Isotopologues

Molecules of ISOTOPOLOGUES have different isotopic composition

¹H NMR of CH_3CH_2OH : consider ¹H, ²H, ¹²C, ¹³C, ¹⁶O, ¹⁷O, ¹⁸O

Some isotopologues: ${}^{12}C^{1}H_{3}{}^{12}C^{1}H_{2}{}^{16}O^{1}H$

System: A_3B_2C

 $^{13}C^{1}H_{3}^{12}C^{1}H_{2}^{16}O^{1}H$ System: XA₃B₂C

 $^{12}C^{1}H_{3}^{12}C^{1}H^{2}H^{16}O^{1}H$ System: A₃BXC

288 isotopic varieties, 192 of which magnetically distinct

These give rise to 184 ¹H spectra, 184 ²H spectra, 144 ¹³C spectra and 96 ¹⁷O spectra, all nontrivial and distinct from each other

The least abundant of these isotopologues is so rare that one would need over 100 moles of ethanol to have any chance to meet one of its molecules, but that can change completely with isotopic enrichment

Molecules of ISOTOPOMERS have <u>the same</u> isotopic composition, the isotope sits at different positions - isotopic isomers

Some isotopomers:

 ${}^{13}\text{C}{}^{1}\text{H}_{3}{}^{12}\text{C}{}^{1}\text{H}_{2}{}^{16}\text{O}{}^{1}\text{H}$

 ${}^{12}\mathrm{C}^{1}\mathrm{H}_{3}{}^{13}\mathrm{C}^{1}\mathrm{H}_{2}{}^{16}\mathrm{O}^{1}\mathrm{H}$

 ${}^{13}C^{1}H_{3}{}^{13}C^{1}H_{2}{}^{16}O^{1}H$ - Isotopologue

¹²C¹H₃¹²C¹H²H¹⁶O²H Constitutional Isotopomers ¹²C¹H₃¹²C¹H²H¹⁶O¹H ¹²C¹H₃¹²C²H¹H¹⁶O¹H Stereo Isotopomers (R/S)

Isotope Effects (D/H) $^{n}\Delta(^{13}C)$

Isotope shift of M signal caused by substitution of H by D, n bonds away

M - X n = 1 primary isotope shift M - C - X n = 2 secondary isotope shift

Magnitude expressed in ppb, decreases with longer distance, n

Generally

 $^{n}\Delta(^{A}M) = \delta_{HEAVY} - \delta_{LIGHT} < 0$

Heavy isotope shields more

Isotope Effect

Η	D	$(D/H) {}^{n}\Delta({}^{31}P)$	
		ppm	
PH ₃	PDH ₂	- 0.804	
PH ₃	PD ₂ H	- 0.845	
PH ₃	PD ₃	-0.888	

Isotope Effects

Occupation of vibrational levels changes with temperature

Level spacing changes with mass of bound atoms

¹⁹F NMR spectrum of [NMe₄][TeF₇] in CH₃CN at 30 °C

Central line of the ¹⁹F NMR spectrum of [NMe₄][TeF₇]

Tellurium Isotopes

Z		Α	NA%	Ι
52	Te	120	0.09 (1)	
		122	2.55 (12)	
		123	0.89 (3)	1/2
		124	4.74 (14)	
		125	7.07 (15)	1/2
		126	18.84 (25)	
		128	31.74 (8)	
		130	34.08 (62)	

Satellite Spectra of $Si(CH_3)_4$

Other isotopomers have too low concentration ^{28/29}Si(¹²CH₃)_{4-n}(¹³CH₃)_n

Satellite Spectra

 $[(R_2Sn)_2(R_2SnO)(F)(HONZO)(ONZO)], R = Me$ HONZOH = salicylaldoxime, *ortho*-HO-N=CH-C₆H₄OH

Satellite Spectra

³⁵C1 75.5 % ³⁷C1 24.5 %

Resolution enhanced ¹⁹⁵Pt-NMR spectrum of K₂PtCl₄ in D₂O showing isotopomers

Satellite Spectra

Isotope Effect on Satellite Spectra

CH₃-C≡N

¹⁵N signal shows coupling to: ¹H ${}^{3}J({}^{1}H-{}^{15}N) = 1.7 \text{ Hz}$ ¹³C ${}^{1}J({}^{13}C-{}^{15}N) = 17 \text{ Hz}$

The signal appears as a central 1:3:3:1 quartet flanked by ¹³C satellites

The unsymmetrical nature of the ${}^{13}C$ satellites arises from ${}^{12}C/{}^{13}C$ isotopic chemical shift perturbation.

Isotope Effect on Satellite Spectra

¹⁹F NMR Spectra of Trifluoroacetic Acid

Isotope Effect on Satellite Spectra

¹H NMR spectrum

¹⁹⁵Pt $I = \frac{1}{2}$, NA = 33.8 %

NMR inactive Pt nuclides 66.2 %

¹H NMR spectrum

¹⁹⁵Pt I = $\frac{1}{2}$, NA = 33.8 %

$$f_i = \frac{\sigma}{\sigma_i} a^x b^y c^z \dots$$

Isotopologues and isotopomers

$$f_i = \frac{\sigma}{\sigma_i} a^x b^y c^z \dots$$

 f_i = the fractional abundance of isotopomer *i* σ = the symmetry number of the parent molecule isotopically pure = the order of rotation group C_n σ_i = the symmetry number of the isotopomer a = abundance of an isotope occuring x-times (in atomic %) b = abundance of an isotope occuring y-times (in atomic %)

Abundance of Isotopologues

$$f_i = \frac{\sigma}{\sigma_i} a^x b^y c^z \dots$$

20

Isotopomer	σ_{i}	a (0.144)	b (0.856)	$\mathbf{f}_{\mathbf{i}}$
W≡P–W	1	a ⁰	b^2	0.733
$\mathbf{W} \equiv \mathbf{P}^{-183} \mathbf{W}$	1	a ¹	b ¹	0.123
¹⁸³ ₩≡P–W	1	a ¹	b^1	0.123
$^{183}W \equiv P^{-183}W$	1	a^2	\mathbf{b}^0	0.021

Isotopologues

Isotopomer	Pt1	Pt2	Pt3	\mathbf{f}_{i}
Α	*	*	*	0.290
В	195	*	*	0.148
С	*	195	*	0.148
D	*	*	195	0.148
Е	195	195	*	0.076
F	195	*	195	0.076
G	*	195	195	0.076
Н	195	195	195	0.038

Abundance of Isotopologues

Mercuracarborands

[Me₄N]F

¹⁹⁹ Hg I = $\frac{1}{2}$ NA = 16.8% ²⁰¹Hg I = 3/2 NA = 13.2% other Hg inactive in NMR

$$f_i = \frac{\sigma}{\sigma_i} a^x b^y$$

¹⁹F NMR Only coupling to ¹⁹⁹ Hg observed No coupling to ²⁰¹Hg visible

$$\sigma = 4$$

 $a = 16.8 \% ^{199} Hg \text{ (active)}$ b = 83.2 % all other nuclides (inactive)

Isotopologues/Isotopomers

Isotopologue Abundances

$$f_i = \frac{4}{\sigma_i} (0.168)^x (0.832)^y$$

Isotopologue	σ_i	X	У	f_i	2nI + 1
Α	4	4	0	0.00080	qn
В	1	3	1	0.01578	dt
С	1	2	2	0.03907	t
D	2	2	2	0.07815	t
E	1	1	3	0.38703	d
F	4	0	4	0.47917	S

