Chemical transport and fate in the environment

Simply Complicated

Silent Spring – Rachel Carson 1962

Late lessons from early warnings: the precautionary principle

LATE LESSONS FROM EARLY WARNINGS

EEA.Report No 1/2013

Late lessons from early warnings: science, precaution, innovation

Summary

Late lessons from early warnings; the procautionary principle 1896-2000

European Environment Agency

Aim

Go from the globe to you and beyond

- * What
- * Where
- * How
- * When
- * Why

A chemical

Example of issues

FLINT WATER PLANT

Heath Effects

Häggström, Mikael. "Medical gallery of Mikael Häggström 2014".

Disasters

DISASTERS AND MAJOR ACCIDENTS, Pier Alberto Bertazzi

Chemical Disasters

Major Fire	Conseque	ences	Place and date
Chemical involved	Death	Injuries	
Methane	136	77	Cleveland, Ohio, United States, 1944
Liquefied petroleum gas	18	90	Ferzyn, France, 1966
Liquefied natural gas	40	-	Staten Island, New York, United States, 1973
Methane	52	-	Santa Cruz, Mexico, 1978
Liquefied petroleum gas	650	2,500	Mexico City, Mexico, 1985

Explosion	Conseque	nces	Place and date	
Chemical involved	Death	Injuries		
Dimethyl ether	245	3,800	Ludwigshafen, Federal Republic of Germany, 1948	
Kerosene	32	16	Bitburg, Federal Republic of Germany, 1948	
Isobutane	7	13	Lake Charles, Louisiana, United States, 1967	
Oil slops	2	85	Pernis, Netherlands, 1968	
Propylene	-	230	East Saint Louis, Illinois, United States, 1972	
Propane	7	152	Decatur, Illinois, United States, 1974	
Cyclohexane	28	89	Flixborough, United Kingdom, 1974	
Propylene	14	107	Beek, Netherlands, 1975	

Toxic Release	Conseque	ences	Place and date
Chemical involved	Death	Injuries	
Phosgene	10	-	Poza Rica, Mexico, 1950
Chlorine	7	-	Wilsum, Federal Republic of Germany, 1952
Dioxin/TCDD	-	193	Seveso, Italy, 1976
Ammonia	30	25	Cartagena, Colombia, 1977
Sulphur dioxide	-	100	Baltimore, Maryland, United States, 1978
Hydrogen sulphide	8	29	Chicago, Illinois, United States, 1978
Methyl isocyanate	2,500	200,000	Bhopal, India, 1984

DISASTERS AND MAJOR ACCIDENTS, Pier Alberto Bertazzi

What makes a POP

- * Bioaccumulation
- * Long range transport
- * Toxicity

Transport and Fate

- Diffusion
- Dispersion and mixing
- Rivers and Streams
- * Lakes and Reservoirs
- * Wetlands
- * Estuaries
- Local Air Pollution
- * Regional and Continental Contamination
- * Global Atmospheric Contamination

What is the Environment?

- Natural environment is all living and nonliving things
- The physical and biological parameters with chemical interactions that affect and organism or group of organisms
- The physical system that interacts with exchange of mass, energy or other properties

What may we need to know

BIOSPHERE	LITHOSPHERE	HYDROSPHERE	Atmosphere	ANTHROPOSPHERE Transportation data
Species abundance	Soil parameters	Groundwater contamination	Pollutant concentrations	
Physiological condition Pathology	Bedrock geology	Surface flow	Wind speed and direction	Land use Economic output
Elemental content	Composition		Emissions	
Microbial data	Soil chemistry	Sediment data	Isotope fractions	Discharge data

Source Pathways

Source

Individual

Point sources

Industrial

Diffuse Sources

Mexico City

Regional Sources

Global

hlorine Monoxide and the Ozone Hole: 1996 measured by UARS MLS

30 Aug 96

10 15 20 25

10¹⁸molecules/m²

5

0,3

140 180 220 260 300 340

DU above 100 hPa

Lakes and Rivers

E waste production

Environmental impacts

- Studies conducted in China discovered heavy contamination in e-waste recycling regions
 - Soil, air, water, and sediments all contained high levels of contamination
 - Trace metals (Lead, Zinc, Nickel, Copper, Mercury, and Cadmium)
 - Polychlorinated Biphenyls
 - Polycyclic Aromatic Hydrocarbons
 - Dioxins

Environmental prediction

- Physical and chemical properties
- * Routes of transfer
 - * To the environment
 - * Through the environment
- * Distribution

