response
between the groups will require a sample size per group of

n =
2σ2

θ2
(z1−β − z1−α/2)2,

I Alternatively, for fixed n, the power of this experiment is

Power = Φ

(√
nθ2

2σ2
− z1−α/2

)
.

I If we assume θ/σ = 0.5, α = 0.05 and β = 0.2, we have
z1−β = 0.84, z1−α/2 = 1.96, then the power of the trial is
80% and n = 63 in each trial arm.



I However, we accept uncertainty about θ and σ and we wish to
include this feature into the sample size and power
calculations.

I We assume from previous studies that it is reasonable that

θ ∼ N(0.5, 1) and σ ∼ N(1, 0.32)I (0,∞).



Then

1. Simulate values θ∗ ∼ N(0.5, 1) and σ∗ ∼ N(1, 0.32) (subject
to the constrain of σ being positive).

2. Substitute them in the formulae and generate n∗ and Power∗.

3. Use the histogram of n∗ and Power∗ as their corresponding
predictive distribution.

4. In R we have

## predictive prior distribution for sample size and power

set.seed(123)

theta <- rnorm(10000, 0.5, 0.1)

sigma <- rnorm(10000, 1, 0.3)

sigma <- ifelse(sigma <0, -1*sigma, sigma)

n <- 2*sigma^2 /(theta^2)*(0.84 + 1.96)^2

pow <- pnorm( sqrt( 63/2) * theta /sigma - 1.96)

par(mfrow=c(1,2))

hist(n, xlim = c(0, 400), breaks=50)

hist(pow)

par(mfrow=c(1,1))
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> round(quantile(n),2)

0% 25% 50% 75% 100%

0.00 37.09 62.03 99.45 1334.07

> round(quantile(pow),2)

0% 25% 50% 75% 100%

0.09 0.61 0.81 0.95 1.00

> sum(pow<0.7)/10000

[1] 0.3645

>

It is clear that there is huge uncertainty to the appropriate sample
size.

For n=63 the median power is 81% and a trial of 63 patients per
group could be seriously underpowered. There is a 37% chance
that the power is less than 70%.



Mixture of priors for proportions

I We may want to express a more complex prior opinion that
can not be encapsulated by a beta distribution

I A prior which is a mixture of beta distributions

p(θ) = qp1(θ) + (1− q)p2(θ)

where pi = Beta(ai , bi ).

I Now if we observe r successes out of n trials,the posterior is

p(θ|r , n) = q∗p1(θ|r , n) + (1− q∗)p2(θ|r , n)

where

pi (θ|r , n) ∝ pi (θ)p(r |θ, n)

q∗ =
qp1(r |n)

qp1(r |n) + (1− q)p2(r |n)



I pi (r |n) is a beta-binomial predictive probability or r successes
in n trials assuming θ has distribution Beta(ai , bi ).

I The posterior is a mixture of beta posteriors, with mixture
weights adapted to support prior that provides best prediction
for the observed data.

I In R:

# mixture of betas

mixbeta <- function(x,r,a1,b1,a2,b2,q,n)

{

qstar <- q*betabin(r,a1,b1,n)/

(q*betabin(r,a1,b1,n)+(1-q)*betabin(r,a2,b2,n))

p1 <- dbeta(x,a1+r,n-r+b1)

p2 <- dbeta(x,a2+r,n-r+b2)

posterior <- qstar*p1 + (1-qstar)*p2

}



Example: drug investigation continue ...

I We want to combine:

I an informative Beta(9.2, 13.8)

I a non-informative Beta(1, 1)

I we give 80 % of prior weight to the informative prior

I Suppose we treat n = 20 volunteers with the compound and
observe r = 15 positive responses.



We can visualize this analysis in R as follows:

par(mfrow=c(2,1))

# informative beta prior

curve(dbeta(x,9.2,13.8),from=0, to=1,col="red",

xlab="probability of response",main="priors")

# mixture beta prior with 80% informative and 20% flat

curve(0.8*dbeta(x, 9.2, 13.8)+0.2*dbeta(x, 1, 1),from=0,

to=1,col="blue",add=T)

# beta posterior

curve(dbeta(x,24.2,18.8),from=0,to=1,col="red",

xlab="probability of response", main="posteriors")

# posterior from a mixture prior

curve(mixbeta(x, r=15, a1=9.2, b1=13.8, a2=1, b2=1, q=.8, 20),

from=0,to=1, col="blue",add=T)

par(mfrow=c(1,1))
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Further work on priors:

I Adjustment of priors based on historical data and judgement

1. Power priors (Ibrahim and Shen, 2000)

2. Bias modelling

I Hirearchical priors for large dimentional problems

Summary:

I The need for priors distributions should not be an
embarrassment

I It is reasonamble that the prior should influence the analysis,
as long as the influence is recognized and justified

I Importance of transparency and sensitivity analysis



Lecture :

Introduction to WinBUGS



Summary

I Introduction to BUGS

I The BUGS language

I Some simple examples

I Making predictions

I Connecting WinBUGS with R



Introduction to BUGS

The BUGS project began at the Medical Research Council
Biostatistics Unit in Cambridge in 1989, before the classic Gibbs
sampling paper by Gelfand and Smith in 1990. An excellent review
and future directions of the BUGS project is given in Lunn et al.
(2009).

BUGS stands for Bayesian inference using Gibbs sampling,
reflecting the basic computational techniques originally adopted.

BUGS has been just one part of the tremendous growth in the
application of Bayesian ideas over the last 20 years.

At this time BUGS has approximately over 30,000 registered users
worldwide, and an active on-line community comprising over 8,000
members.



Think different ...
The modelling philosophy of BUGS was strongly influenced by
developments in artificial intelligence in the 1980’s. In particular
the focus was on Expert systems, where a basic principle was to
separate:

I Knowledge base:

I assumed model for the world

I makes use of a declarative form of programming

I structures described using a series of local relationships

I Inference engine:

I used to draw conclusions in specific circumstances

This approach forces to think first about the model use to describe
the problem at hand. The declarative programming approach,
sometimes, confuses practitioners of procedural statistical
languages (SAS, SPSS, R, etc).



The BUGS language:

I Language for specifying complex Bayesian models.

I Constructs object-oriented internal representation of the
model graph by identifying parents and children. This is done
with a DAG (Directed Acyclic Graph).

I Builds up an arbitrary complex model through specification of
local structure.

I Simulation from full conditionals using Gibbs sampling.

I Current version is WinBUGS 1.4.3, it runs in Windows, and
incorporates the DoodleBUGS graphical model editor and a
script language for running in batch mode.

WinBUGS is freely available from
http://www.mrc-bsu.cam.ac.uk/bugs

OpenBUGS is freely available from
http://www.openbugs.net/w/FrontPage



Example: Drug

In n = 20 patients we observed r = 15 positive responses.

y ∼ Bin(θ, n)

and we assume a conjugate prior for θ:

θ ∼ Beta(a, b)

Of course, we know the posterior distribution is

θ|y ∼ Beta(a + y , n − r + b)

and no simulation is necessary. But just to illustrate WinBUGS ...





I Directed Acyclic Graph (DAG) representation:

I Ovals nodes represent random variables

I Rectangular nodes represent constants

I Arrows parent child relationships



1. Write BUGS code to specify the model ...

model {

y ~ dbin(theta, n)

theta ~ dbeta(a, b)

}

2. Check the model syntax ...

3. Load the data ...

list(n=20, y = 15, a = 3, b =2)

... and compile.

4. Then load initial values ...

list(theta = 0.5)

5. Select the nodes (variables) to monitor (just one in this
case)...

6. Set the trace for all selected nodes (*) to monitor the MCMC
simulations ...

7. Using the Update tools, select 10,000 simulations ...

8. Results ...



Example: Drug continue ...

Now we assume a different prior. A logit transform of

φ = log

(
θ

1− θ

)
,

so that −∞ < φ <∞

We assume a normal prior for φ:

φ ∼ Normal(µ, τ)

for suitable mean µ and precision τ = 1/σ2.

This is a non-conjugate prior with no simple form for the
posterior.

Straightforward in WinBUGS!



Double arrows represent a logical node or a mathematical
functional relationship.



The BUGS code for the model is ...

model

{

y ~ dbin(theta, n)

logit(theta) <- phi

phi ~ dnorm(0, 0.001)

}



Making predictions

I Important to be able to predict unobserved quantities for

I ’filling-in” missing or censored data

I model checking - are predictions ’similar’ to observed data?

I making predictions!

I Easy in MCMC/WinBUGS, just specify a stochastic node
without a data value - it automatically predicted

I Provides automatic imputation of missing data

I Easiest case is where there is no data at all!! Just ’forwards
sampling’ from prior to make a Monte Carlo analysis.



Example: making predictions

The BUGS code for the model is ...

model

{

y ~ dbin(theta, n)

logit(theta) <- phi

phi ~ dnorm(mu, tau)

y.pred ~ dbin(theta, n) # defines a predictions node

}



The prediction node y.pred is conditionally independent of the
data node y given rate θ.



Summary: Running WinBUGS

1. Open Specification tool and Update from Model menu, and
Samples from Inference menu.

2. Highlight model by double-click. Click on Check model.

3. Highlight start of data. Click on Load data.

4. Click on Compile.

5. Highlight start of initial values. Click on Load inits.

6. Click on Gen Inits if model initials values are needed.

7. Click on Update to burn in.

8. Type nodes to be monitored into Sample Monitor, and click
set after each.

9. Perform more updates.

10. Type * into Sample Monitor, and click stats, etc. to see
results on all monitored nodes.



The R2WinBUGS package in R
The R package R2WinBUGS offers a versatile approach for making
MCMC computations within WinBUGS and returning them to R.

Let see a step by step example of linking R and WinBUGS with
R2WinBUGS.

Example: non-conjugate priors inference for a binomial
experiment

First save the following file with WinBUGS code in your working
directory ...

# WinBUGS code: binary problem non-conjugate analysis

model

{ y ~ dbin(theta, n)

logit(theta) <- phi

phi ~ dnorm(0,0.001)

y.pred ~ dbin(theta,n) # making prediction

}



Then in R console ...

