C2003 – ENVIRONMENTAL CHEMISTRY

Course goals:

After this course, students should be able to:

understand problems related to pollution of the environment from natural and anthropogenic sources

Week 1 (13-Mar):

Understanding pollutants

- what is pollution? What are some examples of important pollutants? Why are we concerned?

Week 2 (20-Mar):

Understand the environment (and how this relates to the pollutants)

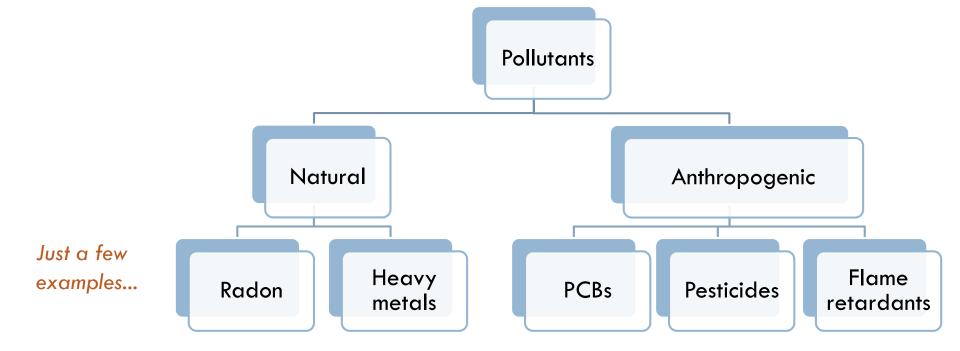
 What are important properties of air, soil, water? How do these affect how pollutants are distributed?

Week 3 (27-Mar): No lecture – work on class project

Week 4 (03-Apr):

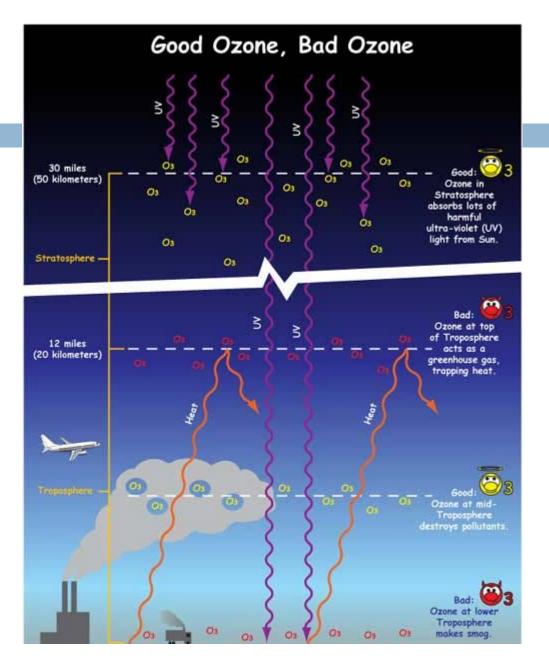
Understanding sampling

- How do we measure pollution in the environment? What tools do we use? How do we pick where and what to sample?


Week 5 (10-Apr):

Understanding the ways that we use environmental data

- Risk assessment and environmental policy


What is pollution?

- Presence of a substance in an environmental system having a harmful effect
- □ The substance = pollutant or contaminant

Pollution depends on context...

- Many have both natural and anthropogenic sources (e.g., PAHs, metals...)
- Only a pollutant when unwanted adverse effect:
 - E.g., ozone, pesticides...

Environmental chemistry

Environmental chemistry is the study of chemical processes occurring in the environment which are impacted by human activities.

 Can be local scale, e.g., urban air pollutants or toxic substances from a chemical waste site

-or-

 Can be global scale, e.g., long-range pollution transport, global warming

Why is chemistry important to understand pollution?

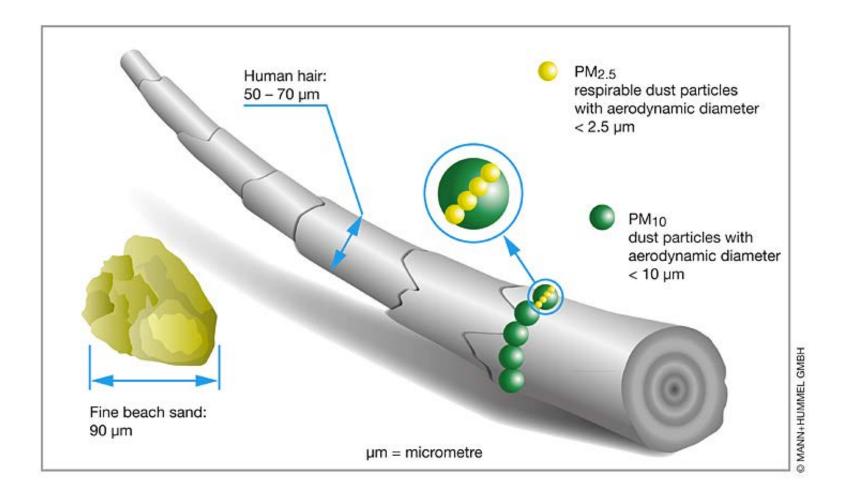
A chemical's *structure* dictates that compound's "personality,"

- provides a systematic basis to understand and predict chemical behavior in the environment
- With an understanding of the properties and behaviour of chemicals, we can better understand what the impact of humans is on the global environment

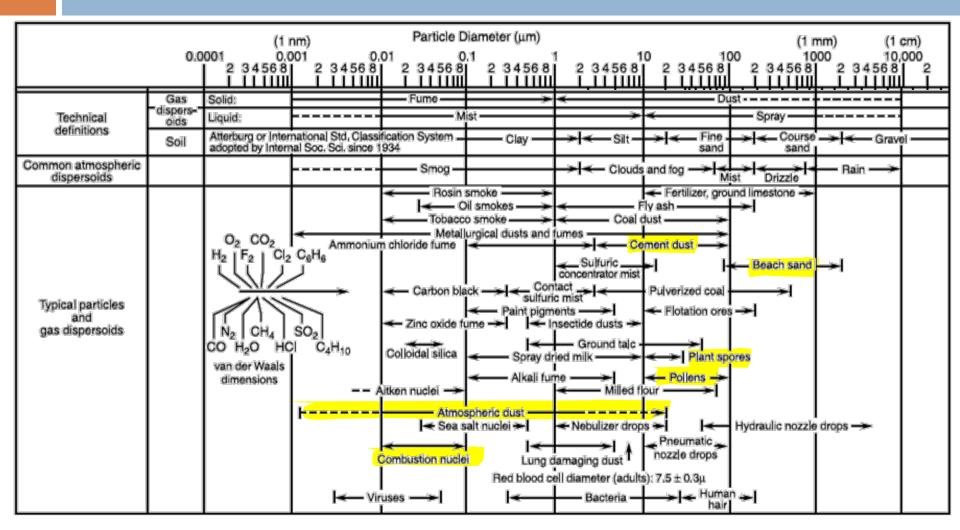
Types of pollutants

Many classes and methods for classification exist – we will consider a few of the major types of pollutants:

- Airborne particulate matter
- Persistent organic pollutants
- Polycyclic aromatic hydrocarbons
- Heavy metals
- etc.

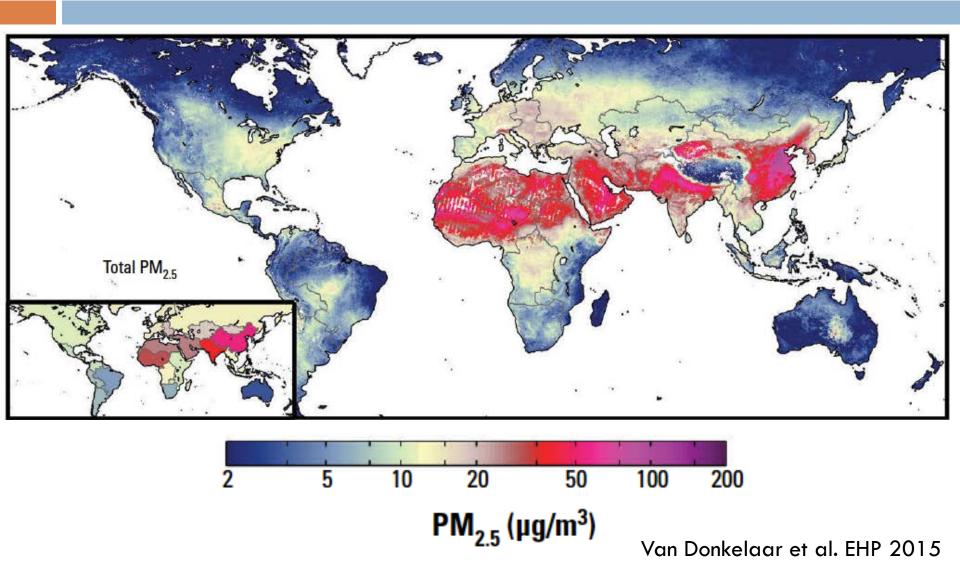

Air pollutants

- □ Airborne particulate matter, volatile organic compounds (VOCs) → primarily air pollutants
- □ 5 major air pollutants:
 - Particulate matter
 - Ozone
 - Nitrogen dioxide
 - Sulphur dioxide
 - VOCs

