Quantum-mechanical comparative study of ground states in Fe₃AI

Tomáš Komárek^{1,2*}, Monika Všianská^{1,3}, Martin Friák^{3,1}, Mojmír Šob^{1,3,2}

¹ Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic

² Faculty of Science, Department of Chemistry, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic

³ Institute of Physics of Materials, ASCR, v.v.i., Žižkova 22, 616 62 Brno, Czech Republic

*255559@mail.muni.cz

Keywords: ab initio, DFT, Fe₃Al, ground state

There is a long-lasting problem with quantum-mechanical calculations and their incorrect prediction of the ground-state structure of Fe₃Al. Many exchange-correlation functionals lead to the preference of the L1₂ structure instead of experimentally found D0₃ phase. Using the VASP code we calculated energy-volume curves for five exchange-correlation functionals combined with six different projector-augmented-wave potentials. The exchange-correlation functionals employed are Perdew-Wang 91 (PW91), Perdew-Burke-Ernzerhof (PBE), revised Perdew-Burke-Ernzerhof (rPBE), Armiento-Mattson (AM05), and Perdew-Burke-Ernzerhof revised for solids (PBEsol). The projector-augmented-wave potentials for Fe and Al are GGA (Fe), GGA with p semi-core states treated as valence states (Fepv), PBE potentials (PBE), PBE with p semi-core states treated as valence states (PBEpv), potentials used for GW calculations (GW) and GW with s and p semicore states treated as valence states (GWsv). We used the energy preference of the D0₃ structure as the most important criterion: the energy difference $E(D0_3) - E(L1_2)$ was calculated and combinations that prefer L1₂ structure were not considered. Lattice parameter was the second criterion: combinations exhibiting a difference from the experimental value larger than 2% difference were rejected. Finally, we analyzed also the differences between the calculated and bulk modulus. Considering the experimental above mentioned criteria, we select the Perdew-Wang 91 exchange-correlation functional using Vosko-Wilk-Nusair interpolation for description of the ground state of Fe₃Al. Here the energy difference $E(D0_3) - E(L1_2)$ varies from -4.45 to -7.10 meV/atom, the difference between the calculated and experimental lattice constant lies between -0.85 and -1.01% and the calculated bulk modulus differs from the experimental one by values within the range from 22.7 to 23.6%.

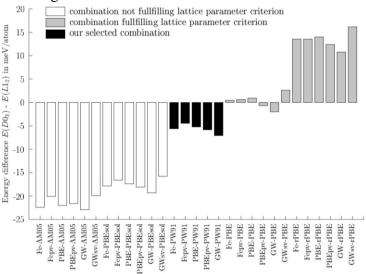


Figure 1 Energy difference of $E(D0_3)-E(L1_2)$ for different combinations of exchange-correlation functionals and projector-augmented-wave potentials in Fe₃Al calculation.