# load R2WinBUGS package

library(R2WinBUGS)

# setup WinBUGS directory and your working directory

bugsdir <- "C:/Programme/WinBUGS14"

workdir <- getwd()

# define you data nodes

n <- 20

y <- 15

data1 <- list ("n", "y")



# define parameters of interest

par1 <- c("theta", "y.pred")

# run the bugs() function:

m1 <- bugs(data1, inits=NULL, par1, "model1.txt",

n.chains = 1, n.iter = 2000, n.thin=1,

bugs.directory = bugsdir,

working.directory = getwd(),

debug=TRUE)



> print(m1, digits.summary = 3)

Inference for Bugs model at "model1.txt", fit using WinBUGS,

1 chains, each with 2000 iterations (first 1000 discarded)

n.sims = 1000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%

theta 0.749 0.096 0.543 0.690 0.760 0.819 0.914

y.pred 14.962 2.733 9.000 13.000 15.000 17.000 19.000

deviance 4.277 1.584 3.198 3.286 3.667 4.551 9.014

DIC info (using the rule, pD = Dbar-Dhat)

pD = 1.1 and DIC = 5.3

DIC is an estimate of expected predictive error ...



The R object m1 generated in this analysis belong to the class bug

and can be further manipulated, transformed, etc.

> class(m1)

[1] "bugs"

> names(m1)

[1] "n.chains" "n.iter" "n.burnin"

[4] "n.thin" "n.keep" "n.sims"

[7] "sims.array" "sims.list" "sims.matrix"

[10] "summary" "mean" "sd"

[13] "median" "root.short" "long.short"

[16] "dimension.short" "indexes.short" "last.values"

[19] "isDIC" "DICbyR" "pD"

[22] "DIC" "model.file" "program"



The object m1 is a list in R, so we can extract elements of the list
by using the ”$” operator, for example:

> m1$pD

[1] 1.065

> m1$n.chains

[1] 1

> m1$sims.array[1:10, ,"theta"]

[1] 0.8389 0.9124 0.7971 0.8682 0.7025 0.7696 0.8417 0.6782 0.6146

[10] 0.8647

> m1$sims.array[1:10, ,"y.pred"]

[1] 15 19 19 20 15 20 18 17 10 17

> theta <- m1$sims.array[1:1000, ,"theta"]

> hist(theta, breaks = 50, prob = TRUE)

> lines(density(theta), col = "blue", lwd =2)
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Some aspects of the BUGS language

I <- represents logical dependence, e.g. m <- a + b*x

I ~ represents stochastic dependence, e.g. r ~ dunif(a,b)

I Can use arrays and loops

model{

....

for (i in 1:N){

r[i] ~ dbin(p[i], n[i])

}

...

}



A for loop is represented as a ”plate” in the DAG’s model



Some aspects of the BUGS language

I Some functions can appear on the left-hand-side of an
expression, e.g.

logit(p[i]) <- a + b*x[i]

log(m[i]) < - c + d*y[i]

I mean(p[]) to take mean of whole array, mean(p[m : n]) to take
mean of elements m to n. Also for sum(p[])

I dnorm(0, 1)I(0, ) means the random variable will be restricted
to the range (0,∞).



Functions in the BUGS language

I p <- step(0.05 - x) = 1 if x ≤ 0.05, 0 otherwise. Hence
monitoring p and recording its mean will give the probability
that x ≤ 0.05. This is useful to calculate Bayesian p-values.

I p <- equals(x, 0.7) = 1 if x = 0.7, 0 otherwise.

I tau <- 1/pow(s,2) sets τ = 1/s2.

I s <- 1/sqrt(tau) sets s = 1/
√

(τ)

I p[i,k] <- inprod(p[], Lambda[i,k]) sets
pik =

∑
j πj Λij .

I See ’Model Specification/Logical nodes’ in the manual for full
syntax.



Data transformations
Although transformations of data can always be carried out before
using WinBUGS, it is convenient to be able to try various
transformations of dependent variables within a model description.

For example, we may wish to try both y and sqrt(y) as
dependent variables without creating a separate variable
z = sqrt(y) in the data file.

The BUGS language therefore permits the following type of
structure to occur:

for (i in 1:N) {

z[i] <- sqrt(y[i])

z[i] ~ dnorm(mu, tau)

}

Strictly speaking, this goes against the declarative structure of the
model specification.



Some common distributions

I Binomial: r ∼ dbin(p, n)

I Normal: x ∼ dnorm(mu, tau)

I Poisson: r ∼ dpois(lambda)

I Uniform: x ∼ dunif(a, b)

I Gamma: x ∼ dgamma(a, b)

Note: The normal distribution is parameterized in terms of its
mean and precision = 1/variance = 1/σ2.

Functions cannot be used as arguments in distributions. You
need to create new nodes.



The WinBUGS data formats

WinBUGS accepts data files in:

1. Rectangular formant

n[] r[]

50 2

....

20 4

END

2. R list format:

list(N =12, n = c(50,12,...), r = c(2, 1,...))



Double indexing: Specifying categorical explanatory
variables

y[] x[]

12 1 #subject with x=level 1

34 2 #subject with x=level 2

...

for( i in 1:N) {

y[i] ~dnorm(mu[i], tau)

mu[i] <- alpha + beta[x[i]]

}

alpha ~ dunif(-100,100)

beta[1] <- 0 # alias first level of beta

beta[2] ~ dunif(-100, 100)

beta[3] ~ dunif(-100, 100)

tau ~ dgamma(0.1,0.1)



Practical: Statistical modeling with WinBUGS

Exercise: Inference on the sex ratio

I A particular maternal condition during pregnancy was thought
to influence the sex of the child. The proportion of female
birth in the population was p = 0.485. A sample of 98 births
to women with the condition resulted in 43 females. Is this
evidence that the condition reduces the proportion of female
births?

I If θ denotes the proportion of female births to women with
the condition, we can assume that the observed number, y of
female births is y ∼ Binomial(θ, n) where n = 98.



Different models based on three different priors:

1. Non-informative prior: θ ∼ Beta(1, 1).

2. Informative prior: Beta with mean 0.485 and take
a + b = 100, so that θ ∼ Beta(48.5, 51.5)

3. Non-conjugate prior: it could be argued that priors 1) and 2)
are unrealistic because they allow values of θ close to 0 or 1.
So the triangular distribution on (0.4, 0.6) has been proposed.
This has zero probability outside the range (0.4, 0.6). In order
to sample from this distribution use the results that the sum
of two Uniforms variables has a triangular distribution, e.g.,
U1 ∼ U(0.2, 0.3) and U2 ∼ U(0.2, 0.3) then Y = U1 + U2

follows a triangular with parameters (0.4, 0.6).



Once you have implemented these three models in WinBUGS
perform the following analyzes:

1. Draw a DAG for the model with Beta prior for θ.

2. Draw a DAG for the model with Triangular prior for θ.

3. Estimate the posterior for θ under the three different prior
models.

4. Estimate the posterior for the odds (1− θ)/θ under the three
different prior models.

5. Estimate the posterior probability that θ < 0.485 for the three
prior models.

6. Which are your conclusions after comparing theses results.

7. Now, suppose that had been 437 female births out of 980
instead of 43 out of 98. Repeat the analysis with the same
three priors for θ. How much difference does the choice of
prior make in this case?



Practical: Statistical modeling with WinBUGS

Exercise: Survival data

Aitchison & Dunsmore (1975) give data on survival times (in
weeks) of 20 patients after treatment for a particular carcinoma.
The data set is

list(survtime=c(25, 45, 238, 194, 16, 23, 30, 16,

22, 123, 51, 412, 45, 162,

14, 72, 5, 43, 45, 91), N=20)



1. Write a WinBUGS script for the following model:

yi = log(survival[i])

yi |µ, τ ∼ N(µ, τ), τ = 1/σ2

with non-informative priors for µ ∼ N(0, 10−3) and
τ ∼ Gamma(10−3, 10−3).

2. Use as initial values

list( mu = 0, tau = 1)

3. Draw a DAG for this model.

4. Run the model with 10,000 iterations and discard the first
5,000. Analyze visually convergence.

5. Estimate the probability that a new patient has survival time
more than 150 weeks.



Solution

# WinBUGS script:

model{

for ( i in 1:N)

{

y[i] <- log(survtime[i]) #data transform

y[i] ~ dnorm(mu, tau) #sampling model

}

sigma <- 1/sqrt(tau) #standard deviation

mu ~ dnorm(0, 1.0E-3) #prior for mu

tau ~ dgamma(1.0E-3, 1.0E-3) #prior for tau

y.new ~ dnorm(mu, tau) #predicted data

y.dif <- step(y.new - log(150)) #pr(survival>150)

}



Solution



Lecture :

Introduction to Multiparameter Models



Summary

I Introduction to Multiparameter Inference

I Normal model with unknown mean and variance: standard
non-informative priors

I Using R for predictive model checking

I Multinomial Model conjugate analysis and its application in R

I Comparing classical and Bayesian multiparameter models

I Multivariate Normal Models

I Complex Contingency Tables



Introduction

I The basic ideas is similar to one parameter models:

I We have a model for the observed data which defines a
likelihood p(y |θ) on the vector parameter θ

I We specify a joint prior distribution p(θ) for the possible
values of θ

I We use Bayes’ rule to obtain the posterior of θ,

p(θ|y) ∝ p(θ)× p(y |θ)

I Problems:

I In many applications is difficut to specify priors on multivariate
θ

I Computations could be very difficult, they involve multivariate
integration



Example: Normal with unknown mean µ and variance σ2

I In this example we use marathontimes in the R package
LearnBayes

I The obervations are the mean times (in minutes) for men
running Marathon with age classes between 20 to 29 years
old:

> library(LearnBayes)

> data(marathontimes)

> marathontimes$time

[1] 182 201 221 234 237 251 261 266 267 273 286 291 292 ...

>



I We assume a Normal model for the data given the mean µ
and the variance σ2:

y1, . . . , y20|µ, σ2 ∼ N(µ, σ2)

I We use a non-informative Jeffreys’ prior assuming
independence between location and scale:

p(µ, σ) ∝ 1

σ
,

I Then posterior density for the mean and the variance
p(µ, σ|y) is called the Normal-χ2 distribution

I This posterior delivers same results as classical analysis:
E (µ|y) = ȳ , E (σ2|y) = S2

I The posterior p(µ|y) is proportional to a t-distribution with
n − 1 df, and so on

I Direct simulation from these posteriors is straghtforwared



I The Normal-χ2 posterior is implemented in the function
normchis2post in LearnBayes, which computes the
logarithm of the joint posterior density of (µ, σ2)

I We can visualize the α% levels contourns with the function
mycontour. The arguments include the log-density to plot,

the rectangular area (xlo , xhi , ylo , yhi ) and the data:

> mycontour(normchi2post,c(220,330,500,9000),time,

xlab="mean",ylab="var")

I We can simulate directly form the marginal posteriors of µ
and τ :

> SS <- sum((time - mean(time))^2)

> n <- length(time)

> sigma2 <- SS/rchisq(1000, n - 1)

> mu <- rnorm(1000, mean = mean(time),

sd = sqrt(sigma2)/sqrt(n))

> points(mu, sigma2, col="blue")

> quantile(mu, c(0.025, 0.975)) # 95% posterior interval for mu

2.5% 97.5%

253.1121 301.1133
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Predictive model checking
Is the statistical model consistent with the data ?