Predicting is Complex

$$\ln \left(\frac{P_{1}}{P_{2}}\right) = \left(\frac{\Delta H_{vap}}{R}\right) \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

$$PV = nRT \qquad R = \frac{PV}{nT} \qquad 8.3144598(48) \text{ J mol}^{-1} \text{ K}^{-1}$$

$$p[n\Delta x, (m+1)\Delta t] = 1/2 \text{ p}(n\Delta x, m\Delta t) + 1/4 \text{ p}[(n-1)\Delta x, m\Delta t] + 1/4 \text{ p}[(n+1)\Delta x, m\Delta t]$$

$$PV = NRT = mRspecificT$$

$$R = \frac{Work}{Amount \ x \ Temperature}$$

$$R = \frac{Force}{(length)^{2}} x \ (length)^{2}}{Amount \ x \ Temperature}$$

$$H = \left(\frac{Cg}{RT}\right)/Cw$$

Chemical Factors

- molecular mass
- vapour pressure (P_L)
- aqueous solubility (S_L)
- Henry's Law constant (H)
- Partitioning Co-efficient
 - octanol/water (Log K_{ow})
 - octanol/air (Log K_{OA})
 - air/water (Log K_{AW})
 - humic acid/water (Log K_{HA/W})
 - particle-gas (K_p)

Wania and Dugani., 2003; Wania and Makay, 1995; Macdonald et al., 2005

Units of Concentration

Mass per volume

Air –m³

Water – L⁻¹

Soil –g⁻¹

Other Terms

PPM, PPT, PPB

Mole (6.02 x 10^{23} atoms)

Wet weight/Dry weight

Normalized

- Concentration –unit per volume
- * Flux Quantity that passes though in a fixed period

What is the Matrix

Transport Routes

* Atmospheric Transport

* Water Transport

* Biovectors

Mass Balance

Mass Balance

What goes in goes where

So for an Lake system

It's a bit more complicated

The Drunkards Walk

- There is randomness to movement
- For every step there is a series of choices

Random Walk Model

- m are intervals
- t is time
- n probability it stays there and remains

Einstein, A., Investigations on the Theory of Brownian Movement, Dover Publications, 1956, 122 pages

Diffusion

Simple Example

25%

 $p[n\Delta x, (m + 1)\Delta t] = 1/2 p(n\Delta x, m\Delta t) + 1/4 p[(n - 1)\Delta x, m\Delta t] + 1/4 p[(n + 1)\Delta x, m\Delta t]$

Box of Kittens

n =	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5
m=0						1.000					
m=1					0.250	0.500	0.250				
m=2				0.063	0.250	0.375	0.250	0.063			
m=3			0.016	0.094	0.234	0.313	0.234	0.094	0.016		
m=4		0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004	
m=5	0.0010	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.0010
m=6	0.0029	0.016	0.054	0.121	0.193	0.226	0.193	0.121	0.054	0.016	0.0029

Environmental Air Transport

Atmospheric Transport

POP Migration processes

Air Contamination is not new

Published in: Maja-Lena Brännvall; Richard Bindler; Ingemar Renberg; Published in: Ove Emteryd; Published in: Jerzy Bartnicki; Published in: Kjell Billström; Environ. Sci. Technol. **1999**, 33, 4391-4395. DOI: 10.1021/es990279n Copyright © 1999 American Chemical Society

National Air Quality Standards

Pollutant	Exposure duration	Standard	Cause for concern				
CO Carbon Monoxide	1 hour 8 hours	35 ppm 9 ppm	Headaches, asphyxiation Decreased exercise tolerance angina pectoris				
NO ₂ Nitrogen Dioxide	1 year	0,53 ppm	Aggravation of respiratory disease				
SO₂ Sulphur Dioxide	3 hours 1 day 1 year	0,50 ppm 0,14 ppm 0,03 ppm	Shortness of breath wheezing odor acid precipitation damage to vegetables				
O ₃ Ozone	1 hour 8 hours	0,12 ppm 0.08 ppm	Eye irritation interference with breathing damage to materials and plants				
Pb Lead	3 months	1.5 ug/m³	Blood poisoning infant development				
PM2.5	24 hours 1 year	60 ug/m³ 15 ug/m³	Lung disease				
PM10	24 hours 1 year	150 ug/m³ 50 ug/m³	Visibility respiratory disease				

The six chemicals designated as criteria pollutants by the US Environmental Protection Agency and the corresponding National Ambient Air Quality Standards.

Water Transport

- * Liquid water
- * Salinity
- *pH
- * Conductivity
- * Temperature
- * Snow
- * Ice

Surface Circulation

The Great Rubber Duck Escape

Macro Contaminants

Ocean Water PFCs

Ahrens Et al

Groundwater

- Metals –natural
- * Agriculture
- * Commerce
- * Industry
- * Residence
- * Waste Management

Contamination of Groundwater

Discharge or Injection

Arsenic groundwater

Biovectors

- Any organism that travels can transport chemicals
 - * Salmon
 - * Reindeer
 - * Whales

Amplification

Evenset et al., 2007, Choy et al., 2010 Blais et al., 2005; 2007

New Burdens

- * LRT can transport many chemicals
- But biovectors can go against the flow.

