Acidity of Frozen Solutions and Its Connection to Degradation of Enzymes during Freezing

Ľubica Krausková¹, Dominik Heger^{1,2}

¹ Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic

² Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A29, 625 00 Brno, Czech Republic

Abstract

Constant pH is often essential for stability of many biomolecules. In solution buffers are used to maintain pH value constant. However, when an aqueous solution of a salt freezes, pH of unfrozen portion of the solution can change dramatically whether towards acidic or towards alkaline values, even if a buffer is used. During freezing the solution becomes more concentrated because compounds dissolved in the solution are expelled from a lattice of newly growing ice. This freeze-concentration often results in excessive crystallization of less soluble component of the buffer and more pronounced acidity changes than in a buffer-free solution. Such sequential buffer crystallization was shown e.g. for sodium phosphate and succinate buffer systems.^{1, 2} Freezing-induced acidity change was observed also in solutions of salts due to different incorporation of anions and cations into the ice lattice and consequent neutralization of a arose charge imbalance by the diffusion of the H⁺ or OH⁻ from liquid into the ice.^{3, 4} In this study the effect of freezing-induced pH change on denaturation of model enzyme DbjA was examined. Freezing-induced pH change was monitored for various experimental conditions and correlated to loss of enzymatic activity during freezing and thawing.

References

1. Murase, N.; Franks, F., Salt Precipitation During the Freeze-Concentration of Phosphate Buffer Solutions. *Biophysical Chemistry* **1989**, 34, (3), 293-300.

2. Sundaramurthi, P.; Shalaev, E.; Suryanarayanan, R., Calorimetric and Diffractometric Evidence for the Sequential Crystallization of Buffer Components and the Consequential Ph Swing in Frozen Solutions. *Journal of Physical Chemistry B* **2010**, 114, (14), 4915-4923.

3. Workman, E. J.; Reynolds, S. E., Electrical Phenomena Occurring During the Freezing of Dilute Aqueous Solutions and Their Possible Relationship to Thunderstorm Electricity. *Physical Review* **1950**, 78, (3), 254.

4. Bronshteyn, V. L.; Chernov, A. A., Freezing Potentials Arising on Solidification of Dilute Aqueous-Solutions of Electrolytes. *Journal of Crystal Growth* **1991**, 112, (1), 129-145.