We answer this question by simulating predictive y∗ values from
the model and comparing some data features with the predictive
data.

We start by looking at some histograms between the original data
and the simulated data with the same sample size.

#predictive data

y.star <- rnorm(1000, mean = mu, sd =sqrt(sigma2))

par(mfrow=c(3,4))

hist(time, breaks=10, xlim =c(150, 400),

main="Original Data", col="green")

for(i in 1:11){

y.sim <- sample(y.star, 20)

hist(y.sim,breaks=10,xlim=c(150, 400),

main="Simulated Data",col="blue")

}
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Predictive model checking
We define the following features between the observed data y and
the predictive data y∗:

T ∗1 = min(y∗), T ∗2 = max(y∗), T3∗ = q75(y∗)− q25(y∗)

and for asymmetry

T ∗4 = |y∗(18) − µ
∗| − |y∗(2) − µ

∗|

where the 18th and 2sd order statistics approximate the 90% and
10% respectively.

These measures are compared with the corresponding values based
on the observed data:

T1 = min(y), T2 = max(y), T3 = q75(y)− q25(y)

and
T4 = |y(18) − µ∗| − |y(2) − µ∗|.



In R we have:

# Analysis of the minimum, maximum, variability and asymmetry

min.y <- max.y <- asy1 <- asy2 <- inter.q <- rep(0,1000)

time <- sort(time)

for (b in 1:1000){

y.sim <- sample(y.star, 20)

mu.star <- sample(mu, 20)

min.y[b] <- min(y.sim)

max.y[b] <- max(y.sim)

y.sim <- sort(y.sim)

asy1[b] <- abs(y.sim[18]-mean(mu.star))-abs(y.sim[2]-mean(mu.star))

asy2[b] <- abs(time[18]-mean(mu.star))-abs(time[2]-mean(mu.star))

inter.q[b] <- quantile(y.sim, prob=0.75)-quantile(y.sim, prob=0.25)

}



To display this quantities

par(mfrow =c(2,2))

hist(min.y, breaks = 50, col="blue", main = "Minimum y*")

abline(v=min(time), lwd=3, lty=2)

hist(max.y, breaks = 50, col="red", main = "Maximum y*")

abline(v=max(time), lwd=3, lty=2)

hist(inter.q, breaks = 50, col="magenta",

main = "Variability y*")

abline(v=quantile(time,prob=0.75)-quantile(time,prob=0.25),

lwd=3,lty=2)

plot(asy1, asy2, main ="Asymmetry",

xlab="Asymmetry predicted data",

ylab ="Asymmetry original data")

abline(a=0, b=1, lwd=2)

par(mfrow=c(1,1))

This analysis shows that the data and the model are compatibles
and deviations can be easily explained by sampling variation.
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Marathon times with WinBUGS

Different types of likelihood functions to handle implausible values

model

{

# Non informative Priors

mu ~ dnorm(0, 0.0001)

tau ~ dgamma(0.0001, 0.0001)

sigma <- pow(tau,-0.5)

# Data model

for( i in 1: n)

{

#y[i] ~ dnorm(mu, tau) # Normal Likelihood

y[i] ~ dnorm(mu, tau) I(115, ) # Truncated Normal Likelihood

#y[i] ~ dt(mu, tau, nu) # t Likelihood with nu df.

}

y.pred ~ dnorm(mu, tau)I(115, )# Predictions

}
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Multinomial distribution with unknown cell probabilities

In this model we observe n independent trials each of which has p
possible outcomes with associated probabilities

θ = (θ1, . . . , θp).

Letting y = (y1, . . . , yp) be the number of times each outcome is
observe we have

y |θ ∼ Multinomial(n, θ),

with likelihood

p(y |θ) =
(
∑

yi )!∏
yi !

∏
θyi

i ,
∑

i

yi = n,
∑

θi = 1.



The kernel of this likelihood is proportional to a Dirichlet
distribution. If a-prior we assume

θ ∼ Dirichlet(a1, . . . , ap), ai > 0,

then
p(θ) ∝

∏
i

θai−1

and the posterior for θ is

p(θ|y) ∝
∏

i

θyi+ai−1

so taking αi = ai + yi , then the posterior for θ is

p(θ|y) = Dirichlet(α1, . . . , αp).



Some comments

I The prior distribution is equivalent to a likelihood resulting
from

∑
ai observations, with ai observations in the ith

category.

I A uniform density is obtained by setting ai = 1 for all i . This
distribution assigns equal probability to each θi .

I In general it is very difficult to work with this distribution in
practice. Proportions are in general not independent and
modeling prior information in this context it is very difficult.

I We are going to use for contingency tables a surrogate
Poisson model for the multinomial distribution.

I Moments and properties for the Dirichlet distribution are in
Appendix A of Gelman et.al.



Example: A model for a two by two contingency table

Intervention
New Control

Death θ1,1 θ1,2
No death θ2,1 θ2,2

N

Data model:

p(y |θ) ∝
2∏

j=1

2∏
i=1

θ
yi,j

i ,j

Prior model:

p(θ) ∝
2∏

j=1

2∏
i=1

θ
ai,j−1
i ,j

Posterior model:

p(θ|y) ∝
2∏

j=1

2∏
i=1

θ
yi,j+ai,j−1
i ,j



We are interested in make inference for the Odds ratio:

Ψ =
θ1,1θ2,2
θ1,2θ2,1

.

We use direct simulation methods:

I Simulate a large number of values for the vector θ from its
posterior.

I For each simulated value calculate Ψ∗.

I Inference for Ψ is based on the histogram of Ψ∗.



Example: GREAT trial, Spiegelhalter et.al. pag 69.

Intervention: Thrombolytic therapy after myocardial infarction,
given at home by general practitioners.

Aim of study: to compare a new drug treatment to be given at
home as soon as possible after a myocardial infarction and placebo.

Outcome measure: Thirty-day mortality rate under each
treatment, with the benefit of the new treatment measured by the
odds ratio, i.e., the ratio of the odds of death following the new
treatment to the odds of death on the conventional: OR < 1
therefore favors the new treatment.

Prospective Bayesian analysis: NO. It was carried out after the
trial reported its results.



Example: GREAT trial continue

Intervention
New Control

Death 13 23 36
No death 150 125 275

163 148 311

We use a Dirichlet prior with parameters
a1,1 = a1,2 = a2,1 = a2,2 = 1, which corresponds to a uniform
distribution for (θ1,1, θ1,2, θ2,1, θ2,2).



We can simulate from a Dirichlet distributions with the function
rdirichlet() from the package LearnBayes:

> library(LearnBayes)

> draws <- rdirichlet(10000, c(13,23,150,125) )

> odds <-draws[,1]*draws[,4]/(draws[,2]*draws[,3])

> hist(odds, breaks = 100, xlab="Odds Ratio", freq = FALSE)

> lines(density(odds), lty =2, lwd=2, col ="blue")

> abline(v=quantile(odds, prob=c(0.025, 0.5, 0.975)),

lty=3, col="red")

>

> quantile(odds, prob=c(0.025, 0.5, 0.975))

2.5% 50% 97.5%

0.2157422 0.4649921 0.9698272
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Now suppose that we want to calculate the ”p-value” of

H0 : Ψ ≥ 1 vs. H1 : Ψ < 1

then,

> sum(odds > 1)/10000

[1] 0.0187

It is interesting to compare this results with the exact Fisher test:

> fisher.test(matrix(c(13, 23, 150, 125),

nrow=2, byrow=TRUE), alternative="less")

Fisher’s Exact Test for Count Data

p-value = 0.02817

Thus, the uniform prior on (θ1,1, θ1,2, θ2,1, θ2,2) does not
corresponds to a standard statistical analysis.



Now, if we work with a prior with parameters
a1,1 = 2, a1,2 = 1, a2,1 = 1 and a2,2 = 2, with density

p(θ1,1, θ1,2, θ2,1, θ2,2) ∝ θ1,1θ2,2

we get the following results

> # Fisher exact test

> param <- c(2,1,1,2) # parameter of the dirichlet

> draws <- rdirichlet(10000, c(13,23,150,125)+param )

> odds <-draws[,1]*draws[,4]/(draws[,2]*draws[,3])

> sum(odds>1)/10000

[1] 0.0277

This shows (empirically) that the Fisher test is NOT based in a
non-informative prior. Some weakly information of association is
implied in the test.

However, there is a difference in interpretation between the
Bayesian and sampling theory results.



theta11

theta22

f(theta11, theta22)

Dirichlet with a11=2, a12=1, a21=1, a22=2



Multivariate Normal Distribution

Multivariate Normal for p-dimensional vector y

y ∼ Normalp(µ,Σ)

The conjugate prior for µ is also a MVN. WinBUGS follows
parametrization using the precision matrix Ω = Σ−1.

In BUGS notation we have

y[1:p] ~ dmnorm(mu[], Omega[,])

mu[1:p] ~ dmnorm(mu.prior[], Omega.prior[])

Sigma[1:p, 1:p] <- inverse(Omega[,])



Priors on precision matrix of multivariate normals

Conjugate prior is the Wishart distribution, which is analogous to
Gamma or χ2.

Arises in classical statistics as the distribution of the
sum-of-squares and products matrix in multivariate normal
sampling.

The Wishart distribution Wp(k ,R) for a symmetric positive
definite p × p matrix Ω has density

p(Ω) ∝ |R|k/2|Ω|(k−p−1)/2 exp

(
−1

2
tr(RΩ)

)
,

defined for a real scalar k > p − 1 and a symmetric positive
definite matrix R.



Some characteristics

I When p = 1

W1(k ,R) ≡ Gamma(k/2,R/2) ≡ χ2
k/R.

I The expectation of the Wp(k,R) is

E [Ω] = kR−1.

I Jeffreys prior is
p(Ω) ∝ |Σ|−(p+1)/2,

equivalent to k → 0. This is not currently implemented in
WinBUGS.

I For ”weakly informative” we can set R/k to be a rough prior
guess at the unknown true covariance matrix and taking
k = p indicates minimal ”effective prior sample size”.



Known problems

I Every element must have same precision

I Incomprehensible! It is a good idea to make some prior
predictions in practice to understand what we are doing.

I Gelman at al (2004) page 483 outline alternative strategies

I If do not use Wishart priors for precision matrices in BUGS,
you need to make sure that the covariance matrix at each
iteration is positive-definite, otherwise may crash.