(Blais et al., 2007; Christensen et al., 2005).

Credit River

- Annually 20'000
 Chinook salmon
 (Oncorhynchus
 tshawytscha) spawn and
 die in the Credit River,
- Passive water monitoring devices (SPMDs, (semipermeable membranes devices)
- * ~75g of ∑PCBs and 25g of DDT to the river over a few weeks

(O'Toole et al 2005).

Transport Halo

* DEW sites (distance early warning)

PCB Halo

~119 kg of PCB waste dumped

* 42 sites

Breivik et al., 2004

PFCs and Airports

- * Breakdown
 - * Photolysis
 - Metabolites
 - Degradation
- * Storage in soil and sediment
- * Deep ocean water
- * Storage in ice/snow
- Biological uptake

Deep ocean water

Thermohaline Circulation

Sedimentation

Carbon

- * Symbol C
- * Atomic mass 12.0107
- * Atomic number 6
- * CAS 7440-44-0
- Naturally found as
 - * anthracite (coal)
 - * Graphite
 - * Diamond
- * Discovery date.... Considered prehistoric

Black carbon

- * Strongest light absorber of atmospheric particulates
- Fine particles (PM_{2.5})
- * Absorbs 1 million times more solar energy that CO2
- Major soot component
- * Transport vector for many compounds including PAHs
- In soil and sediment may be primary sink of organic contaminants and heavy metals

By air or by sea

Perfluorinated compounds

PFC humans	country	PFOS	PFHxS	PFOA	PFOSA
		(ng/mL)			
	USA	43.2	4	19.1	4.14
	Colombia	8.28	0.2	6.16	1.57
	Brazil	11.7	3.77	<20	1
	Italy	4.32	1.64	<3	1.78
	Poland	42.1	1.3	21.3	2.06
	Belgium	15.7	1.04	4.82	<3
	India	1.85	1.6	2.64	<3
	Sri Lanca	5.03	0.57	6.38	N.A
	Malaysia	12.7	1.98	<10	4.57
	Korea	21.1	3.95	61.8	1.3
	Japan	24.6	5.92	6.4	7.92
	China	52.7	1.88	1.59	1.82

Yeung et al 2006

- So in the Arctic are they transported from the air to the water
- * Or is the water the transport

How would we test this? Is it important to know?

Dryer et al 2010 Shoeib and Harner 2006

Ocean Water PFCs

Ahrens Et al

Devon Ice Cap

The Sea may still be a source

Importance

- * By knowing the source we can predict the behavior
- * We can also limit the emissions if possible
- * Can monitor one matrix to predict others
- * Identify routes of exposure

The Arctic

Why look in the Arctic

- * Northern Diets
- * Persistence
- * Snow and Ice
- * Volume
- Bioaccumulation
- * 0.0008% PCB
- * 21% of γ-HCH
- * 12% of DDT

Sources

CON TAMINANTS SOURCE AREAS

Canada

Source: Dewailly E, Ryan JJ, et al. Exposure of remote maritime populations to coplanar PCBs. Environ Health Perspectives 102 (Suppl 1):205-209

Snow/Rain Partitioning

- Different chemicals disperse into different phases
- Rain and Snow generate different partitioning
- How chemicals will fall out will change with seasonality

Lei and Wania 2004

Oceanic Exchange

Concentration in the air

• H (PCB-18) as 21.33 Pa m³ mol⁻¹, at 298 K (or 25°C)

Air water partition at equator

$$K_{aw} = \frac{H}{RT}$$

$K_{aw} = 21.33 / (8.314 \times 298) = 8.6 \times 10^{-3} \text{ or ln } K_{aw} - 4.8$

Concentration in water at equator

 $C_w = C_a / K_{aw}$

$\ln K_{aw}(T_2) = \ln K_{aw}(T_1) - \frac{\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

* ΔH for PCB18

Concentration

Polar bear

1984-2006 annual increases in PFCs

- * PFOS 4.7%
- * PFNA 6.1%
- * PFDA 4.3%
- * PFOA 2.3%
- PFCs exceed all other
 Organohalogen contaminants in Bears
- Based on rat and monkey tests by 2014-2024 will exceed NOAEL and LOAEL estimates

Conclusions

* Three major routes of contamination

- * Atmospheric
- * Water
- * Biovectors
- * Persistence
- * Toxicity
- * Many factors affect the transport