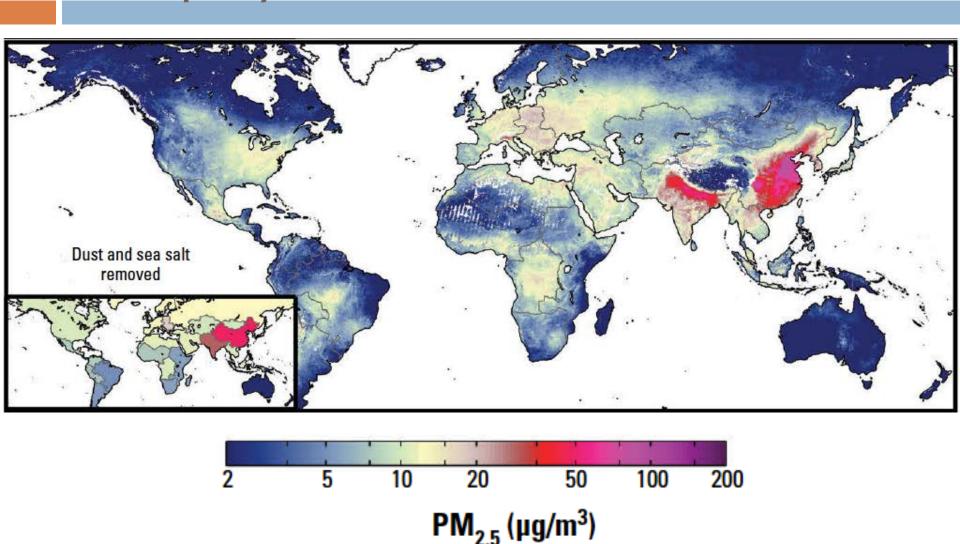

Particulate matter (PM)

- Solid and liquid particles suspended in air
- Naturally occurring and anthropogenic
- Natural sources:
 - Salt particles from sea spray, pollen, moulds, bacteria, debris from plants and animals, soil particles entrained by wind, etc.
- Anthropogenic sources:
 - Industrial processes, open burning, vehicles, agriculture, mining, etc.
- PM is not a specific chemical, but a mixture of particles with different origin, composition, size, shape, etc.
- Important itself (e.g., has negative health effects) and as a carrier for other atmospheric pollutants

Particulate matter

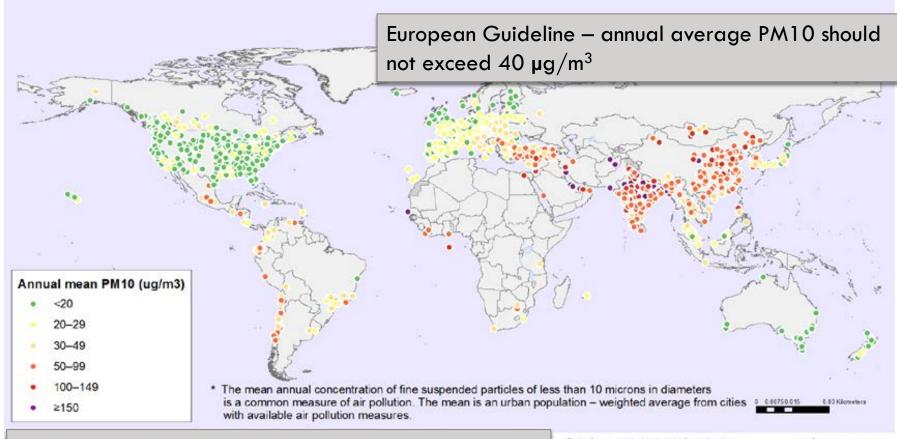


PM sizes and examples



From Finlayson-Pitts and Pitts, 2000, Chemistry of the Upper and Lower Atmosphere

Particulate matter



Particulate matter – excluding dust and sea spray

Particulate matter - exposure

Exposure to particulate matter with an aerodynamic diameter of 10 µm or less (PM10) in 1600 urban areas*, 2008–2013

European Environment Agency: "Particulate matter is the air pollutant that poses the greatest health risk to people in Europe." Data Source: World Health Organization Map Production: Health Statistics and Information Systems (HSI) World Health Organization

© WHO 2014. All rights reserved

Types of pollutants

- Many classes and methods for classification exist we will consider a few of the major types of pollutants:
 - Airborne particulate matter
 - Persistent organic pollutants
 - Polycyclic aromatic hydrocarbons
 - etc.

What are semivolatile organic compounds (SVOCs)?

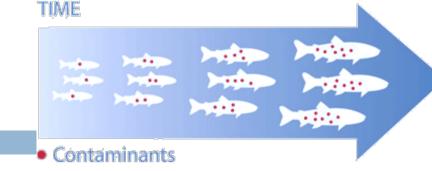
- Generally determined by vapour pressure
 - \blacksquare typically between ~ 1 and 10^{-10} Pa
- Not a firm grouping though

Why are they important?

- Can distribute in multiple media (gas-phase air, particle-phase air, soil, water, plants, lipids, floor dust, window films...)
- Many are persistent, lipophilic, bioaccumulative
- Many chemicals of concern are in this group.

Examples of SVOCs

- Pesticides
- Industrial chemicals
- By-products
- Additives in consumer products


POPs / PBT

- Many SVOCs are classified as "persistent organic pollutants" (POPs) or "persistent, bioaccumulative and toxic" (PBT)
- □ 3 key terms to understand:
 - Persistence
 - Bioaccumulation
 - Toxicity

Environmental Persistence

- The length of time a chemical remains in environmental system or media
- Governed by the rates at which the compound is removed from the system by biological and chemical processes, such as environmental transport, biodegradation, hydrolysis, atmospheric reactions
- Measured as the half-life of the substance in the medium
- A chemical is considered persistent if it has a half-life of:
 - □ >2 days in air
 - \sim 2-6 months or more in water, sediment or soil

Bioaccumulation

- The accumulation of a chemical in tissues of an organism through any route, including respiration, ingestion, or direct contact with the contaminated environment i.e. Rate of chemical uptake >> rate of chemical loss
- If a chemical is "bioaccumulative" this means that the concentration of the chemical in the tissues of an organism can be significantly higher (e.g., several orders of magnitude) than the concentration of the chemical in the surrounding environment
- Measured by bioaccumulation factor (BAF)
 - BAF > ~1000 means a chemical is considered "bioaccumulative"

Toxicity (1)

- A measure of the amount which a substance can cause harm to an organism
- Related to the dose of a chemical received by an organism
 - Moderately toxic substance can cause harm if an organism receives a higher dose
 - Highly toxic substances can cause harm at low doses

Toxicity (2)

□ It is all about the dose

Even mundane substances

can be toxic

Cadmium oxide

Substance
Water
Sucrose (table sugar)
Monosodium glutamate (MSG)
Vitamin C (ascorbic acid)
Urea
Cyanuric acid
cadmium sulfide
ethanol (Grain alcohol)
sodium isopropyl methylphosphonic acid (IMPA, metabolite of sarin)
Melamine
Melamine cyanurate
Sodium molybdate
Sodium chloride (table salt)
Paracetamol (acetami nophen)
Delta-9- tetrahydrocannabino l (THC)
Metallic Arsenic
Alkyl dimethyl benzalkonium chloride (ADBAC)
Coumarin (benzopyr one, from Cinnamomum aromaticum and other plants)
Aspirin (acetylsalicyl ic acid)
Caffeine
Arsenic trisulfide
Sodium nitrite
uranyl acetate dihydrate
Bisoprolol
Cobalt(II) chloride
0.1.