Exercise 1: Correlation Analysis with missing data

The following is an artificial data from the book Tools for
Statistical Inference (Tanner pag 63.(1994)):

> Y

[,1] [,2]

[1,] 1 1

[2,] 1 -1

[3,] -1 1

[4,] -1 -1

[5,] 2 NA

[6,] 2 NA

[7,] -2 NA

[8,] -2 NA

...



The following script in WinBUGS implement a Bayesian analysis
for this problem.

model

{

for (i in 1 : 12){

Y[i, 1 : 2] ~ dmnorm(mu[], tau[ , ])

}

mu[1] <- 0

mu[2] <- 0

tau[1 : 2,1 : 2] ~ dwish(R[ , ], 2)

R[1, 1] <- 0.001

R[1, 2] <- 0

R[2, 1] <- 0

R[2, 2] <- 0.001

Sigma2[1 : 2,1 : 2] <- inverse(tau[ , ])

rho <- Sigma2[1, 2] / sqrt(Sigma2[1, 1] * Sigma2[2, 2]) }



P(rho|data)
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Using predictive posterior values in each iteration WinBUGS
impute the missing values.



Multinomial model: non-conjugate analysis

In some applications the cell probabilities of contingency tables can
be made function of more basic parameters

Example: Population genetics example

Offspring genotype

Maternal genotype AA AB BB

AA 427 95 -

AB 108 161 71

BB - 64 74



The model equations are given by the following table:

Offspring genotype

Maternal genotype AA AB BB

AA (1− σ)p + σ (1− σ)q -

AB (1− σ)p/2 + σ/4 1/2 (1− σ)q/2 + σ/4

BB - (1− σ)q (1− σ)q + σ

where p is the frequency of A in outcross pollen, σ is the rate of
self-fertilization and q = 1− p



To implement this model in WinBUGS, we equate cell probabilites
with requred function:

model{

XAA[1]<- (1-sigma)*p + sigma; XAA[2]<- (1- sigma)*q;

XAA[3]<- 0

XAB[1]<-(1-sigma)*p/2 +sigma/4; XAB[2]<-0.5;

XAB[3]<-(1-sigma)*q/2 +sigma/4

XBB[1]<- 0; XBB[2]<- (1-sigma)*p;

XBB[3]<- (1- sigma)*q + sigma

KAA <- sum(NAA[]); KAB <- sum(NAB[]); KBB <- sum(NBB[])

NAA[1:3] ~ dmulti(XAA[], KAA)

NAB[1:3] ~ dmulti(XAB[], KAB)

NBB[1:3] ~ dmulti(XBB[], KBB)

p ~ dunif(0, 1) # uniform prior for p

sigma ~ dunif(0, 1) # uniform prior for sigma

q <- 1 -p

}

list(NAA = c(427, 95, 0), NAB=c(108, 161, 71),

NBB=c(0, 64, 74))



> print(m.popgen, digits=3)

Inference for Bugs model at "popgen.bug", fit using WinBUGS,

2 chains, each with 10000 iterations (first 5000 discarded)

n.sims = 10000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

p 0.705 0.024 0.655 0.690 0.706 0.721 0.749 1.001 10000

sigma 0.371 0.042 0.288 0.343 0.371 0.400 0.451 1.001 10000

deviance 27.151 1.972 25.210 25.730 26.540 27.960 32.410 1.001 10000

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)

pD = 2.0 and DIC = 29.1
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Practical: Multiple Parameters with R

Exercise 1:

I Repeat the Marathon times example of the lecture

I Make a change in the Marathon times as following:

marathontimes$time[1:5] <- rnorm(5, mean = 130, sd = 3)

I Repeat the posterior distribution predictive checks

Exercise 2:

I Repeat the Example of the GREAT trial

I Calculate the posterior distribution of the difference between
treatments’ the probability of death. Hint:

diff <- draws[, 1] - draws[,2]



Lecture :

Bayesian Regression Models



Modeling Examples

I Multiple linear regression: model diagnostics and variable
selection

I ANOVA models: an alternative to multiple testing

I Logistic regression: combining multiple information in Risk
analysis



Introduction

Standard (and non standard) regression models can be easily
formulated within a Bayesian framework.

I Specify probability distribution for the data

I Specify form of relationship between response and explanatory
variables

I Specify prior distribution for regression coefficients and any
other unknown (nuisance) parameters



Some advantages of a Bayesian formulation in regression modeling
include:

I Easy to include parameter restrictions and other relevant prior
knowledge

I It is simple to extended to non-linear regression

I We can easily robustified a model

I Easy to make inference about functions of regression
parameters and/or predictions

I We can handle missing data and covariate measurement error

I Transparent variable selection by prior modeling regression
coefficients



Linear regression

Example: Stack loss data, WinBUGS Volume 1

In this example, we illustrate a more complete regression analysis
including outlier checking, model adequacy and variable selection
methods.

This is a very often analyzed data of Brownlee (1965, p. 454).

I 21 daily responses of stack loss, yi the amount of ammonia
escaping from industrial chimneys

I Covariates: air flow x1, temperature x2 and acid concentration
x3

I Transformed covariates: zk,i = (xk,i − x̄k )/sd(xk ) for
k = 1, 2, 3.
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Model 1 specification:

yi ∼ Normal(µi , τ) i = 1, . . . , 21

τ = 1/σ2

µi = β0 + β1z1,i + β2z2,i + β3z3,i

σ ∼ Uniform(0.01, 100)

βk ∼ Normal(0, 0.001), k = 0, . . . , 3.



In these model we also calculate some diagnostic quantities:

By analogy to the classical regression analysis we calculate the
standardized residuals as

di =
yi − E (yi |z)√

Var(yi |z)
.

In a Bayesian setting these residuals have posterior distributions as
well. They can be used similarly to residual analysis in classical
statistics.



We specify the model in WinBUGS as:

model{

# Model 1

for (i in 1 : N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- beta0 + beta[1] * z[i, 1] +

beta[2] * z[i, 2] + beta[3] * z[i, 3]

stres[i] <- (y[i] - mu[i]) / sigma

# Priors

beta0 ~ dnorm(0, 0.001)

for (j in 1 : p) {

beta[j] ~ dnorm(0, 0.001) } # coefficients independent

tau <- 1/(sigma*sigma)

sigma ~ dunif(0.01, 100) # Gelman’s prior

}



We run the model in WinBUGS, we look at the possible outliers.



As an alternative model we replace the Normal likelihood by a
t-distribution with ν = 4 degrees of freedom. The idea is to have a
more robust model against outliers in the y ’s.

Model 2:

yi ∼ t(µi , τ, ν) i = 1, . . . , 21

τ = 1/σ2

µi = β0 + β1z1,i + β2z2,i + β3z3,i

σ ∼ Uniform(0.01, 100)

βk ∼ Normal(0, 0.001), k = 0, . . . , 3.



In the WinBUGS code we modify the model section by
commenting out the normal model and adding one line with the
model based on the t-distribution and we run the MCMC again.

#y[i] ~ dnorm(mu[i], tau)

y[i] ~ dt(mu[i], tau, 4)

#DIC Normal

Dbar Dhat pD DIC

Y 110.537 105.800 4.736 115.273

total 110.537 105.800 4.736 115.273

#DIC t

Dbar Dhat pD DIC

Y 109.043 104.103 4.940 113.983

total 109.043 104.103 4.940 113.983

A very modest difference between the two models.



Variable Selection

We modify the structure of the distribution of the regression
coefficients by adding a common distribution with unknown
variance. This is called a ridge regression model, where the βs are
assumed exchangeable.

Model 3 specification:

yi ∼ Normal(µi , τ), τ = 1/σ2, i = 1, . . . , 21

µi = β0 + β1z1,i + β2z2,i + β3z3,i

σ ∼ Uniform(0.01, 100)

βk ∼ Normal(0, φ), φ = 1/σ2β k = 0, . . . , 3

σβ ∼ Uniform(0.01, 100).



In WinBUGS

for (j in 1 : p) {

# beta[j] ~ dnorm(0, 0.001) # coefs independent

beta[j] ~ dnorm(0, phi) # coefs exchangeable (ridge regression)

}

phi <- 1/(sigmaB*sigmaB)

sigmaB ~ dunif(0.01, 100) #Gelman’s prior





We see that β3 is not a relevant variable in the model. Now, we
try another variable selection procedure, by modifying the
distribution of the regression coefficients.

Model 5 specification:

yi ∼ Normal(µi , σ
2) i = 1, . . . , 21

µi = β0 + β1 π1 z1,i + β2 π2 z2,i + β3 π3 z3,i

σ ∼ Uniform(0.01, 100)

βk ∼ Normal(0, 100), k = 0, . . . , 3,

π1 ∼ Bernoulli(0.5)

π2 ∼ Bernoulli(0.5)

π3 ∼ Bernoulli(0.5).



In WinBUGS we change the equation of µi :

#mean equation model

mu[i] <- beta0 + beta[1] * pi[1]* z[i, 1] +

beta[2]* pi[2] * z[i, 2] + beta[3] * pi[3]* z[i, 3]

#priors

for (j in 1 : p) {

beta[j] ~ dnorm(0, 0.001)

pi[j] ~ dbern(0.5)

}

We run the model for 40,000 iterations and we discard the first
20,000. Results are:

pi[1] 0.9987 0.0367 <- X1 very important

pi[2] 0.8361 0.3702 <- X2 non meaningful

pi[3] 0.0425 0.2018 <- X1 definitively no important





ANOVA and Experimental Design

Example: Speed of light measurements by Michelson

This is a classical data set available in R and corresponds to
Measurements of the speed of light in air, made between 5th June
and 2nd July, 1879. The data consists of five experiments, each
consisting of 20 consecutive runs. The response is the speed of
light in km/s, less 299000. The currently accepted value, on this
scale of measurement, is 734.5.

We start by comparing the 5 experiments with boxplots:

> library(MASS)

> data(michelson)

> attach(michelson)

> plot(Expt, Speed, main="Speed of Light Data",

xlab="Experiment No.",ylab="Speed")
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ANOVA model: Bayesian analysis in WinBUGS

The Bayesian approach to the ANOVA model is similar to the
regression model, with mean equation according to the mean
groups parametrization. So if we have nj observations in J groups

with n =
∑J

j=1 nj .

Model 1

yi ,j ∼ Normal(µj , τ), τ = 1/σ2 i = 1, . . . , nj ,

µj = µ+ αj , j = 1, . . . , J,

αj ∼ Normal(0, 0.001), j = 2, . . . , J,

µ ∼ Normal(0, 0.001),

σ ∼ Uniform(0.01, 100).



