Relaxation Times

Relaxation = return to equilibrium (Boltzmann) after a pulse, redistribution of energy

Relaxation can be described for isolated spins by the Bloch Equations, the total relaxation is determined by two characteristic time constants:

T₁

enthalpy

Longitudinal, Spin-Lattice Relaxation Build up of longitudinal magnetisation via energy exchange between spins and their environment ("lattice")

Transversal, Spin-Spin Relaxation Dephasing of transversal magnetisation without energy exchange between spins and their environment, entropy

Two important relations between T_1 and T_2 : \succ T_2 cannot be longer than T_1 : $T_2 \leq T_1$

> In the "extreme narrowing limit": $T_2 = T_1$

T_1 and T_2 in Data Acquisition

repetition time

 T_1 governs the repetition frequency for subsequent transients (scans) Relaxation delay = 5 T_1

 T_2 governs the decay time constant of individual FID's

Optimum sensitivity of the NMR experiment is obtained if $T_1 = T_2$

T_1 and T_2 in Data Acquisition

Magnetization

In-Field

More nuclei point in parallel to the static magnetic field. The macroscopic magnetic moment, M_0

$$\mathbf{M}_0 = \Sigma \ \boldsymbol{\mu}_i$$

Longitudinal Magnetization

Spin-Lattice Relaxation Time

- $R_1 = 1/T_1$ [Hz] longitudinal relaxation rate constant
- T_1 [s] longitudinal relaxation time
- spin-lattice relaxation time
- enthalpy

Transverse Magnetisation

Spin-Spin Relaxation Time

 $R_2 = 1/T_2$ [Hz] transverse relaxation rate constant

 T_2 [s] transverse relaxation time constant

spin-spin relaxation time

entropy

Relaxation = Return to Equilibrium

9

Relaxation

Relaxation in other types of spectroscopy:

• spontaneous emission (not in NMR) fluorescence, phosphorescence

collisional deactivation

 (not in NMR, molecular tumbling does not change orientation of I, always along B₀)

• stimulated emission

lasers

magnetic interactions of nuclear spin with external fluctuating mg. field (dipolar) containing many different frequencies, when it contains $\omega_{L,}$ resonance causes relaxation = emission of excess energy, transition from exited to ground state

Spectral Density Function

Nuclear spin relaxation

- not a spontaneous process
- requires stimulation by suitable fluctuating fields to induce the spin transitions

Longitudinal relaxation requires a time-dependent magnetic field fluctuating at the Larmor frequency

Time-dependence = motions of the molecule (vibration, rotation, diffusion...) Molecules "tumble" in solution - characterized by

a rotational correlation time - $\tau_{\rm C}$

The probability function of finding motions at a given angular frequency ω can be described by the spectral density function - J(ω)

$$J(\omega) = \frac{2\tau_c}{1 + (\omega\tau_c)^2}$$

Spectral Density Function

Frequency distribution of the fluctuating magnetic fields

Correlation Time τ_{c} describes molecular tumbling

1. Look at one molecule

 $\tau_{\rm C}$ = average time during which a molecule stays in one orientation, until a collision changes its orientation

small molecules, low viscosityshort 10^{-12} spolymers, high viscositylong 10^{-8} s

2. Look at a group of molecules (1 mole)

All molecules oriented in the same way, then $\tau_{\rm C}$ is time in which the orientation is dispersed to 1 rad (~60°)

 $t < \tau_{C}$ molecules are close to the original orientation

 $t >> \tau_{C}$ random distribution

 $1/\tau_{\rm C}$ = tumbling rate

Correlation function describes molecular tumbling How the actual orienation correlates with the original one

 $\tau_{\rm C} <> 1/\omega_0$ poor energy transfer, T_1 long, narrow lines

 $\tau_{\rm C} = 1/\omega_0$ effective energy transfer, T_1 short, fast relaxation, wide lines

$$\tau_C = \frac{1}{6D} = \frac{\eta V}{k_B T} = \frac{4\eta \pi a^3}{3k_B T}$$

 η = viscosity, high η = slow tumbling, long τ_{C} , wide lines a = molecular diameter, large particles = long τ_{C} , wide lines T = temperature, high T = fast tumbling = short τ_{C} , narrow lines

Approximate rule

 $\tau_{\rm C} [\rm ps] \sim M_r$ in H₂O at room temp.

