HW 1	Multinuclear NMR	Name:	
Points:	C6800	Date:	
Max. 100 points	Spring 2017	Version A	

1. (10 points) Show that
$$E_{\text{mag}} = -\mu \cdot B_0 = -\mu_z \mid B \mid$$

2. (15 points) Consider symmetry properties of following molecules. Find symmetry elements and give their point group labels. How many signals would you expect in ³¹P NMR spectra.

$$(EtO)_2(O)P \longrightarrow P(O)(OEt)_2$$

- 3. (15 points) Calculate the energy difference between the spin levels inside a 950 MHz magnet for a 3 H nucleus.
- 4. (15 points) Calculate the excess of nuclei on the lowest energy level of ³H at 300 K and 173 K.
- 5. (25 points) Octahedral complexes Sn(2-PyCHCOCF₃)₂(O^tBu)₂ may form several geometrical isomers. Find all of them, draw their geometrical formulas (ligand 2-PyCHCOCF₃ schematically), and give their symmetry point group labels.

- 6. (10 points) How many signals would you expect in ¹⁹F NMR spectra for each isomer?
- 7. (10 points) How many signals of ^tBuO groups would you expect in ¹³C NMR spectra for each isomer?