The WinBUGS implementation of Model 1 is:

model{

for(i in 1:n){

y[i] ~ dnorm( mu[i], tau)

mu[i] <- mu0 + alpha[ a[i] ]

}

# Corner constrains parametrization

# alpha[1] <- 0

# Sum to zero parametrization

alpha[1] <- -sum( alpha[2:J] )

# group means:

for( i in 1:J){

m.g[i] <- mu0 + alpha[i]}



# mean differences:

d[1] <- (m.g[2] - m.g[1] )

d[2]<- (m.g[3] - m.g[1] )

...

# Priors

mu0 ~ dnorm(0, 0.0001)

for( j in 2:J){

alpha[j] ~ dnorm(0, 0.0001)

}

tau <- 1/(sigma*sigma)

sigma ~ dunif(0.01, 100) #Gelman’s prior

}



One serious problem of ANOVA modeling is the lack of variance
homogeneity between groups. We can extend our Bayesian set up
to include this data feature as follows:

Model 2

yi ,j ∼ Normal(µj , τj ), τj = 1/σ2j i = 1, . . . , nj ,

µj = µ+ αj , j = 1, . . . , J,

αj ∼ Normal(0, 0.001), j = 2, . . . , J,

µ ∼ Normal(0, 0.001),

σj ∼ Uniform(0.01, 100), j = 1, . . . , J, .

This model includes a structural dispersion sub-model for each
treatment group.



The WinBUGS implementation of Model 2 change to:

{

for(i in 1:n){

#y[i] ~ dnorm( mu[i], tau)

y[i] ~ dnorm( mu[i], tau[i])

mu[i] <- mu0 + alpha[ a[i] ]

tau[i] <- gamma[ a[i] ]

}

# Priors for groups dispersion model

for( j in 1:J){

gamma[j] ~ dgamma(0.001, 0.001)

sigma2[j] <- 1/ gamma[j]

sigma[j] <- pow(sigma2[j], 0.5)

}



For models with more than 3 groups the estimation based on
simple means can be improved by adding exchangeability structure
to the αi ’s (Stein, 1956, Lindley 1962, Casella and Berger,
pag.574). This assumed a sub-model for αi in the following way:

Model 3

yi ,j ∼ Normal(µj , τj ), τj = 1/σ2j i = 1, . . . , nj ,

µj = µ+ αj , j = 1, . . . , J,

αj ∼ Normal(0, φ), φ = 1/σα j = 2, . . . , J,

µ ∼ Normal(0, 0.001),

φ ∼ Uniform(0.01, 100), j = 1, . . . , J,

σj ∼ Uniform(0.01, 100), j = 1, . . . , J, .



The WinBUGS implementation of Model 3 change to:

# Priors

mu0 ~ dnorm(0, 0.0001)

for( j in 2:J){

alpha[j] ~ dnorm(0, xi)

}

xi <- 1/(sigma.alpha*sigma.alpha)

sigma.alpha ~ dunif(0.01, 100) #Gelman’s prior



One alternative to exchangeability between αi ’s is to use a mixture
model to investigate the structure of the data, for example:

Model 4

yi ,j ∼ Normal(µj , τj ), τj = 1/σ2j i = 1, . . . , nj ,

µj = µ+ αjπj , j = 1, . . . , J,

αj ∼ Normal(0, 0.001), j = 2, . . . , J,

µ ∼ Normal(0, 0.001),

πj ∼ Bernoulli(0.5), j = 2, . . . , J,

σj ∼ Uniform(0.01, 100), j = 1, . . . , J, .



The WinBUGS implementation of Model 3 change to:

# group means mixture model:

for( i in 1:J){

m.g[i] <- mu0 + alpha[i]*pi[i]

pi[i] ~ dbern(0.5)

}

The next slides present some graphical results of the main features
of each model. The full WinBUGS script for this analysis is
anova.odc, this includes some other calculations for residual
analysis as well.



ANOVA: classical model

Posterior distributions for mean groups µj , Model 1.



ANOVA: classical model

Posterior distributions for mean differences between all groups
µk − µl (k 6= l), Model 1



ANOVA: variance heterogeneity model

Posterior distributions for σj , Model 2.



ANOVA: variance heterogeneity model

Posterior distributions for mean differences between all groups
µk − µl (k 6= l), Model 2



ANOVA: exchangeability model

Posterior distributions for mean differences between all groups with
exchangeability, Model 3.



ANOVA: Mixture models

Posterior distributions for the group means with mixture
distributions, Model 4.



Logistic regression: combining multiple information in Risk
analysis

Example: The Challenger O-Ring Data: A Bayesian Risk
Analysis

Historical background

I The Space Shuttle Challenger’s final mission was on January
28th 1986, on an unusually cold morning (31F/-0.5C)

I It disintegrated 73 seconds into its flight after an O-ring seal
in its right solid rocket booster failed

I The uncontrolled flame caused structural failure of the
external tank, and the resulting aerodynamic forces broke up
the orbiter

I All seven members of the crew were killed



Technical background



The Challenger’s O-Ring Thermal-Distress Data

Example: Regression modeling with change point

I On the night of January 27, 1986, the night before the space
shuttle Challenger accident, there was a tree-hour
teleconference among people at Marton Thiokol
(manufacturer of the solid rocket motor), Marshal Space
Center and Kennedy Space Center.

I The discussion focused on the forecast of a 31 F temperature
for lunch time the next morning, and the effect of low
temperature on O-ring performance.

I The available data of previous shuttle flights consisted on
occurrence of thermal distress (yes, no) and temperature at
launch time. Let’s take a look at these data and fit a logistic
regression in R:



> #distress yes=1 , no =0

> y = c(1,1,1, 1,0,0,0, 0,0,0,0, 0,1,1,0,

0,0,1,0, 0,0,0,0)

> # temperature at launch time

> x = c(53,57,58, 63,66, 67,67, 67,68, 69,70,

70,70, 70,72, 73,75, 75,76, 76,78, 79,81)

> # number of previous flights

> N = 23

> summary(f.b1 <- glm(y ~ x, family=binomial))

...

AIC: 24.315

> summary(f.b2 <- update(f.b1, family=binomial(link=cloglog)))

...

AIC: 23.531
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I These data have been analyzed several times in the literature.
I found that fitting a change point model makes an
improvement on previous published analysis. The model is:

Pr(yi = 1) = logit−1 (β0 + β1 zi )

where

zi =

{
1 for xi ≥ K ,
0 otherwise.

I In this model K is unknown and represents the temperature
from which the probability of distress is the lowest.

I The parameter β1 represents the reduction of risk under
temperatures greater than K .



This model is implemented in WinBUGS as following:

model

{

for(i in 1 : N) {

y[i] ~ dbern(p[i])

logit(p[i]) <- beta0 + beta1 * z[i] }

for(i in 1:N){z[i] <- step(x[i] - K) } # step = 0 until K

#priors

K ~dunif(53, 81)

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

}



We run the model with R2WinBUGS:

> data.b <- c("x", "y", "N")

> par.b <- c("beta0", "beta1", "K")

>

> chall.1 <- bugs(data.b, inits=NULL, par.b,

"challenger-1.txt", n.chains=1,

n.iter=20000, n.thin=1,

bugs.directory = bugsdir,

working.directory = getwd(),

clearWD=TRUE, debug=TRUE)

> print(chall.1)

mean sd 2.5% 25% 50% 75% 97.5%

beta0 6.2 3.9 -0.2 3.3 5.8 8.4 15.3

beta1 -8.0 3.9 -17.2 -10.2 -7.6 -5.1 -2.1

K 63.8 2.9 58.2 63.1 64.1 65.1 67.0
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Example: Probabilistic Risk Assessment



I A catastrophic failure of a field joint is expected when all
four events occur during the operation of the solid rocket
boosters:

pfield = pa × pb × pc × pd

I Since there are 6 field joints per launch, assuming the all 6
joint failures are independent, the probability of at least one
failure is

Risk = 1− (1− pfield )6

I pa is calculated from the logistic regression model as:

pa = Pr(O-Ring Thermal-Distress at 31F)

I The available data for the other events was very sparse:
I Event b: 2 in 7 flights
I Event c: 1 in 2 flights
I Event d: 0 in 1 flight

We model the probabilities of events b, c and d with a
beta-binomial model with uninformative priors Beta(0.5, 0.5).





In WinBUGS we modify the model file ”challenger-1.txt” by
adding these risk calculations. We add, also, the calculation of risk
at temperature K or greater.
To run the model in R by adding the date of events b, c, and d:

# Risk analysis

y.b <- 2; y.c <- 1; y.d <- 0

data.r <- c("x", "y", "N", "y.b", "y.c", "y.d")

par.r <- c("beta0", "beta1", "K", "p.cat", "p.catK")

chall.2<- bugs(data.r, inits=NULL, par.r,

"challenger-1.txt", n.chains = 1,

...

> print(chall.2, 3)

mean sd 2.5% 25% 50% 75% 97.5%

K 63.726 2.653 58.190 63.090 64.120 65.120 66.010

p.cat 0.173 0.204 0.000 0.019 0.088 0.258 0.736

p.catK 0.038 0.061 0.000 0.003 0.014 0.047 0.213



Summary results of our analysis:

I The risk of a catastrophic failure with launching temperature
of 31 F is 17%

I The risk of a catastrophic failure with temperatures greater
than 63 F is 3.8%

I The odds ratio of the risk between these temperatures is 9.8

One interesting historical note:

The Roger Commission, appointed by president Reagan to
investigate the causes of the accident, pointed out:

... a mistake in the analysis of the thermal distress data was that
the flights with zero incidents were left off because it was felt that
these flights did not contribute any information about the
temperature effect. (p. 145)



Practical

Exercise: a nonconjugate nonlinear model

Volume 2 in WinBUGS help: Dugongs

Originally, Carlin and Gelfand (1991) consider data on length yi

and age xi measurements for 27 dugongs (sea cows) and use the
following nonlinear growth curve with no inflection point and an
asymptote as xi tends to infinity:

yi ∼ Normal(µi , σ
2)

µi = α− βγxi ,

where α, β > 0 and γ ∈ (0, 1).



Practical

I Open the file in WinBUGS and run the model

I Change the last observation 2.57 to 2.17 and run the model.
Did you see different results?

I Modify the WinBUGS code as:

# y[i] ~ dnorm(mu[i], tau)

y[i] ~ dt(mu[i], tau, df) # fit robust t distribution

...

df <- 5

I Run the model with this change and compare results



Lecture:

Bayesian Computations with MCMC
Methods



Summary

I Introduction to discrete Markov chains.

I Construction of Markov chain Monte Carlo algorithms.

I Gibbs sampling methods.

I Metropolis and Metropolis-Hastings method.

I Issues in applications of MCMC (convergence checking,
proposal distributions, etc.)



Why is computation important ?