	1 circuborane	muman, orar
	Capsaicin	mouse, oral
	Mercury(II) chloride	rat, dermal
	Lysergic acid diethylamide (LSD)	rat, intravenous
	Arsenic trioxide	rat, oral
	Metallic Arsenic	rat, intraperitoneal
	Nicotine	human, oral
	Sodium cyanide	rat, oral
	White phosphorus	rat, oral
	Strychnine	human, oral
	Cantharidin	human, oral
	Aflatoxin B1 (from Aspergillus flavus)	rat, oral
	Venom of the Brazilian wandering spider	rat, subcutaneous
	Venom of the Inland Taipan (Australian snake)	rat, subcutaneous
	Dicin	rat, intraperitoneal
	Ricin	rat, oral
	2,3,7,8- Tetrachlorodibenzod ioxin (TCDD, a dioxin)	rat, oral
	Sarin	mouse, subcutaneous injection
	VX	human, oral, inhalation, absorption through skin/eyes
	Batrachotoxin (from poison dart frog)	human, sub- cutaneous injection
		mice, intravenously
	Abrin	human, inhalation
		human, oral
	Maitotoxin	mouse, intraperitone al
	Polonium-210	human, inhalation
	Botulinum toxin (Botox)	human, oral, injection, inhalation
_	_	

Ionizing radiation

Substance

Sodium fluoride

Pentaborane

 LD_{50} : g/kg

 $\{LC_{50}: g/L\}$

>90

29.7

16.6

11.9

8.471

7.7

7.08

7.06

6.86

6

4.1

3

1.944

1.27

0.763

0.3045

{0.00028}

{0.000059}

0.293

0.2

0.192

0.185 - 6.4

0.18

0.136

0.1

0.08

0.072

Animal, Route

rat. oral

rat, oral

rat, oral

rat. oral

rat, oral

rat. oral

rat, oral

rat, oral

rat, oral

rat, oral

rat, oral

fish, immersion

aq. invertebrates,

imm.

rat, oral

rat, oral

rat, oral

rat, oral

rat, oral

mouse, oral

mouse, oral

rat. oral

rat, oral

rat, dermal	0.041
rat, intravenous	0.0165
rat, oral	0.014
rat, intraperitoneal	0.013
human, oral	0.0065-0.013
rat, oral	0.0064
rat, oral	0.00303
human, oral	0.001
human, oral	0.0005
rat, oral	0.00048
rat, subcutaneous	0.000134
rat, subcutaneous	0.000025
rat, intraperitoneal	0.000022
rat, oral	0.02
rat, oral	0.00002
mouse, subcutaneous injection	0.0000172
human, oral, inhalation,	0.0000023

human, irradiation

Animal, Route

rat, oral

human, oral

 LD_{50} : g/kg

 $\{LC_{50}: g/L\}$

0.052

< 0.05

0.0472

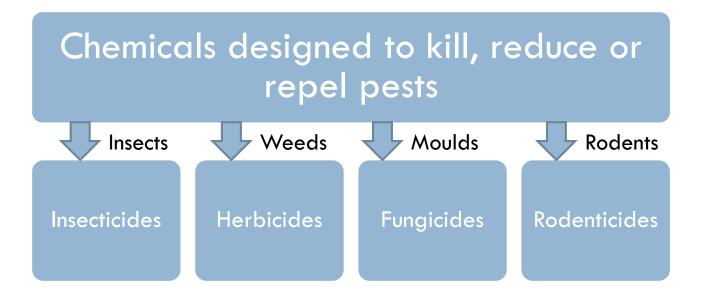
0.000002

0.0000007

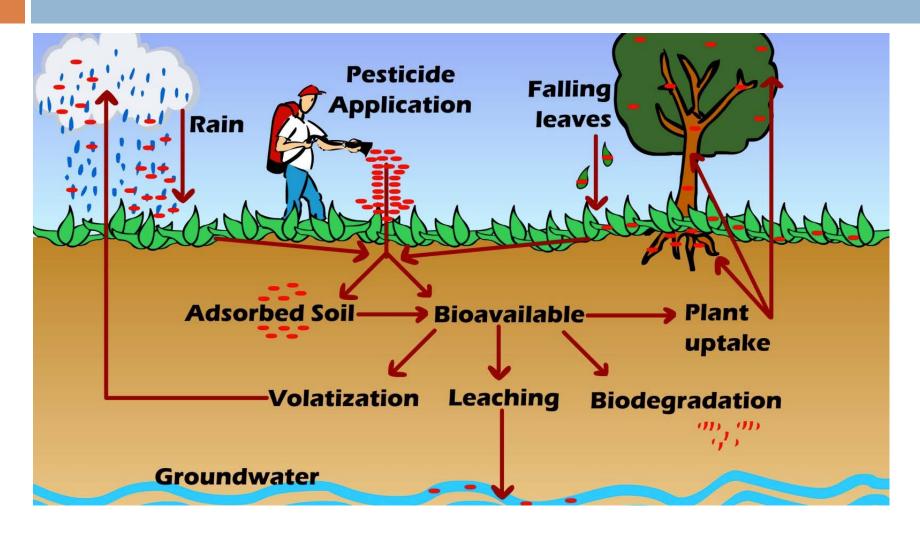
0.0000033

0.00001-0.001

0.00000013


0.0000001

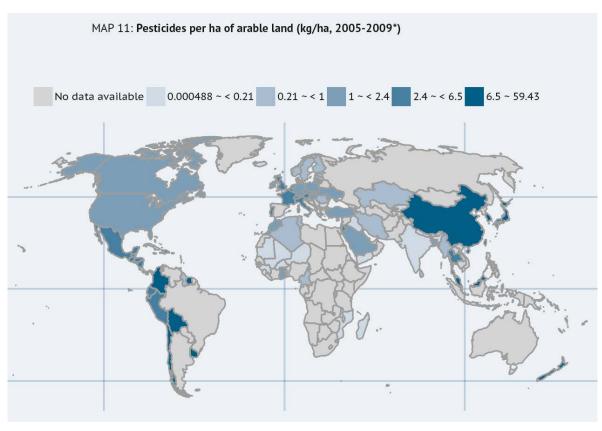
0.000000001


Examples of SVOCs

- □ Pesticides
- Industrial chemicals
- By-products
- Additives in consumer products

Pesticides – intentionally toxic!

How pesticides enter the environment



Langenbach. "Persistence and bioaccumulation of Persistent Organic Pollutants" 2013

Global pesticide use

2.5 million tonnes per year (Alavanja, 2009)

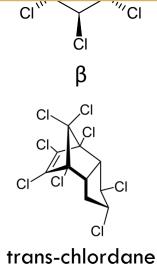
From FAO Statistical Yearbook, UN 2013

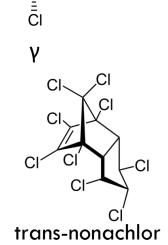
Organochlorine pesticides

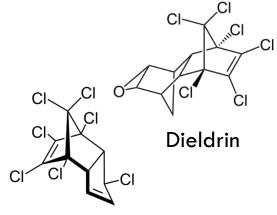
- OCPs = organochlorine pesticides
- What are the OCPs?
 - DDT
 - Hexachlorobenzene (HCB)
 - Pentachlorobenzene (PeCB)
 - Hexachlorocyclohexanes (multiple isomers)
 - Heptachlor/heptachlor epoxide
 - Aldrin/dieldrin/endrin
 - Chlordane (multiple isomers)
 - Endosulfan
 - Mirex
 - ...

CI CI CI CI CI PeCB

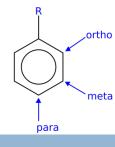
Endosulfan


HCB


Mirex


HCHs CI CI CI CI

Chlorinated molecules – highly stable – therefore environmentally persistent



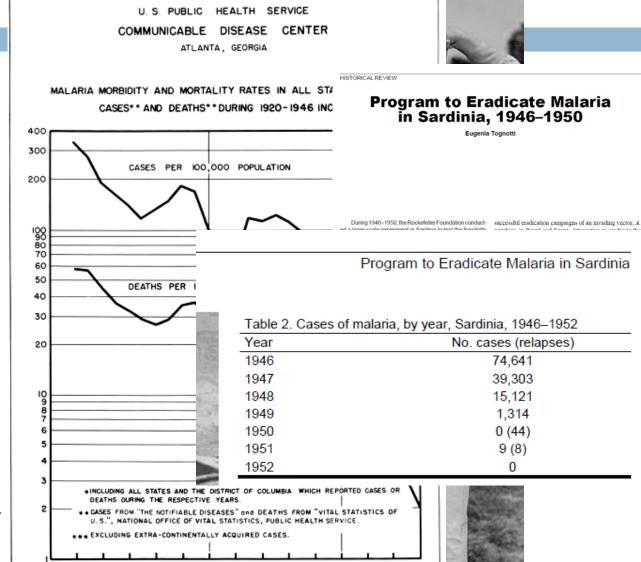
heptachlor

Case study 2: DDT

DDT – dichlorodiphenyl trichloroethane

Degradation products/metabolites are often also considered:

p,p'-DDD


p,p'-DDE

DDT - a brief history

DHEW-PHS-CDC ATLANTA, GA

1872 – DDT was first synthesized by Austrian chemistry student
1939 – insecticidal properties discovered
WW2– global use of DDT against typhus, malaria
1945 – DDT available to public