Supercritical CO₂ is a good NMR solvent

(a)65 °C and 65 bar has low viscosity, narrow lines

extreme

small

long $\tau_{\rm C}$ = slow tumbling rigid molecules, high viscosity

Relaxation Times vs Correlation Time

20

The Influence of Correlation Times on Relaxation

- Correlation times are not molecular constants, but depend on a number of factors, e.g. temperature, effective molecular size, solvent viscosity...
- > Variation of these factors may induce changes in τ_c of several ordes of magnitude.
- These changes may lead to violation of the "extreme narrowing" conditions, and introduce the necessity for a more concise treatment of the correlation time dependence of relaxation times.

Linewidth

 T_1 = lifetime of a nucleus in a certain energy state

Heissenberg uncertainity principle

 $\Delta E \ \Delta t \ge h/2\pi$ h = 6.626 10⁻³⁴ J s

 $h \Delta v_{1/2} \quad T_1 \geq h/2\pi$

 $\Delta v_{1/2} \geq 1/T_1 \qquad \Delta v_{1/2} \geq 1/\pi T_2$

High relaxation rate = short relaxation times

Werner Heisenberg (1901-1976) NP in physics 1932

= wide lines in spectra

Linewidth

Relaxation rate

$$R = \sum_{i} \frac{1}{T_i}$$

Linewidth

$$\Delta v_{1/2} \approx \frac{1}{T_1} + \frac{1}{T_2}$$

short $\tau_{\rm C}$ = fast tumbling = long $T_1 \ge T_2$

$$\Delta v_{1/2} \approx \frac{1}{T_1} + \left(\frac{1}{T_2}\right)$$

long $\tau_{\rm C}$ = slow tumbling = long $T_{1,}$ short T_2 Linewidth is given by T_2

$$\Delta v_{1/2} \approx \frac{1}{\pi T_2}$$

Relaxation

Solution NMR

usually $T_2 = T_1$ (small/medium molecules, fast tumbling rate, non-viscous liquids)

Some process like scalar coupling with quadrupolar nuclei, chemical exchange, interaction with a paramagnetic center, can accelerate the T_2 relaxation such that T_2 becomes shorter than T_1 .

Solid state NMR

 T_1 is usually much larger than T_2 . The very fast spin-spin relaxation time provide very broad signals

Measuring the experimental line width to determine the T_2 relaxation time, the experimental line width depends also on the inhomogeneity from the magnetic field:

 $1/T_2^* = 1/T_2 + 1/T_2$ (inhomogeneity)

Inhomogeneity is more critical for nuclei with higher frequency $\Delta v = \gamma B_0$

Relaxation Mechanisms

Fluctuating magnetic fields (of the right amplitude and frequency) make spins exchange energy with their environment

Important mechanisms to generate these fluctuating magnetic fields are:

- **Direct dipolar** interaction of a nuclear spin with other nuclear spins
- Molecular motion in the presence of large chemical shielding anisotropies
- Interaction of a nuclear spin with a nuclear quadrupole
- Scalar coupling of nuclear spins
- Paramagnetic relaxation by unpaired electrons
- Spin rotation

The individual contributions combine to make the total relaxation

$$\frac{1}{T_1} = \frac{1}{T_{1,DD}} + \frac{1}{T_{1,CSA}} + \frac{1}{T_{1,Q}} + \dots$$

Relaxation Mechanisms

Interaction	Range of interaction (Hz)	Relevant parameters
Dipolar coupling	10 ⁴ - 10 ⁵	abundance of magnetically active nuclei size of their magnetogyric ratio
Quadrupolar coupling	10 ⁶ - 10 ⁹	size of quadrupolar coupling constant electric field gradient at the nucleus
Paramagnetic	10 ⁷ -10 ⁸	concentration of paramagnetic impurities
Scalar coupling	10 - 10 ³	size of the scalar coupling constants J
Chemical Shift Anisotropy (CSA)	10 - 10 ⁴	size of the chemical shift anisotropy CSA symmetry at the nuclear site
Spin rotation		26

Dipolar Relaxation T_{1,DD}

The Direct Interaction of a Nuclear Spin with other Spins

INTRAMOLECULAR

The magnetic moment of a nuclear spin B influences the local field at the position of a neighbouring nucleus A:

 $B_{loc}(A) = B_{loc}, 0(A) + D$

D denotes the dipolar coupling constant which is defined as

$$D = \frac{\hbar\mu_0}{8\pi^2} \frac{\gamma_A \gamma_B}{r_{AB}^6} (1 - 3\cos^2\theta)$$

Brownian motion of the sample containing nuclei A and B induces a fluctuation of θ which leads in turn to a time dependent modulation of the local magnetic field $B_{loc}(A)$.

rAB

UB

B₁

Dipolar Relaxation T_{1,DD}

The contribution of this modulation to the T_1 relaxation of nucleus A can be expressed in terms of a characteristic time constant $T_{1,DD}$:

- τ_{c} = molecular correlation time
- μ_0 = vacuum permeability
- S = spin of nucles B
- $\gamma_{\rm B}$ = magnetogyric ratio, large value = faster relaxation of A, shorter T_{1,DD} nuclei with large γ (e.g. H) relax neighbouring nuclei
- $1/r_{AB}^{6}$ = only directly bound nuclei contribute = intramolecular

 $\frac{1}{T_{1,DD}(A)} = \frac{\mu_0^2 \hbar^2 \gamma_A^2 \gamma_B^2}{12\pi^2 r_{AB}^6} \left[S(S+1) \right] \tau_C$ (in the extreme narrowing limit)

Substitution H/D: If H is replaced by D, in the X-D bond, the X-nuclei relax much slower than in the corresponding X-H due to the lack of dipoledipole relaxation, $\gamma_{\rm H}$ is 6.5 time larger than $\gamma_{\rm D}$.

¹³C - ¹H Dipolar Relaxation T_{1,DD}

 T_1 relaxation of ¹³C by directly attached protons :

 τ_c = molecular correlation time n_H = number of attached protons γ_H = magnetogyric ratio of H $1/r_{CH}^6$ = 109 pm

$$\frac{1}{T_{1,DD}^{(13)}} = \frac{n_H \mu_0^2 \hbar^2 \gamma_C^2 \gamma_H^2}{16\pi^2 r_{CH}^6} \tau_C$$

(in the extreme narrowing limit)

Protonated carbons relax faster in ¹³C NMR than quarternary carbons

Dipolar Relaxation T_{1,DD}

INTERMOLECULAR

$$\frac{1}{T_{1,DD(\text{int}\,er)}} = \frac{N_0 \pi h^2 \gamma^4}{2Da} = \frac{3\pi^2 \gamma^4 \hbar^2 \eta N_0}{k_B T}$$

 N_0 = number of molecules in m³ D = difussion coefficient T = temp, high T narrows lines

$$D = \frac{k_B T}{6\pi\eta a}$$

Protons relax both inter and intramolecularly

C ₆ H ₆ neat	$T_1(H) = 19 s$
C ₆ H ₆ diluted in CS ₂	$T_1(H) = 90 s$

I: The Influence of the observed nucleus A in a A-H fragment:					
Α	³¹ P	¹³ C	²⁹ Si	^{15}N	¹⁰³ Rh
γ(X)	10.84	6.73	-5.32	-2.71	-0.85
r _{AH} [Å]	1.4	1.1	1.4	1.0	1.6
T _{1,DD} (τ _c =10 ⁻¹¹)	8 s	5 s	33 s	17 s	48 min
T _{1,DD} (τ _c =10 ⁻⁹)	80 ms	50 ms	330 ms	170 ms	29 s

II: The Influence of the neighboring nucleus X in an A-X fragment (A=¹⁵N):

X	$^{1}\mathrm{H}$	³¹ P	¹³ C	¹¹ B	$^{51}\mathrm{V}$
γ(X)	26.75	10.84	6.73	8.59	7.05
r _{AX} [Å]	1.0	1.7	1.4	1.3	1.8
S(S+1)	0.75	0.75	0.75	3.75	3.75
$T_{1,DD} (\tau_c = 10^{-11})$	17 s	42 min	34 min	160 s	400 s
T _{1,DD} (τ _c =10 ⁻⁹)	170 ms	25 s	20 s	1.6 s	4 s

III: The Influence of the internuclear distance in a N H fragment:				
r _{AX} [Å]	1.0	2.1	2.7	
$T = (10^{-11})$	(N-H)	(N-C-H)	(N-C-C-H)	
$I_{1,DD} (\tau_c = 10^{-11})$	ðs	24 min	110 min	

 $\tau_{c} = 10^{-11}$ s: medium sized (in)organic molecule $\tau_{c} = 10^{-9}$ s: small polymer 31

Quadrupole Induced Relaxation $T_{1,Q}$ The Interaction of a nuclear spin I with a quadrupole moment

Nuclei I > $\frac{1}{2}$

Nuclei with I > 1/2 possess an electric quadrupole moment eQ which is quantized according to its oriention in the electric field gradient *(efg)* of the electrons if the local symmetry is less than spherical.