I Bayesian inference centers around the posterior distribution

p(θ|y) ∝ p(y |θ)× p(θ)

where θ may be a vector of thousand components!

I p(y |θ) and p(θ) are usually available in closed form, but
p(θ|y) is usually not analytical tractable. Also, we may want
to obtain

I marginal posteriors p(θ1|y) =
∫
p(θ|y)dθ(−1)

I calculate properties of p(θ1|y), such as mean
E (θ1|y) =

∫
θ1p(θ|y)dθ(−1), tail areas, etc.

I We see that numerical integration becomes crucial in Bayesian
inference!



General Monte Carlo integration
If we have algorithms for sampling from arbitrary (typically
high-dimensional) posterior distributions, we could use ’Monte
Carlo’ methods for Bayesian inference:

I Suppose we can draw samples from the joint posterior
distribution for θ, i.e.

θ(1), θ(2), . . . , θ(N) ∼ p(θ|y)

I Then Monte Carlo integration

I θ(1), θ(2), . . . θ(N) ∼ p(θ|y)

I E (g(θ)) =
∫
g(θ)p(θ|y)dθ ≈ 1

N

∑N
i=1 g(θi )

I Theorems exist which prove convergence even if the sample is
dependent,i.e.

1

N

N∑
i=1

g(θ(i))→ E (g(θ)) as n→∞



Markov Chain Monte Carlo (MCMC)

I Independent sampling from p(θ|y) may be very difficult in
high dimensions

I Alternative strategy based on dependent sampling:

I We know p(θ|y) up to a normalizing constant

I Then, we design a Markov chain which has p(θ|y) as its
stationary distribution

I A sequence of random variables θ(0), θ(1), θ(3), . . . forms a
Markov chain if

θ(i+1) ∼ p(θ|θ(i))

i.e. conditional on the value of θ(i), θ(i+1) is independent of
θ(i−1), . . . , θ(0).



I Run the chain until it appears to have settled down to
equilibrium, say

θ(k), θ(k+1), . . . , θ(K) ∼ p(θ|y)

I Use these sampling values to empirically estimate the
posterior of θ, say,

p̂(θ|y)

Problem: Design a Markov chain with p(θ|y) as its unique
stationary distribution?



Answer: This is surprisingly easy and several standard recipes
are available

I Metropolis et al. (1953) showed how to do it

I Hastings (1970) generalized Metropolis algorithm

I Geman and Geman (1984) introduced the Gibbs Sampling
algorithm

I Gelfand and Smith (1990) popularized Gibbs sampling in
statistics

I See Gilks, Richardson and Spiegelhalter (1996) for a gentle
introduction and many worked examples.

I Robert and Casella (2004) for more detailed theoretical
reference



The Gibbs sampler

Let our vector of unknowns θ consist of k sub-components
θ = (θ1, . . . , θk )

1. Choose starting values θ01, . . . , θ
0
k

2. Sample from

θ
(1)
1 ∼ p(θ1|θ(0)2 , θ03, . . . , θ

(0)
k , y)

θ
(1)
2 ∼ p(θ2|θ(1)1 , θ03, . . . , θ

(0)
k , y)

. . .

θ
(1)
k ∼ p(θk |θ

(1)
1 , θ12, . . . , θ

(1)
k−1, y)

3. Repeat step 2 many 1000s of times. Eventually we obtain
samples from p(θ|y)



Example: Normal distribution with unknown mean and
variance

I Suppose that the observations y1, . . . , yn ∼ N(µ, τ−1)

I We assume that yi are conditionally independent given θ and
precision τ , and θ and τ are themselves independent.

I We put conjugate priors on µ and τ :

µ ∼ N(θ0, φ
−1
0 ), τ ∼ Gamma(a, b)

I Then the full conditionals for µ and τ are:

p(µ|τ, y) = N

(
µ0φ0 + nȳτ

φ0 + nτ
,

1

φ0 + nτ

)
p(τ |µ, y) = Gamma

(
a +

n

2
, b +

1

2

∑
(yi − µ)2

)



Programming the Gibbs sampler in R
Example: Normal distribution with unknown mean and
variance

gibbsNormal <- function(y, mu1, tau1, N, mu0, phi0, a, b) {

mu <- numeric(N+1) # N = number of iterations

mu[1] <- mu1 # the initial value for mu

tau <- numeric(N+1)

tau[1] <- tau1 # the initial value for tau

n <- length(y) ; ybar <- mean(y)

for(i in 2:(N+1)) {

# generate samples from full conditional

mu[i] <- rnorm(1,

mean = (mu0*phi0 + n*ybar*tau[i-1])/(phi0 + n*tau[i-1]),

sd = 1/sqrt(phi0 + n*tau[i-1]))

tau[i] <- rgamma(1, (n+2*a)/2,

(sum((y-mu[i])^2) + 2*b)/2)

}

output <- cbind(mu, tau) }
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Four independent sequences of the Gibbs sampler for a normal
distribution with unknown mean and variance.
Left panel: first 10 steps. Right panel: last 500 iterations in each
chain.
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General properties of a MCMC algorithm

I Reversibility:

I The key property is reversibility or detailed balance, i.e., a
balance in the flow of transition probabilities between the
states of the Markov chain

I A Markov chain which is reversible has stationary
distribution

I Thus we build a kernel or transition matrix P such that it
ensures reversibility

p(x)P(y |x) = p(y)P(x |y)

where P(y |x) represents the flow of probability x → y



I Irreducibility:

I An irreducible chain is one in which for any point θ(k) in the
parameter space, it is possible to move from θ(k) to other
point θ(l) in a finite number of steps.

I This guarantees the chain can visit all possible values of θ
irrespective of the starting value θ(0).

I Aperiodicity:

I A chain is aperiodic if does not exhibits periodic behavior.

I If R1,R2, . . . ,Rk are disjoint regions in parameter space the
chain does not cycle around them.

To sample form p(θ|y) we construct a Markov chain with
transition matrix P which satisfies reversibility, irreducibility and
aperiodicity.



Metropolis algorithm

The algorithm proceeds as follows:

I Start with a preliminary guess, say θ0.

I At iteration t sample a proposal θt ∼ P(θt |θt−1).

I The jumping distribution must be symmetric, satisfying the
condition P(θa|θb) = P(θb|θa) for all θa and θb.

I If p(θt |y) > p(θt−1|y) then accept θt

I If not, flip a coin with probability r = p(θt |y)
p(θt−1|y) , if it comes up

heads, accept θt .

I If the coin toss comes up tails, stay at θt−1

The algorithm continues, until we sample from p(θ|y). The coin
tosses allow it to go to less plausible θts, and keep it from getting
stuck in local maxima.



Some samplers for the Metropolis algorithm

The following are commonly implemented samplers for the
proposal distribution P(θt |θt−1)

I Random walk sampler, observations are generated by
θt = θt−1 + zt with zt ∼ f . There are many common choices
for f , including the uniform in the unit disc, a multivariate
normal or a t - distribution

I The independent sampler, the candidate observation is sample
independently from the current state of the chain

I The Gibbs sampler. The Gibbs transition can be regarded as a
special case of a Metropolis transition

I The STAN software implements samplers based on
Hamiltonian dynamics



Metropolis in R

I The package MCMCpack implements Metropolis for a large
number of statistical models.

I The current implementation uses a random walk Metropolis
with proposal density multivariate Normals.

I The proposal density is centered at the current θ(t) with
variance-covariance matrix given by the user or automatically
calculated proportional to the Hessian of the posterior
evaluated at its mode.



Example: an interesting bivariate distribution

I It is well know that the pair of marginal distributions doest
not uniquely determine a bivariate distribution. For
example, a bivariate distribution with normal marginal
distributions need not be jointly normal (Feller 1966, p. 69)

I In contrast, the conditional distribution functions uniquely
determine a joint density function (Arnold and Press 1989).

I A natural question arises: Must a bivariate distribution
with normal conditionals be jointly normal?



The answer is NO!

Gelman and Meng (1991) introduced an interesting distribution,
where the join distribution is non-normal:

f (x , y) ∝ exp
(
−1/2

[
Ax2y2 + x2 + y2 − 2Bxy − 2C1 − 2C2y

])
.

But it has conditional distributions which are normals:

x |y ∼ N(
By + C1

Ay2 + 1
,

1

Ay2 + 1
), y |x ∼ N(

Bx + C1

Ax2 + 1
,

1

Ax2 + 1
).

The question is how to sample form f (x , y)?



Here we show an example where the parameters are A = 1, B = 0
C1 = 3 and C2 = 3.

x

y

z

Gelman−Meng distribtuion A=1, B=0, C1=3 and C2=3
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Gelman−Meng distribtuion A=1, B=0, C1=3 and C2=3



We implement a Metropolis sampling algorithm based on a random
walk and bivariate normals as proposals.

## Gelman and Meng (1991) kernel function:

f.g.m <- function(xy , A = 1, B = 0, C1 = 3, C2 = 3)

{ x <- xy[1]; y <- xy[2]

r <- -.5 * (A * x^2 * y^2 + x^2 + y^2

- 2 * B * x * y - 2 * C1 * x - 2 * C2 * y)

as.vector(r) }

## Metropolis sampling with MCMCpack

res <- MCMCmetrop1R(f.g.m, theta.init=c(0, 1), mcmc=10000,

burnin=5000, logfun=FALSE)

>

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

The Metropolis acceptance rate was 0.47580
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Performance of MCMC methods

There are three main issues to consider

I Convergence: How quickly does the distribution of θ(t)

approach p(θ|x) ?

I Efficiency: How well are functionals of p(θ|x) estimated from
θ(t) ?

I Simplicity: How convenient is the method to use?

In general computer effort should be measured in seconds, not
iterations!



Checking convergence

I Convergence is to target distribution and not to a single value

I Once convergence is reached, samples should look like a
random scatter about a stable mean value.

I One approach is to run many long chains with widely differing
starting values.

I Plot traces of the simulated chain

I Plot ACF, etc.



Lecture:

Introduction to Hierarchical Models



Learning from the information of the others ...

I During the previous lectures we have seen several examples,
where we performed a single statistical analysis.

I Now, suppose that instead of having a single analysis, you
have several ones. Each one giving independent results from
each other.

One might ask:

Should we combine these independent results in a single
global analysis?



The general answer is:

YES!!

I Hierarchical models give us the statistical framework to
combine multiple sources of information in a single analysis.

I Informally, by combining several individual results, each
individual analysis is improve by the information we have from
the others. This information is summarized in an Empirical
Prior distribution.

I From the classical point of view, Charles Stein demonstrated
in the 50s a fundamental theoretical result, which shows the
benefit of combining individual results in a single analysis.