1940s, 1950s – WHO and country-specific programs targeting elimination of malaria – successful in Europe and North America, and large reduction in cases in India, southeast Asia

AUG., 1947

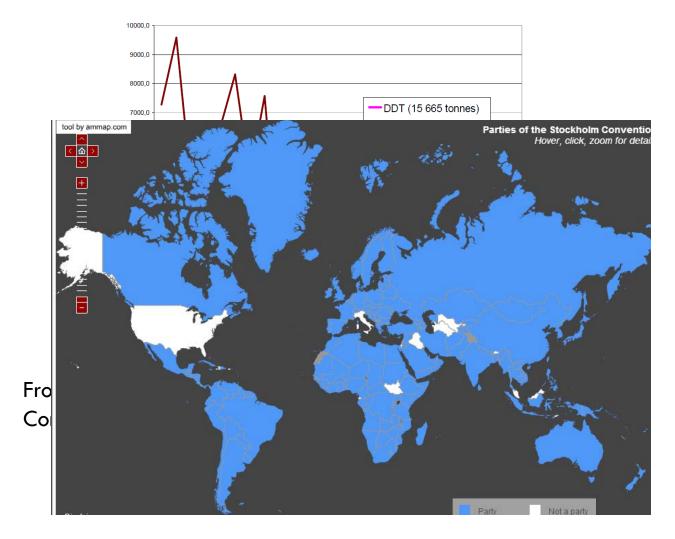
DDT – a brief history

1959 - More than 36 million kg of DDT was sprayed over the US 1961 - DDT use reaches its peak.

1940s, 1950s – Gradual increase in number of scientific studies identifying negative effects of DDT on wildlife

1962 - Rachel Carson's book Silent Spring blamed environmental destruction on DDT.

:ts! 492 1016. A BOOK THAT CHANGED THE WORLD preliminary and served as a basis for subsequent field work on mosquitoes pending more detailed studies by the Fish and Wildlife Service and various neavy rains snortly after application. Another small pond was treated at the rate of 2.0 p.p.m. with a suspension containing 10 per cent each State agencies to determine more fully the relation of various formulations of DDT to wildlife in genof DDT and Nopco 1216 (sulfonated sperm oil) in Cellosolee (ethyl ether of ethylene glycol). This pond was full of water lilies and at the shallow end there.


Another Product of TRIMZ CO., INC., Division of UNITED WALLPAPER.

HIIDREN

DDT – a brief history

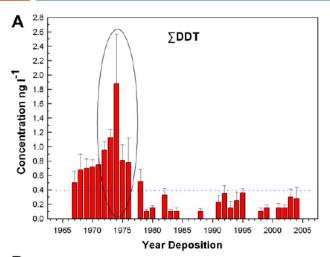
1972 – DDT ban in **USA** and Canada 1974 - DDT ban in Czechoslovakia 1970s, 1980s -ban on DDT in many countries 2001 - Stockholm Convention on POPs DDT is banned with limited exceptions for malaria control Currently

Figure 2: The use of selected POPs pesticides in the former Czechoslovakia (values after the name indicate the production figures during the production period)

Where is DDT still used?

Legally – for malaria control:

- Botswana, Eritrea, Ethiopia, India, Madagascar,
 Marshall Islands, Mauritius, Morocco, Mozambique,
 Namibia, Senegal, South Africa, Swaziland,
 Uganda, Venezuela, Yemen, Zambia
- Illegal use continues in limited locations? Sometimes,
 especially if previously stockpiled.


DDT - What are the concerns?

Persistence, toxicity, long-range transport and bioaccumulation/biomagnification!

What are typical trends in DDTs?

SumDDT compounds in ice core from

Mt. Everest glacier

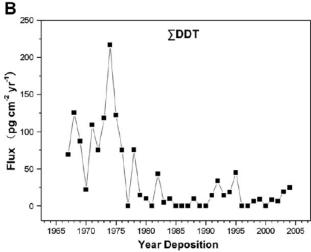
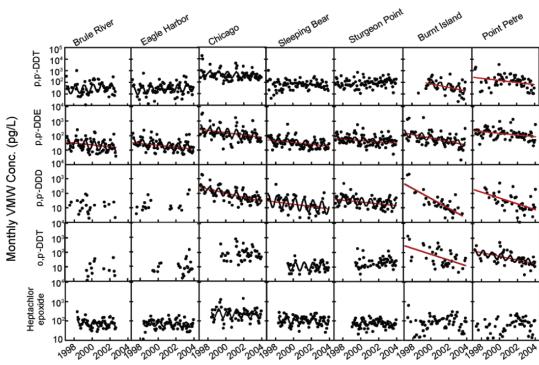
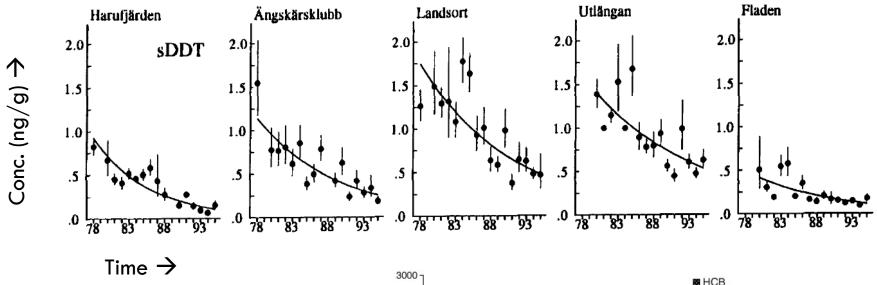


Fig. 4. Concentration (A) and deposition flux (B) of DDT in the ice core from East Rongbuk glacier (Mt.Everest, The Himalayas).

(Wang et al., Atmospheric Environment, 2008)

DDT compounds in precipitation from North America, 1995-2005

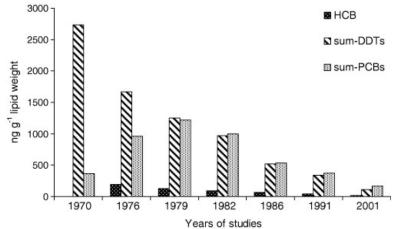



FIGURE 4. Organochlorine pesticide concentrations in precipitation collected at 7 IADN sites near the Great Lakes. The black curve is the fitted line of the sinusoidal model with the period length (a₃) set to one year. The red lines indicate long-term significant decreasing or increasing trends. Detailed information on the fitted parameters is in the Supporting Information.

(Sun et al., Environmental Science and Technology, 2006)

What are typical trends in DDTs?

SumDDT compounds in herring fish from Sweden from 1977-1995


A. Bignert et al./Environmental Pollution 99 (1998) 177-198

A. Polder , C. Thomsen , G. Lindström , K.B. Løken , J.U. Skaare

Levels and temporal trends of chlorinated pesticides, polychlorinated biphenyls and brominated flame retardants in individual human breast milk samples from Northern and Southern Norway

Chemosphere, Volume 73, Issue 1, 2008, 14 - 23

Time trend of levels of HCB, sum-DDTs and sum-PCBs in breast milk

DDT - remaining questions?

SCIENTIFIC AMERICAN™

Subscribe News & Features Topics Blogs Videos & P

Should DDT Be Used to C Malaria?

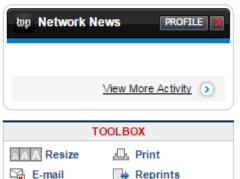
DDT should be used "with caution" in combating malaria, a pan

May 4, 2009 | By Marla Cone and Environmental Health News

A panel of scientists recommended today that the spraying of DDT in malaria-plagued Africa and Asia should be greatly reduced because people are exposed in their homes to high levels that may cause serious health effects.

The scientists from the United States and South Africa said the insecticide, banned decades ago in most of the world, should only be used as a last resort in combating malaria.

If Malaria's the Problem, DDT's Not the Only Answer


By May Berenbaum Sunday, June 5, 2005

In the pantheon of poisons, DDT occupies a special place. It's the only pesticide celebrated with a Nobel Prize: Swiss chemist Paul Mueller won in 1948 for having discovered its insecticidal properties. But it's also the only pesticide condemned in pop song lyrics -- Joni Mitchell's famous "Hey, farmer, farmer put away your DDT now" -- for damaging the environment. Banned in the United States more than 30 years ago, it remains America's best known toxic substance. Like some sort of rap star, it's known just by its initials; it's the Notorious B.I.G. of pesticides.