Due to strong coupling between eQ and I, the nuclear magnetic spin levels depend on both B_0 and the efg.

Electric quadrupole moment eQ = nonspherical distribution of the

positive nuclear charge

Quadrupole Induced Relaxation T_{1,Q}

BROWNIAN MOTION of sample molecules modulates the different m_I energies which leads to a stochastic modulation of the local magnetic field $B_{loc}(A)$.

Tumbling = spread of energy levels

in solution the average transition energy does not change but the spread contributes to relaxation

Quadrupole Induced Relaxation $T_{1,Q}$

The contribution to $T_1(A)$ can be expressed in terms of a characteristic time constant $T_{1,Q}$ (extreme narrowing limit)

$$\frac{1}{T_{1,Q}} = \frac{1}{T_{2,Q}} = \frac{\pi^2 3(2I+3)}{10I^2(2I-1)} (1 + \frac{\eta^2}{3}) (\frac{e^2 Q q_{zz}}{h})^2 \tau_C$$

 $\tau_{\rm c}$ = correlation time

I =nuclear spin

Q = nuclear quadrupole moment (Q $\neq 0$ for I > $\frac{1}{2}$)

 q_{ZZ} = electric field gradient

 $q_{ZZ} = 0$ for high symmetry (spherical, Cl⁻, cubic T_d, O_h, ClO₄⁻, SO₄⁻, AsF₆⁻ η = asymmetry parameter (η = 0 for axial symmetry)

$$\eta = \frac{q_{yy} - q_{xx}}{q_{zz}}$$

Quadrupole Induced Relaxation T_{1.0}

Q - the electric quadrupole moment of the nucleus

A large moment results in efficient relaxation of the nucleus by molecular motion, very broad lines.

¹²⁵I⁻ in water (I = 5/2, Q = -0.79) has $v_{1/2} = 1800$ Hz

All other iodo compounds are much less symmetric and have lines so broad their NMR signals cannot be detected.

Deuterium (I = 1, Q = 0.00273) and ⁶Li (I = 1, Q = 0.0008) have among the smallest electric quadrupole moments of all isotopes and are easy to observe and usually give lines sharp enough to resolve *J* coupling.

 55 Mn (I = 5/2, Q = 0.55)

Quadrupole Induced Relaxation T_{1,Q}

q_{ZZ} - the electric field gradient (EFG)

The Quadrupole coupling vanishes in a symmetrical environment

symmetrical $[NH_4]^+$: $q_{zz} = 0$ and therefore has very long $T_1 = 50$ s CH_3CN : $q_{zz} = 4$ MHz and $T_1 = 22$ ms

Quadrupole Induced Relaxation T_{1,Q}

Nuclear Quadrupole Coupling Constant, NQCC

$$\chi = e^2 q_{zz} Q / \hbar$$

Linewidth factor

$$l = \frac{Q^2(2I+3)}{I^2(2I-1)}$$

Ι	1	3/2	5/2	3	7/2	4
1 [Q ²]	5	1.33	0.32	0.20	0.16	0.10

The larger the I nuclear spin, the faster relaxation, the shorter $T_{1,Q}$, the broader lines

I. The Influence of the electric field gradient q_{zz} :

¹⁴ N relaxati	on times:				
	Bu_4N^+ (T_d)	$NaNO_3(D_{3h})$	$NN^{-}(C_{coh})$	$MeSCN(C_{xx})$	$DABCO(C_{xx})$
c[MHz]	0.04	0.745	1.03	3.75	4.93
T _{1,Q}	1.8 s	85 ms	29 ms	2 ms	0.6 ms
⁵⁵ Mn relaxation times:					
	Mn_2CO_{10}	BrMn(CO) ₅	HMn(CO) ₅	CpMr	n(CO) ₃
c[MHz]	3.05	17.46	45.7	64	4.3
T _{1,Q}	3.8 ms	0.46 ms	74 μs	32	μs