Charles Stein (22nd of March 1920) ... and he still working
everyday!



Hierarchical Models
It becomes common practice to construct statistical models which
reflects the underline complexity of the problem under study. Such
us different patterns of heterogeneity, dependence,
miss-measurements, missing data, etc.

Statistical models which reflect complexity of the data involve
multiple parameters. Examples are:

I ”Study effect” in meta-analysis

I ”Subject effect” in growth curves models

I ”Identification of hidden process” in sequence of observations

I ”Relative risks of disease outcome in different areas/time
periods

I ”Frailty effects” in correlated survival data

I ...



Statistical Inference for Multiple Parameters

How to make inference on multiple parameters {θ1, . . . , θN}
measured in N units (person, centers, areas, ...) which are related
or connected by the structure of the problem?

We can identify three different scenarios

1. Identical parameters: All the θ’s are identical, i.e. all the
data can be pooled and the individual units ignored.

2. Independent parameters: All the θ’s are entirely unrelated,
i.e. the results from each unit can be analyzed independently.

3. Exchangeable parameters: The θ’s are assumed to be
’similar’ in the sense that the ”labels” convey no information.



Graphical Models for Multiple Parameters
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Exchangeability

I The assumption of exchangeable units is mathematically
equivalent to assuming that the θ’s are drawn at random from
some population distribution.

I ”Exchangeability” express formally the idea that we find no
systematic reason to distinguish the individual random
variables

y1, . . . , yn.

I We assume that y1, . . . , yn are exchangeable if the probability
that we assign to any set of potential outcomes,

p(y1, . . . , yn),

is unaffected by permutations of the labels attached to the
variables.



Example:

Suppose that y1, y2, y3 are the outcomes of the three patients
enrolled in a clinical trial. Were yi = 1 indicates positive reaction
to a treatment and yi = 0 no reaction.

We may judge

p(y1 = 1, y2 = 0, y3 = 1) = p(y2 = 1, y1 = 0, y3 = 1) = p(y1 = 1, y3 = 0, y2 = 1)

I i.e. the probability of getting 2 positive outcomes is NOT
affected by the particular patient on which the positive
outcome comes.

I Note that this is a very strong assumption. In reality we may
expect that patients may behave in different way. For example
they may fail to comply a treatment.

I Note that ”exchangeability” does not mean we believe that
y1, y2, . . . yn are independent!



Exchangeability and Hierarchical Models

Suppose yij is outcome for individual j , unit i , with unit-specific
parameter θi

I Assumption of partial exchangeability of individuals within
units is represented by

yij ∼ p(yij |θi )

θi ∼ p(θi |φ)

I Assumption of exchangeability of units can be represented by

θi ∼ p(θi |φ)

φ ∼ p(φ)

where, p(φ) can be considered as a common prior for all
units, but with unknown parameters.



I Assuming that θ1, . . . , θN are drawn from some common prior
distribution whose parameters are unknown is known as a
hierarchical or multilevel model.

I Bayesian statistical inference is based on:

p(θ1, . . . , θN , φ|y) ∝ p(φ) p(θ1, . . . , θN |φ) p(y|θ1, . . . , θN , φ)

I The dimension of (θ1, . . . , θN) could be very large in practice.

I Empirical Bayes techniques omit p(φ). They are useful in
practice, but they may biased variability estimates be reusing
y to estimate φ.



Exchangeability some further comments

I Note that there does not need to be any actual sampling -
perhaps these N units are the only ones that exists - this is
very common in meta-analysis.

I The probability structure is a consequence of the belief in
exchangeability rather than a physical randomization
mechanism.

I We emphasis that an assumption of exchangeability is a
judgement based on our knowledge of the context.



Hierarchical models and shrinkage

Suppose in each unit we observe a response yi assumed to have a
Normal likelihood

yi ∼ N(θi , s
2
i )

Unit means θi are assumed to be exchangeable, and to have a
Normal distribution

θi ∼ N(µ, τ2)

where µ and τ2 are ”hyper-parameters” for the moment assumed
known.

After observing yi , Bayes theorem gives

θi |yi ∼ N(wi µ+ (1− wi ) yi , (1− wi ) s
2
i )

where wi = s2i /(s2i + τ2) is the weight given to the prior mean.



Hierarchical models and shrinkage

I An exchangeable model therefore leads to the inferences for
each unit having narrowed intervals that if they are assumed
independent, but shrunk towards the prior mean response.

I wi controls the ”shrinkage” of the estimate towards µ, and
the reduction in the width of the interval for θi

I Shrinkage (wi ) depends on precision of the individual unit i
relative to the variability between units.



Profile likelihoods and Empirical Bayes
We consider the hierarchical model

yi ∼ N(θi , s
2
i ), θi ∼ N(µ, τ2).

The hyperparameters µ and τ are unknown. The marginal
distribution of the data is

yi ∼ N(µ, s2i + τ2).

Let wi = 1/(s2i + τ2) be the weight associated to the ith study.
Then the joint log(likelihood) for µ and τ is

L(µ, τ) = −1

2

∑[
(yi − µ)2wk − logwk

]
. (1)

By differentiating with respect to µ and setting to 0, the
conditional ML estimator of µ is

µ̂(τ) =
∑

yiwi/
∑

wi , (2)

with variance 1/
∑

wi .



I We can substitute (2) in (1) and obtain the profile likelihood
for τ :

L(τ) = −1

2

∑[
(yi − µ̂(τ))2wk − logwk

]
. (3)

I This profile log(likelihood) may be plotted and maximized
numerically to obtain the ML estimate τ̂ . This can be then be
substituted in (2) to obtain the ML estimate of µ.

I The estimates µ̂ and τ̂ can be substituted in the posterior of
θi and get an Empirical Bayes posterior for θi :

p(θi |µ̂, τ̂ , data).



Boundary estimate problems of the scale parameter

I We illustrate this issue with a simulation example. We assume

yi ∼ N(θi , 1),

θi ∼ N(0, τ2)

for i = 1, . . . , 10 and we assume a typical τ = 0.5.

I For this model we simulate 1000 data sets y1, . . . , y10 for each
one we determine the marginal likelihood and its ML
estimation of τ .

I In this simple model the ML of τ is just τ̂2 = 1/N
∑

y2i − 1 if

1/N
∑

y2i > 1 and τ̂2 = 0 otherwise.



Sampling distribution of  τ (true value τ=0.5)

Maximum profile likelihood estimate
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Figure: Boundary issues of the dispersion parameter τ in random-effects
meta-analysis. Left panel: Sampling distribution of τ̂ . Right panel:
Profile likelihoods of τ simulated data.



Potential advantages of a full Bayesian Hierarchical Model

I Unified modeling: full probability model with flexible choice of
”random-effects” distribution

I Exact likelihoods: not necessary to adopt approximated
Normal likelihoods

I Allowing for uncertainty in all parameters: full uncertainty
from all the parameters is reflected in the widths of the
posterior intervals

I Allowing for other sources of evidence: other sources of
evidence can be reflected in the prior distributions for
parameters

I Allowing direct probability statements on different scales:
Possible to make inference on a variety of scales, such as risk
differences, odds ratio, etc.



Example: Toxoplasmosis data

I These data present the relation between rainfall and the
proportions of people with toxoplasmosis for 34 cities in El
Salvador (Efron 1986)

I The question is how to combine results of 34 different cities in
a single model?

I The data have been used to illustrate non-linear relationship
between the amount of rain and toxoplasmosis prevalence

I We illustrate a series of hierarchical models

...we take some preliminary visualization
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Pooled approach:

To start we ignore possible (complex) relation between rainfall and
proportion and we fit same beta-binomial model to all the cities

34∏
i=1

p(ri |π, ni ) =
34∏

i=1

Binomial(ni , π)

p(π) = Beta(a, b)

p(π|r , n) ∝
34∏

i=1

p(ri |π, ni )p(π)

= Beta

(
a +

∑
i

ri , b +
∑

i

(ni − ri )

)



Some comments:

I Now, is it reasonable to assume common probability π of
Toxoplasmosis for each city?

I The beta-binomial model assumes that each outcome is
independent and identically distributed according to the
binomial probability distribution with parameter π

I Does this model adequately describe the random variation in
outcomes for each city?

I Are the cities rates more variable that our model assumes ?

Question: How to model the excess of variation in the data?



Modeling the excess of variation

Model 1:

Combining information with a Generalized Linear Mixed Model
(GLMM)

ri ∼ Binomial(ni , πi )

logit(πi ) ∼ N(µ, σ2)

µ ∼ N(0, 100)

σ ∼ Uniform(0.01, 10)

This model combines information between cities in a single model.



Model 2:

Modeling each city rate independently

ri ∼ Binomial(ni , πi )

logit(πi ) ∼ N(0, 100).

This model does NOT use information between cities. Each rate πi

is estimated independently.



In WinBUGS we run both models simultaneously as follows:

model{

for( i in 1 : I ) {

r[i] ~ dbin(p[i,1],n[i])

logit(p[i,1]) <- a[i]

a[i] ~ dnorm(alpha1, tau1) # Exchangeable

r2[i] ~ dbin(p[i,2],n[i]) # Copy of r[i]

logit(p[i,2]) <- b[i]

b[i] ~ dnorm(0, 0.01) # Independent

}

tau1 <- 1/(sigma1*sigma1) # Priors

sigma1 ~ dunif(0.01, 5)

alpha1 ~ dnorm(0,0.01)

}



#data

list(I=34,

r=c(2,3,1,3,2,3,2,7,3,8,7,0,15,4 ,0,6 ,0,33,

4,5 ,2 ,0,8,41,24,7, 46,9,23,53,8,3,1,23),

r2=c(2,3,1,3,2,3,2,7,3,8,7,0,15,4 ,0,6 ,0,33,

4,5 ,2 ,0,8, 41,24,7, 46,9,23,53,8,3,1,23),

n=c(4,20,5,10,2,5,8,19,6,10,24,1,30,22,1,11,

1,54,9,18,12,1,11,77,51,16,82,13,43,75,13,10,6,37)

)
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Results:

DIC for Model 1 (GLMM) = 145.670

DIC for Model 2 (independent) =176.504

I Clearly Model 1 which combines information between cities is
the winer.

I The use of Model 2 has the effect of reduce the variability
between cities

I The use of Model 2 gives better results at the level of the city.

Clear conclusion: We should take advantage of modeling
simultaneously multiple results!



Example: Toxoplasmosis data continue ...

Two important questions are:

I Which is the influence of the amount of rain in toxoplasmosis
prevalence?

I Which is the influence of the number of participants in each
town?