Now DDT is making headlines again. Many African governments are calling for access to the pesticide, believing that it's their best hope against malaria, a disease that infects more than 300 million people worldwide a year and kills at least 3 million, a large proportion of them children. And this has raised a controversy of Solomonic dimensions, pitting environmentalists against advocates of DDT use.

To spray or not to spray: Many African nations believe DDT is their only hope against malaria, but the powerful pesticide is not a magic bullet, the author argues. Many mosquito species have become resistant to the poison. Above, in 2001, an Ethopian girl afflicted by the disease. (By Peranders Pettersson -- Getty Images)

Replacements for OCPs

- Current pesticide use is 2.5 million tonnes per year (Alavanja, 2009)
- OCPs are generally no longer used:
 - \sim 5000 tonnes DDT (produced in China, India and North Korea)¹ 0.2% of global use
 - Only 6 countries reporting use of other OCPs (Ecuador, Honduras, Iran, Lesotho, Madagascar, Tajikistan, Ukraine) - ~2300 tonnes total in 2011²
- Replacement pesticides should have lower persistence and bioaccumulative potential

Currently used pesticides

- □ Glyphosate ("Round-up")
 - Herbicide
 - In use since 1970s
 - Most widely use chemical pesticide in world
 - \sim 650000 tonnes per year (>30% of world pesticide market)
- Atrazine
 - Herbicide
 - banned in EU but high use in many other countries
 - 70000 tonnes per year
- Chlopyrifos
 - Most widely used insecticide
 - \square 170000 tonnes per year (\sim 7% of world pesticide market)

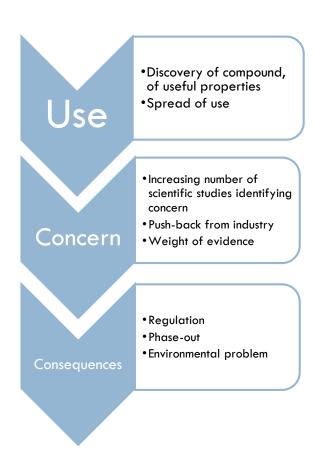
Comparing 2 insecticides: Chlorpyrifos vs. DDT

DDT

- Vapour pressure:0.0003 Pa
- Solubility: 0.025 mg/L
- □ Half-life in soil: 2-15 yrs
- Overall environmental half-life: 1-5 yrs
- Characteristic travel distance: 255 km

Chlorpyrifos

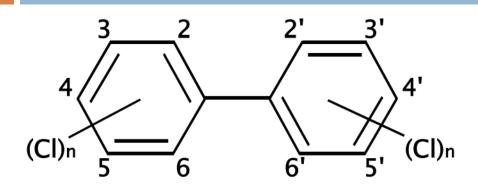
- Vapour pressure:0.001 Pa
- Solubility: 2 mg/L
- □ Half-life in soil: 60-120 days
- Overall environmental half-life: 30 days
- Characteristic travel distance: 62 km


Data from Pesticide Information Profiles, Extoxnet, Cornell University; and Mackay et al. 2014

Any questions about pesticides?

Examples of SVOCs

- Pesticides
- □ Industrial chemicals
- By-products
- Additives in consumer products


Polychlorinated biphenyls - PCBs

- -High chemical and physical stability, even at high temperatures
 - →Desirable property!
- Industrially produced in 10 countries for a range of uses
- Can also occur as a by-product of some industrial processes, esp. cement production and pulp and paper industries
- First detected in environment in Swedish fish in 1966, many more reports followed
- Concerns about environmental persistence and bioaccumulation
- Production and new use banned by many countries in 1970s, 1980s
- Banned under Stockholm Convention

But...PCBs remain in use in old building equipment, electrical equipment, etc.

PCBs — chemical structure

- 209 possible congeners
- 1 to 10 chlorines
- only 130 were used commercially
- Classified based on degree of chlorination

Indicator PCBs – 7 congeners:

2,3',4,4',5-Pentachlorobiphenyl PCB 118

PCBs - health effects

- Acute vs. chronic effects
- Associated with cancer, liver function, skin effects at occupational exposure levels
- Prenatal exposure slows development in children
- Some evidence of link with breast cancer
- Dioxin-like PCBs

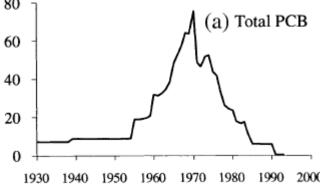
What were PCBs used for?

Transformers and capacitors

- Other electrical equipment including voltage regulators, switches, reclosers, bushings, and electromagnets
- Oil used in motors and hydraulic systems
- Old electrical devices or appliances containing PCB capacitors
- Fluorescent light ballasts
- Cable insulation
- Thermal insulation material including fiberglass, felt, foam, and cork
- Adhesives and tapes
- Oil-based paint

Caulking

- Plastics
- Carbonless copy paper
- Floor finish



PCB production

K. Breivik et al. / The Science of the Total Environment 290 (2002) 181-198

Table 1
Total PCB production in t as reported in the literature

Producer	Country	Start	Stop	Amount	Reference
Monsanto	USA	1930	1977	641 246	de Voogt and Brinkman (1989)
Geneva Ind.	USA	1971	1973	454	de Voogt and Brinkman (1989)
Kanegafuchi	Japan	1954	1972	56 326	Tatsukawa (1976)
Mitsubishi	Japan	1969	1972	2461	Tatsukawa (1976)
Bayer AG	West Germany	1930	1983	159 062	de Voogt and Brinkman (1989)
Prodelec	France	1930	1984	134 654	de Voogt and Brinkman (1989)
S.A. Cros	Spain	1955	1984	29 012	de Voogt and Brinkman (1989)
Monsanto	Ú.K.	1954	1977	66 542	de Voogt and Brinkman (1989)
Caffaro	Italy	1958	1983	31 092	de Voogt and Brinkman (1989)
Chemko	Czechoslovakia	1959	1984	21 482	Schlosserová (1994)
		139	1990	141 800	AMAP (2000)
80 7	1 () =	172	1993	32 000	AMAP (2000)
60	∫ (a) Total P	СВ ₎₆₀	1979	8000	Jiang et al. (1997)
00	/ h)30	1993	1 324 131	
40	1 '				

over 1 million tonnes globally

Why are PCBs still in use?

- Because they are so useful for their purpose!
- Where they were used was not well-documented
- Challenges with removing all PCBs from use current legislation only requires PCBs to be removed at >50 ppm

CN Tower, Toronto, Canada

Transformer is located in viewing area, 342 m high

Too big to be taken down elevator

Had to be cut apart by hand

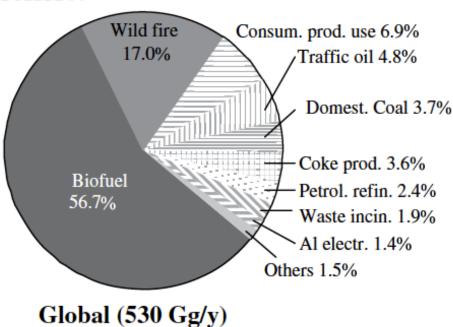
Packed piece-by-piece into steel drums, removed by elevator

Any questions about PCBs?

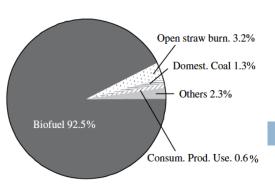
Examples of SVOCs

- Pesticides
- Industrial chemicals
- ■By-products
- Additives in consumer products

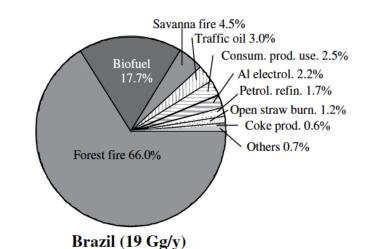
By-products

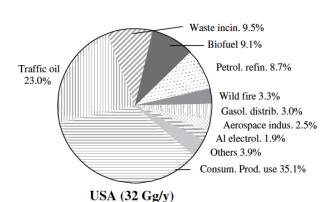

- By-products of industrial processes, combustion
- Unintentionally produced during industrial processes, fossil fuel combustion for heating, transportation, etc.
- Examples:
 - Polycyclic aromatic hydrocarbons
 - Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans

Polycyclic Aromatic Hydrocarbons (PAHs)

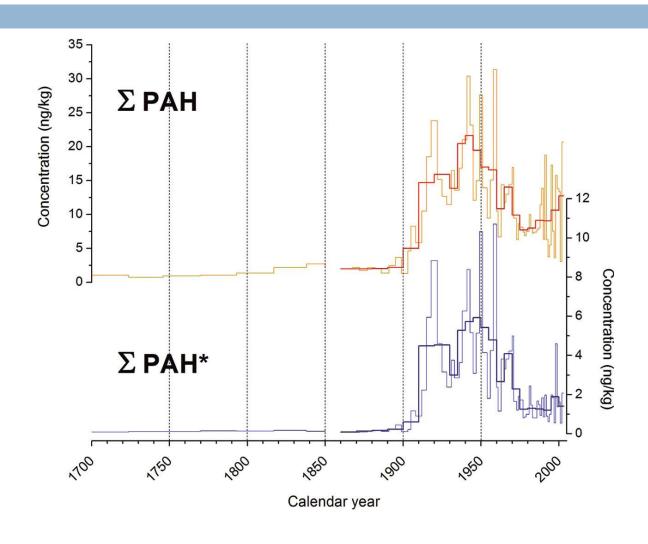

- By-products of combustion or fossil fuel processing
- Composed of two or more aromatic rings
- Many possible structures, but typically 3 to 6 rings

PAH Sources


PAH16:



Zhang and Tao, Atmospheric Env. 2009



India (90 Gg/y)

PAHs over the past 300 years

Any questions about PAHs?

