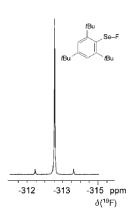
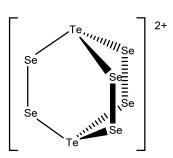

HW 2	Multinuclear NMR	Name:	
Points:	C6800	Date:	
Max. 100 points	Spring 2017	Version A	

1. (2 pts) The ¹¹⁹Sn NMR resonance of the Sn atom at the apex of the square pyramid in **3** was found to be extraordinarily shielded, being observed at –2441.5 ppm. The value closely approaches those of the stannocene derivatives, with their record high-field tin resonances appearing in the range from –2100 to –2300 ppm. Explain these observations considering the two resonance structures of pyramidane **3**, covalent and ionic. Which one is more important?


2. (38 pts) Draw all possible complexes $[PF_x(CN)_{6-x}]$ (x = 0 - 6) and predict multiplicities of signals in ³¹P and ¹⁹F NMR spectra (number of resonances, name of a multiplet, and the relative intensities of lines in a multiplet).

X	Molecule	³¹ p	¹⁹ F
6			
5			
4			


and so on....

3. (44 pts) Find the symmetry point groups of the following molecules. How many signals do you expect in the ¹H and ²⁹Si NMR spectra. Mark all geminal groups in these molecules as homotopic (**H**), enantiotopic (**E**) and diastereotopic (**D**).

4. (4 pts) Explain the ¹⁹F { ¹H} NMR spectrum the following molecule.

5. (12 pts) Calculate relative populations of Te isotopologues of this cation. (Disregard the Se isotopes, use σ = 2, for the two-fold axis that interchanges the Te atoms)