Model 3:

ri ∼ Binomial(ni , πi )

logit(πi ) = ai + β1 × (xi ,1 − x̄1) + β2 × (xi ,1 − x̄1)

ai ∼ N(α, σ2)

σ ∼ Uniform(0.01, 10)

α, β1, β2 ∼ N(0, 100),



In WinBUGS:

model

{

for(i in 1:N)

{log.n[i] <- log(n[i])}

for( i in 1 : N ) {

r[i] ~ dbin(p[i], n[i])

a[i] ~ dnorm(alpha,tau)

logit(p[i]) <- a[i] +

beta1 * (rain[i]-mean(rain[])) +

beta2 * (log.n[i] - mean(log.n[]))

}

# Priors

tau <- 1/(sigma*sigma)

sigma ~ dunif(0.01, 5)

alpha ~ dnorm(0,0.01)

beta1 ~ dnorm(0, 0.01)

beta2 ~ dnorm(0, 0.01)}



Posterior for Beta_1
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Posterior of β1 clearly indicates no linear influence of the amount
of rain. Posterior of β2 shows a clear trend.



Example: Ranking of the eighteen baseball players (Efron
and Morris, 1977)

How can we rank the players ability ? Who was the best player of
the season 1970?

We use the ranking function in WinBUGS to answer this question.

Name hit/AB Observed Avg (ML) ”TRUTH” James-Stein
Clemente 18/45 .400 .346 .290
Robinson 17/45 .378 .298 .286

...
...

...
...

...
Total Squared error .077 0.022
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Posteriors: Prob(Hits)
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model{

for( i in 1 : N ) {

r[i] ~ dbin(p[i],n[i])

logit(p[i]) <- b[i]

b[i] ~ dnorm(mu, tau)

p.rank[i] <- rank(p[], i)

}

# hyper-priors

mu ~ dnorm(0.0,1.0E-6)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

}

# Data

list(r = c(145, 144, 160, 76, 128, 140, 167,

41, 148, 57, 83, 79, 142, 152, 52, 168, 137, 21),

n= c(412, 471, 566, 320, 463, 511, 631, 183,

555, 245, 322, 315, 480, 583, 231, 603, 453,

115), N=18 )



Rank distributions for Robinson, Howard and Clemente.



Left panel: posterior distributions of ranks. Right panel: posterior
distributions of performances.



Summary on hierarchical models

I Hierarchical models allows to ”borrow strength” across units

I Posteriors distribution of θi for each unit borrows information
from the likelihood contributions for all other units.
Estimation is more efficient.

I MCMC allows considerable flexibility over choice of random
effects distribution (not restricted to normal random errors)

I MCMC allows to make inference on difficult questions, e.g.
ranking estimation of random effects

I Easy to extend to more complicated models (e.g. non-linear
repeated measurements, etc.)



Lecture:

Longitudinal Data Analysis



Introduction

I There is a great interest in the analysis of hierarchical data
resulting form longitudinal studies

I In these problems each experimental unit is measured several
times, e.g. patients participating in a clinical study are
measured in different periods of the trial.

I The common feature of this type of data is that measurements
within units can not be considered statistically independent.

I Therefore, a special modeling technique should be considered.
For example, mixed effects modeling



Running Example: HIV children trial

I The data correspond to repeated measurements of HIV
positive children during a period of two years.

I The outcome variable is a measurement of the immune
system (CD4 percentage of cells).

I There are two treatment groups: The control group
corresponds to children without zinc supplement dietary and
the treatment group corresponds to children with zinc
supplement.

I It is expected that a diet with zinc supplement will improve
the response of the immune system.



I Data organized in hierarchical way, with y =
√
CD4%, time =

years, tr = treatment and person = id:

y time tr person

1 4.243 0.000 control 1

2 6.083 0.558 control 1

3 3.606 0.788 control 1

4 3.606 1.421 control 1

5 3.464 1.938 control 1

6 1.000 0.000 zinc 2

7 0.548 0.213 zinc 2

8 5.477 0.000 control 3

...

I The data are very noisy and it is difficult to observe
differences between groups.
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Identical parameters model: pool data model

I A model with identical parameters corresponds to a linear
model with common intercept parameter α and different
slopes per treatment group, β1 (control group) and β2 (zinc
complement group):

yi ,j = α + βj timei + εi ,j

with
εi ,j ∼ N(0, σ2ε )

I Independent non-informative prior distributions:

α, β1, β2 ∼ N(0, 100)

and
σε ∼ Uniform(0, 10)

I The hypothesis of interest is if β1 − β2 < 0



Identical parameters model: WinBUGS

The model in BUGS:

model

{

# Priors ...........................................

alpha ~ dnorm(0, 0.01)

beta[1] ~ dnorm(0, 0.01) # Slope control group

beta[2] ~ dnorm(0, 0.01) # Slope zinc supplement group

prec.y <- pow(sigma.y, -2)

sigma.y ~ dunif(0, 10)

# Data model .......................................

for(i in 1:n)

{

y[i] ~ dnorm(mu[i], prec.y)

mu[i] <- alpha + beta[tr[i]] * time[i]

}

}



Results identical parameters model

Inference for Bugs model at "hiv_pool.bug", fit using WinBUGS,

2 chains, each with 10000 iterations (first 5000 discarded), n.thin = 2

n.sims = 5000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%

alpha 4.9 0.1 4.7 4.8 4.9 4.9 5.0

beta[1] -0.5 0.1 -0.8 -0.6 -0.5 -0.4 -0.3

beta[2] 0.0 0.1 -0.2 -0.1 0.0 0.1 0.3

sigma.y 1.5 0.0 1.4 1.4 1.5 1.5 1.6

DIC info (using the rule, pD = Dbar-Dhat)

pD = 4.0 and DIC = 2530.8

DIC is an estimate of expected predictive error

Posterior for δ = β1 − β2 is:

attach.bugs(m.hiv.pool)

delta.pool <- beta[,1] - beta[,2]

hist(delta.pool, breaks = 50, freq = F, col = "lightblue")



Histogram of delta.pool
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Exchangeable parameters model: Mixed-effects model
I In this model children trajectories are modelled with two

random components: αi a random intercept and βi ,j a
random slope:

yi ,j = αi + βi ,j timei + εi ,j

with

αi ∼ N(µα, σ
2
α) (4)

βi ,1 ∼ N(µβ1 , σ
2
β) (5)

βi ,2 ∼ N(µβ2 , σ
2
β) (6)

εi ,j ∼ N(0, σ2ε ) (7)

I Independent non-informative prior distributions:

µα, µβ1 , µβ2 ∼ N(0, 100)

and
σα, σβ, σε ∼ Uniform(0, 10)



Some comments on the exchangeable parameters model

I In this model each child has his/her own trajectory

I The number of parameters is

2× number of children + hyperparameters

I We can allow αi and βi to be correlated

I We can model random effects with non-normal distributions

I We can model outcome variables as non-normal as well

I We can add non-linear terms to the expected response, etc.



Exchangeable parameters model: WinBUGS

"model

{

# Priors ...........................................

for(j in 1:J){

alpha[j] ~ dnorm(mu.alpha, prec.alpha)

beta[j] ~ dnorm(mu.beta[tr.group[j]], prec.beta)

# alpha[j] ~ dt(mu.alpha, prec.alpha, 4)

# beta[j] ~ dt(mu.beta[tr.group[j]], prec.beta, 4)

}

mu.alpha ~ dnorm(0, 0.01)

prec.alpha <- pow(sigma.alpha, -2)

sigma.alpha ~ dunif(0, 10)

mu.beta[1] ~ dnorm(0, 0.01) # Slope control group

mu.beta[2] ~ dnorm(0, 0.01) # Slope zinc supplement group

prec.beta <- pow(sigma.beta, -2)

sigma.beta ~ dunif(0, 10)

prec.y <- pow(sigma.y, -2)

sigma.y ~ dunif(0, 10)



Exchangeable parameters model: WinBUGS

# Data model .......................................

for(i in 1:n)

{

# Observations at child level

y[i] ~ dnorm(mu[i], prec.y)

# y[i] ~ dt(mu[i], prec.y, 4)

# Random intercept and slope ...

# mu[i] <- alpha[person[i]] + beta[person[i]] * time[i]

mu[i] <- alpha[person[i]] + beta[person[i]] * time[i]

# + gamma[tr[i]]*pow(time[i], 2) # quadratic term...

}

}



Results for the exchangeable parameters model

Results for the model based on Normals for random-effects

mean sd 2.5% 25% 50% 75% 97.5%

mu.alpha 4.9 0.1 4.7 4.8 4.9 5.0 5.1

sigma.alpha 1.3 0.1 1.1 1.2 1.3 1.3 1.4

mu.beta[1] -0.6 0.1 -0.8 -0.7 -0.6 -0.5 -0.3

mu.beta[2] -0.4 0.1 -0.7 -0.5 -0.4 -0.4 -0.2

sigma.beta 0.6 0.1 0.4 0.5 0.6 0.6 0.8

gamma[2] 0.3 0.1 0.1 0.2 0.3 0.3 0.5

sigma.y 0.7 0.0 0.7 0.7 0.7 0.7 0.8



Comparison between models
Note the differences between DIC

# Identical parameters

pD = 4.0 and DIC = 2530.8

# Exchangeable parameters Normal

pD = 196.8 and DIC = 1683.3

# Exchangeable parameters t-distribution 4 df.

pD = 232.4 and DIC = 1440.0

Variability explained by random components:

# Variability explained

tot.var <- sigma.y^2 + sigma.alpha^2 + sigma.beta^2

mean(sigma.y^2/tot.var) * 100

13.21

mean(sigma.alpha^2/tot.var) * 100

70.69

mean(sigma.beta^2/tot.var)* 100

16.08



Comparison between models

Histogram of delta.pool

delta.pool

De
ns

ity

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Identical par

Exchang. Normal

Exchang. t



Posterior for the quadratic term

Posterior for The Quadractic Term: 
 Zinc Commplement Group
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The difference between the groups is explained by γ > 0 i.e. in the zinc

supplement group the children recover after one year!



Posteriors for random intercepts

Posteriors: Intercepts
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Posteriors for random slopes

Posteriors: Slopes
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Summary of the course

I A new interpretation of probability as a subjective mental
construct

I Subjective probability does not mean a bias analysis

I Relationship with classical statistics and the implied priors

I Uses of predictions for model checking and missing data
implutations

I Thinking different about regression models

I Different modeling tools: WinBUGS, DAGs, DIC ...

I Introduction to hierarchical modeling and longitudinal data
analysis



Finally

...Is the probability that the German team wins against Argentina
100% ?

Nice to see that most people attended and survived the course!!

Hope that everybody will be now enthusiastic Bayesians ;-)



Take home message...



MUCHAS GRACIAS !!!
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