Examples of SVOCs

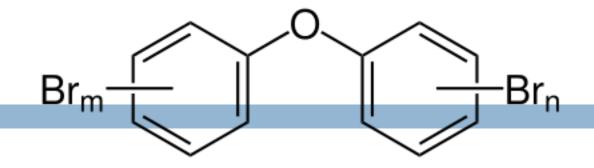
- Pesticides
- Industrial chemicals
- By-products
- Additives in consumer products

Additives to consumer products

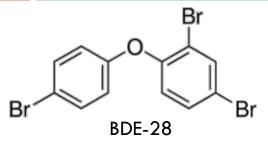
- Flame retardants
- Plasticizers

Flame retardants – organic or inorganic chemicals added to consumer products (furniture, electrical appliances, electronics) to suppress/delay/prevent the spread of fire

Plasticizers – additive chemicals that increase the flexibility, softness, fluidity of a material. Largely used in plastics.


Flame retardants

http://www.jptarpaulins.com/


- To slow the spread of flames
- Organic or inorganic
- Wide range of applications (furniture, electronics, industrial/workplace textiles and protective equipment, vehicles)
- Required by fire safety regulations

PBDEs

- Polybrominated diphenyl ethers
- Flame retardants
- Classified by either technical mixture or congener group
 - Confusing!! E.g., penta-BDE can refer to either the technical mixture called "Penta" or could refer to a PBDE with 5 bromines
 - Commercial mixtures sometimes distinguished as "c-penta"

PBDE naming - congeners

Tribromodiphenyl ether

Tetrabromodiphenyl ether

Pentabromodiphenyl ether

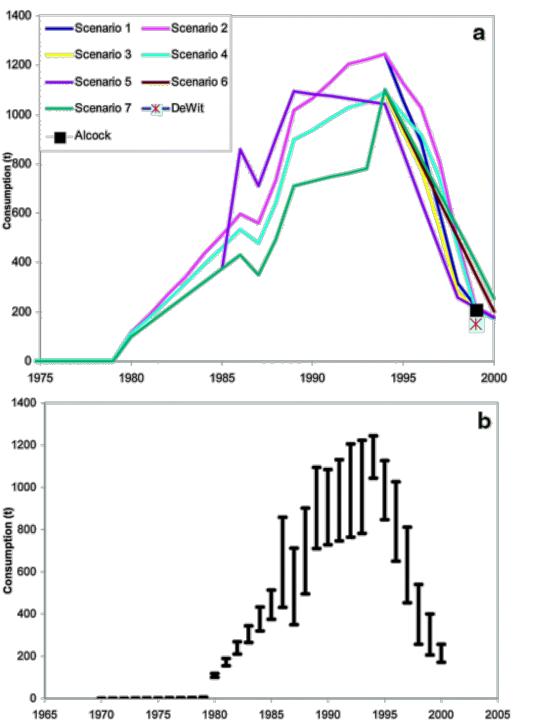
Pentabromodiphenyl ether

Hexabromodiphenyl ether

Hexabromodiphenyl ether

Heptabromodiphenyl ether

Decabromodiphenyl ether


Polybrominated Diphenyl Ethers: Uses

Penta	 → Textiles, PUF, paint, household plastic products, automotive parts → banned under Stockholm Convention
Octa	 → ABS plastic for computers, casings, circuit boards, small appliances → banned under Stockholm Convention
Deca	 → Electrical & electronic equipment, casings for TVs, computers, textile backings (e.g., carpets) → Still in use in some areas, phased out in Europe, North America

Human health concerns for PBDEs

- Thyroid active agents
 - Neurological impairments
- Maturation
 - Delay in puberty
- Developmental neurotoxicity
 - Impaired spontaneous motor behaviour, nonhabituation behaviour
- Learning & memory
 - Worsen with age

Review: Birnbaum & Staskal 2004 EHP 112:9-17.

Estimated
Historical
Consumption
Of Penta BDE in
Europe

Prevedouros et al. 2004 Environ Sci Technol 38:3224-3231

Estimated Consumption Of BDEs in North America

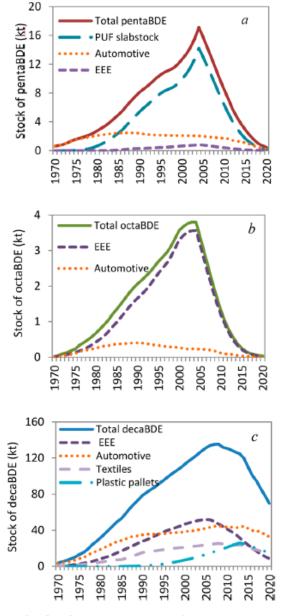


Figure 2. Stock of each PBDE commercial mixture in in-use products in the U.S. and Canada from 1970 to 2020, (a) pentaBDE in EEE, automotive vehicles, and PUF slabstock used in furniture, (b) octaBDE in automotive vehicles and EEE, and (c) decaBDE in plastic pallets, textiles, EEE, and automotive vehicles.

Abbasi et al. 2015 Environ Sci Technol

How to PBDEs get from furniture into the environment?

- Volatilization
- Abrasion, physical breakdown of the furniture
- Direct partitioning to dust

Global distributions of PCBs and PBDEs

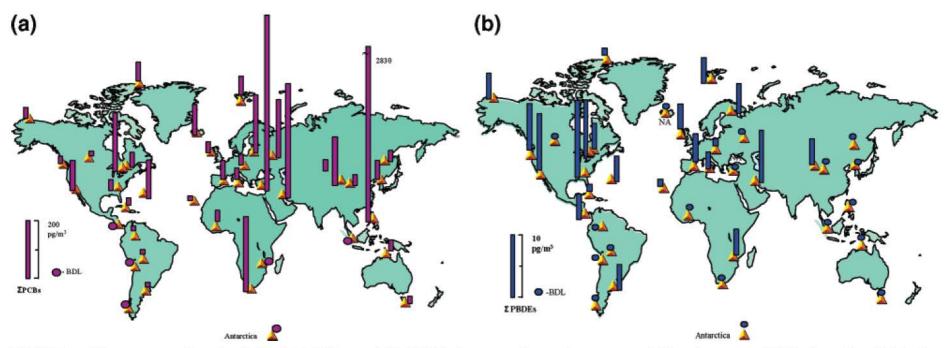


FIGURE 4. Air concentrations (pg/m³) of (a) PCBs and (b) PBDEs between December 2004 and March 2005 at GAPS sites. See Table S1 for BDL values.

From Pozo et al. 2006

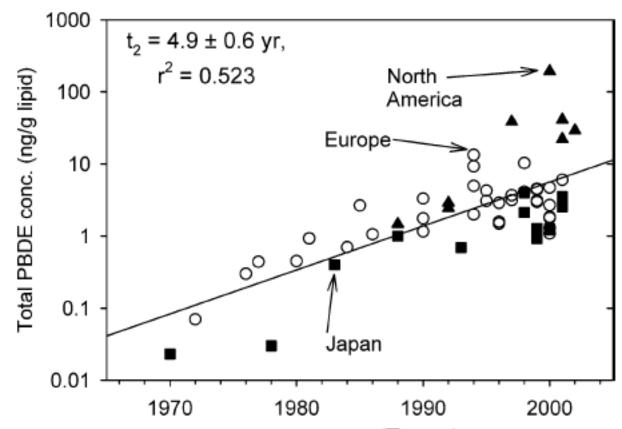


FIGURE 1. Total PBDE concentrations (∑PBDE) in human blood, milk, and tissue (in ng/g lipid) shown as a function of the year in which the samples were taken; see Table 2. The three symbol types indicate the location from which the samples were collected. The overall regression is shown.

"Novel" flame retardants - NFRs - replacements for PBDEs

PBT

Phosphate- based flame retardants in consumer products

TABLE 1. Characteristics of the Polyurethane Foam Samples Analyzed in This Study^a

sample ID	source	year purchased	flame retardant detected	% by weight of flame retardant
1	chair	2004	unidentified	
2	mattress pad	2009	N/D	
3	leather couch	2005	unidentified	
4	sofa bed	2008	TDCPP	1.3
5	chair	2008	N/D	
6	foam from footstool	2006	TCPP	2.2
7	headrest of chair	2008	TCPP	0.5
8	chair	2006	TDCPP	3.2
9	chair	2004	TDCPP	3.0
10	chair	2007	TCPP	1.5
11	futon	N/A	pentaBDE	0.5
12	ottoman	2007	TCPP	0.7
13	chair	2003	TDCPP	1.0
14	chair	2006	TDCPP	2.9
15	pillow	2006	TDCPP	2.8
16	chair	2007	TDCPP	3.8
17	chair	2005	TDCPP	3.2
18	mattress pad	2006	TDCPP	1.2
19	couch	2007	TDCPP	5.0
20	chair	2005	TDCPP	2.5
21	office chair	2005	N/D	
22	futon	2008	TDCPP	2.8
23	nursery glider/rocker	2009	TDCPP	2.9
24	foam insulation from sieve/shaker	2008	TDCPP	2.2
25	baby stroller	2009	TDCPP	NM
26	couch	2007	TBB, TBPH	4.2

^a N/A - Not available. N/D - Not detected. NM - not measured due to low mass of foam available. TDCPP - Tris-(1,3-dichloro-2-propyl)phosphate. TCPP - Tris(1-chloro-2-propyl)phosphate. PentaBDE - Pentabromodiphenyl ether commercial mixture. TBB - ethylhexyl 2,3,4,5-tetrabromobenzoate. TBPH - bis(2-ethylhexyl) tetrabromophthalate.

Any questions about flame retardants?

Stockholm Convention

- Stockholm Convention on Persistent Organic Pollutants is an international environmental treaty, signed in 2001 and effective from May 2004, that aims to eliminate or restrict the production and use of persistent organic pollutants (POPs).
- Now with 21 compounds/compound groups in 3 categories
 - Annex A countries must eliminate production and use
 - Annex B countries must restrict production and use
 - Annex C countries must reduce unintentional releases

Stockholm Convention Compounds

- Pesticides: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, pentachlorobenzene, hexachlorobenzene, mirex, toxaphene, hexachlorocyclohexane, chlordecone, pentachlorophenol and its salts/esters, endosulfan
- Industrial and household chemicals: hexachlorobenzene, hexabromobenzene, polychlorinated biphenyls (PCBs), hexabromocyclododecane, tetraBDE and penta BDE (cpentaBDE), hexaBDE and heptaBDE (c-octaBDE), perfluorooctane sulfonic acid and its salts, polychlorinated naphthalenes
- By-products: pentabchlorobenzene, hexachlorobenzene, hexachlorobutadiene, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF), and PCBs

Stockholm Convention compounds

Annex	
A <u>eliminate</u>	Aldrin, Chlordane, Chlordecone, Dielderin, Endrin, Heptachlor, Hexabromobiphenyl, Hexabromocyclododecane, Tetra & PentaBDEs, Hexa & HeptaBDEs, Hexachlorobeneze, Hexachlorobutadiene, Hexachlorocyclohexanes, Mirex, Pentachlorobenzene, Pentachlorophenol and its salts and esters, PCBs, Polychlorinated naphthalenes, technical Endosulfan and isomers, Toxaphene
B <u>restrict</u>	DDT Perfluorooctane sulfonic acid and its salts Perfluorooctane sulfonyl fluoride
C (Unintentional production) reduce	Pentachlorobenzene Hexachlorobenzene PCDD PCDF PCBs Polychlorinated naphthalenes

Chemicals to know

- Particulate matter
- DDT
- PCBs
- PAHs
- PBDEs

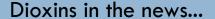
What to know...

ABOUT EACH COMPOUND:

- What is the source/use of the compound
 - Industrial? Emission by-product?
- General information about the structure (is it chlorinated or brominated, is it just one compound or is it a group of compounds...?)
- Status
 - Is the chemical still in use? Where is it legal/illegal?
- Where do we find the chemical?
 - In the environment? In humans? How and where are humans exposed?

Class project

- Pick one of the chemicals from the Stockholm
 Convention that we have not yet discussed
- Prepare a short presentation that answers questions about the compound.
- For details, see handout.


Extra compound info

Dioxins and furans

Phthalates

(not exam material – just for interest)

Dioxins and furans

7 January 2011 Last updated at 08:22 GMT

BBC

NEWS

News Front Page

Asia-Pacific

Middle East

South Asia

Business

Science &

Environment

Technology

Entertainment

Also in the news

Video and Audio

Programmes

Have Your Say

Country Profiles

Special Deports

In Pictures

Europe

Dioxin animal feed scare shuts German farms

has seen Italian sales of mozzarella slump by 30%. In between mouthfuls of the

cheese, he said: "The produce has been seized, so there is no health risk." But he

The Washington 1905t PostTV Politics Opinions Local Sports National World Busines

RECENT POSTS

harassment at the U.S.

border because of his Arab name

CliffsNotes for the

Netanyahu speech

Sweden blocks plan to

honor woman who hit a

neo-Nazi with a purse

 The case against Netanyahu's speech to Congress

Austrian actor

Here are your

complains of

Posted at 01:47 PM ET, 08/09/2012

Agent Orange's health effects continued long after the Vietnam War's end

By Olga Khazan

The United States and Vietnam on Thursday began a clean-up of the remnants of Agent Orange, a defoliant that American planes sprayed on the South Vietnamese jungle in order to deprive Viet Cong of tree cover during the Vietnam War.

Agent Orange, which contains a compound called dioxin, has been linked to cancer and severe birth defects. Up to three million Vietnamese people were exposed to the chemical and at least 150,000

Low graphics | Accessibility help

Watch One-Minute World News Last Updated: Friday, 17 December, 2004, 19:17 GMT

News services Your news when you want it

▶ VIDEO

KEY STORIES

E-mail this to a friend Printable version Deadly dioxin used on Yushchenko

Tests have revealed that the chemical used to poison Ukrainian opposition leader Viktor Yushchenko was pure TCDD, the most harmful known dioxin.

TCDD is a contaminant found in Agent Orange - a herbicide used by US troops in the Vietnam war and blamed for serious health problems.

Mr Yushchenko, who faces PM Viktor Yanukovych in a repeat poll on 26 December, fell ill in September.

Scientists say the poison could not have occurred naturally in his blood.

Blood samples taken in Vienna, where Mr Yushchenko was treated, were sent to the Dutch capital, Amsterdam, for further analysis.

Yushchenko's disfigurement could take

* Kiev remembers revolution ANALYSIS AND FEATURES

BBC NEWS: VIDEO AND AUDIO

Yushchenko says who is to blame for his illness

THE 'ORANGE REVOLUTION'

Ukraine 'stealing Europe's gas'

Orange pop

Ukrainians still cherish

the sounds of revolution a year on

Cynicism clouds dreams

- Revolution supporters in distress
- * Ukraine's heroes turn into foes
- Warm US welcome
- Mending fences with Russia

Dioxins and furans — chemical structures

Sources of PCDD/Fs

- Unintentionally produced
- During inefficient/incomplete combustion, especially waste burning
- By-product from chemicals manufacturing
- Major sources are: waste incineration, automobile emissions, metal industries, burning of peat, coal, wood

PCDD/F Source Inventory

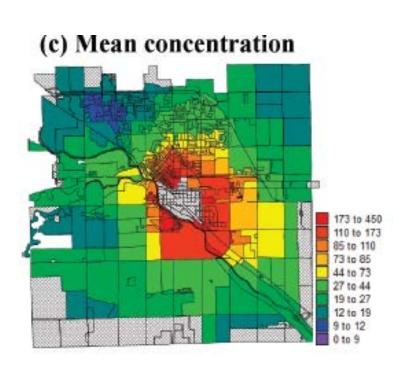
Table 6
PCDD/PCDF release inventories for Asian countries (1) (DEH, 2004; UNEP, 2004). Releases in g TEQ/a

Cat.	Source categories		Australia – 2002					Cambodia – 2004					Sri Lanka – 2002				
		Air	Water	Land	Product	Residue	Air	Water	Land	Product	Residue	Air	Water	Land	Product	Residue	
1	Waste incineration	6.5	0.36	21.9	ND	ND	40.7	0	0	0	0.78	20.3	0.055	NA	NA	0.133	
2	Ferrous and non-ferrous metal production	112	0.0	44.4	ND	ND	0.41	0	0	0	1	5.52	ND	NA	NA	49.8	
3	Heat and power generation	35.0	0.0	31.8	ND	ND	10.3	0	0	0	1.69	19.3	ND	ND	NA	0.096	
4	Production of mineral products	1.9	0.0	0.0	ND	ND	0.099	0	0	0	0	1.37	NA	ND	ND	0.002	
5	Transportation	9.1	0.0	0.0	ND	ND	0.005	0	0	0	0	0.54	NA	NA	NA	ND	
6	Open burning processes	330	0.0	1030	ND	ND	218	0	14.6	0	316	121	ND	ND	NA	29.4	
7	Production and use of chemicals and consumer goods	0.43	0.43	110	ND	ND						ND	ND	ND	0.446	ND	
8	Miscellaneous	0.31	0.0	0.15	ND	ND	3.64	0	0	0	0	3.46	ND	ND	ND	0.074	
9	Landfills and waste dumps	0.0	2.61	40.3	ND	ND						ND	0.024	ND	6	0.022	
1–9	Total	495	3.42	1300	ND	ND	273	0	14.6	0	319	171.5	0.08	0.0	6.45	79.5	
	Grand total		1800				607				258						

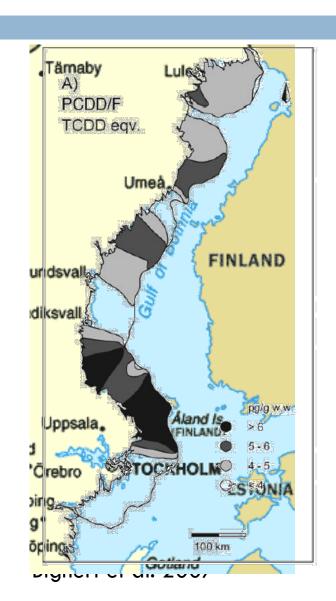
Australia, Cambodia, Sri Lanka – Main source to air is open burning

Secondary sources are:

Australia – metal production


Cambodia and Sri Lanka – waste incineration and heat and power generation

Spatial patterns of PCDD/Fs


- Higher concentrations closer to sources, in highly developed, industrialized areas
- Concentrations patterns in air, soil, sediment and biota mirror each other
- □ Trends on a large scale globally and small scale
 - locally

Local scale – PCDD/Fs in soil around an incinerator

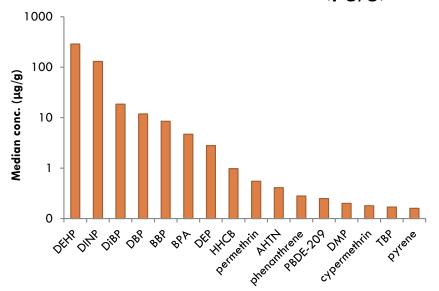
Regional scale – PCDD/Fs in fish from the coast of Sweden

Goovaerts et al. 2008

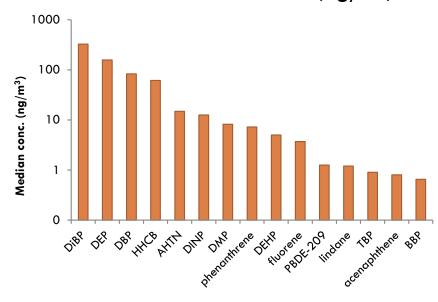
Plasticizers - Phthalate esters

- One of the most broadly uses classes of synthetic compounds
- □ 1-2 million tonnes per year
- Plasticizers increase material flexibility and transparency
- Up to 60% by weight of material
- Wide range of uses: vinyl building and construction materials (e.g. flooring, wall coverings, piping), adhesives, sealants, printing inks, paints, and medical applications (eg. blood storage bags), wood finishes, detergents, adhesives, plastic plumbing pipes, lubricants, solvents, insecticides, cosmetics and personal care products, including perfume, hair spray, soap, shampoo, nail polish, and skin moisturizers

Phthalate exposure


- Through eating, drinking foods that were in contact with phthalate-containing plastics
- Use of personal care products containing phthalates (dermal absorption)
- Inhaling air or ingesting dust containing phthalates

Phthalates


- Usually the highest concentration synthetic compound found in indoor dust and air
- Levels typically 10-100x higher than other SVOCs

Dust and air samples from 30 homes, Western France¹:

Median conc. in settled dust (µg/g)

Median conc. in indoor air (ng/m³)

¹ Blanchard et al. 2014 Environ Sci Tech

Phthalates exposure

Journal of Exposure Science and Environmental Epidemiology 22, 468-475 (September/October 2012) |doi:10.1038/jes.2012.33

Indoor Air 2013; 23: 32–39 wileyonlinelibrary.com/journ Printed in Singapore. All ri

Consumer product exposures associated with urinary phthalate levels in pregnant women

PVC floori

Jessie P Buckley, Rachel T Palmieri, Jeanine M Matuszewski, Amy H Herring, Donna D Baird, Katherine E Hartmann and Jane A Hoppin

Abstract

Abstract Polyviny has been shown t indoor dust. Phth Consecutive infan A questionnaire a used. Urinary me phthalate (DBP), (DEHP) were mea (52%) participate of the BBzP meta in infants with PV

Human phthalate exposure is ubiquitous, but little is known regarding predictors of urinary phthalate levels. To explore this, 50 pregnant women aged 18-38 years completed two questionnaires on potential phthalate exposures and provided a first morning void. Urine samples were analyzed for 12 phthalate metabolites. Associations with questionnaire items were evaluated via Wilcoxon tests and t-tests, and r-squared values were calculated in multiple linear regression models. Few measured factors were statistically significantly associated with phthalate levels. Individuals who used nail polish had higher levels of mono-butyl phthalate (P=0.048) than non-users. Mono-benzyl phthalate levels were higher among women who used eye makeup (P=0.034) or used makeup on a regular basis (P=0.004). Women who used cologne or perfume had higher levels of di-(2-ethylhexyl) phthalate metabolites. Household products, home flooring or paneling, and other personal care products were also associated with urinary phthalates. The proportion of variance in metabolite concentrations explained by questionnaire items ranged between 0.31 for mono-ethyl phthalate and 0.42 for mono-n-methyl phthalate. Although personal care product use may be an important predictor of urinary phthalate levels, most of the variability in phthalate exposure was not captured by our relatively comprehensive set of questionnaire items.

n's Health | Article

in Children and

jörn Lundgren,1

Lyngby, Denmark; ³Public Health obert Wood Johnson Medical

ort interval over which it has occurred that the increase is caused by changes onmental exposures rather than genetic (Etzel 2003; Strachan 2000). Changes or environments warrant special attencause indoor air constitutes a domiposure route. Increased exposures to a and/or adjuvants (enhancing factors) ch be partially responsible for the a Multidisciplinary regions of the

Health risks of phthalates

- Reproductive effects, especially in men
- Associated with diabetes in women (James-Todd et al., Environmental health perspectives, 2012)
- Occurrence of asthma and allergies in children (Jaakkola and Knight, Environmental health perspectives, 2010)
- Autism spectrum disorders (Kalkbrenner et al.
 Current Problems in Pediatric and Adolescent Health
 Care, 2014)

Current regulatory status

IP/11/196

Brussels, 17 February 2011

Chemicals/REACH: six dangerous substances to be phased out by the EU

Six substances of very high concern will be banned within the next three to five years unless an authorisation has been granted to individual companies for their use. These substances are carcinogenic, toxic for reproduction or persist in the environment and accumulate in living organisms. Operators wishing to sell or use these substances will need to demonstrate that the required safety measures have been taken to adequately control the risks, or that the benefits for the economy and society outweigh the risks. Where feasible alternative substances or techniques exist, a timetable for substitution will also have to be submitted. Today's Commission decision follows the successful first phase of registration and notification of chemicals (see IP/10/1632, IP/11/2. It is part of REACH, Europe's initiative to make the use of chemicals safer.

EU REACH Legislation

DHP — reproductive toxin

DEHP — serious effects on

environment

DEHP, DBP, BBP, DIBP — serious

effects on human health

DEHP, DBP, BBP – should have been banned in EU this year (February 2015)...
But...

"This ban will only cover these substances when they are:

- Supplied on their own;
- Supplied in a mixture;
- Incorporated into an article with the European Union.

Imported articles containing any of these substances that were incorporated outside the EU are not covered by the Authorisation process."