II. The Influence of	of Q and I ; $T_{1,Q}$	in [M(CO) ₆]			
M =	⁹⁵ Mo	⁹⁷ Mo	187 Re ⁽⁺⁾	185 Re ⁽⁺⁾	¹⁸¹ Ta ⁽⁻⁾
$Q[10^{-28} \text{ m}^2]$	0.12	1.1	2.6	2.8	3
Ι	5/2	5/2	5/2	5/2	7/2
Q(2I+3)/(2I-1)	0.30	2.75	6.50	7.00	10.5
T _{1,Q}	>450 ms	53 ms	141 µs	122 µs	48 µs
$W_{1/2}$ [Hz]	<0.7	6	2250	2600	6700

CSA Induced Relaxation, T_{1,CSA}

Tumbling of molecules with large chemical shielding anisotropies Important for nuclei with wide range of chemical shifts: ³¹P, ¹⁹⁵Pt, ¹¹³Cd

Magnetic shielding is anisotropic and may vary for different orientations of the magnetic field B_0 with respect to the molecular frame.

Chemical Shielding Anisotropy CSA

$$\Delta \sigma = \sigma_{zz} - \frac{1}{2} (\sigma_{xx} - \sigma_{yy})$$
$$\Delta \sigma = \sigma_{//} - \sigma_{\perp}$$

BROWNIAN MOTION of sample molecules induces time dependent modulation of σ and thus a stochastic fluctuation of the effective local magnetic field B_{0,loc}(A).

CSA Induced Relaxation, T_{1,CSA}

The contribution to $T_1(A)$ can be expressed in terms of a characteristic time constant:

$$\frac{1}{T_{1,CSA}(A)} \approx B_0^2 \gamma_A^2 (\Delta \sigma)^2 \tau_C$$

(in the extreme narrowing limit)

 τ_c = molecular correlation time $\Delta \sigma$ = shielding anisotropy B_0 = magnetic field strength = wide lines in strong magnets !!!!

I: The Influence of the observed nucleus A in ($\Delta \sigma = 100$ ppm; B ₀ = 7 T):					
А	³¹ P	¹³ C	$^{15}\mathbf{N}$		
γ(X)	10.84	6.73	-2.71		
$T_{1,CSA}$ (t _c =10 ⁻¹¹)	130 s	340 s	35 min		
$T_{1,CSA} (t_c = 10^{-9})$	1.3 s	3. 4 s	21 s		

II: The Influence of the magnetic field B_0 (nucleus ¹⁹⁵Pt; $\Delta \sigma = 1000$ ppm):

B ₀ [T]	4.7	7.1	11.7	17.6
$\nu(^{1}H)$ [MHz]	200	300	500	750
$T_{1,CSA}$ (t _c =10 ⁻¹¹)	10 s	4 s	1.6 s	0.7 s
$T_{1,CSA} (t_c = 10^{-9})$	100 ms	40 ms	16 ms	7 ms

III: The Influenc	e of the shielding	g anisotropy (nuc	cleus ¹⁹⁵ Pt; B ₀ :	= 7 T):
Δ σ [ppm]	15	150	1500	15000
$T_{1,CSA} (t_c = 10^{-11})$	5.5 h	3.3 min	2 s	20 ms
$T_{1,CSA} (t_c = 10^{-9})$	3.3 min	2 s	20 ms	0.2 ms

 $\tau_c = 10^{-9}$ s: small polymer;

Spin Rotation Induced Relaxation, T_{1,SR}

Tumbling molecule = bonding electrons move and induce magnetic field around the molecule. Important for small fast rotating molecules with high symmetry:

 SF_6 , PCl_3 , PtL_4

$$\frac{1}{T_{1,SR}} = \frac{2Vk_BTC^2}{3\hbar^2}\tau_j$$

V = moment of inertia

C = SR constant

 τ_j = time in which a molecule changes its angular momentum, e.g. time between collisions

Hubbard (if $\tau_j << \tau_{C_j}$ valid for small molecules below b. p.) τ

$$\tau_j \tau_C = \frac{V}{6k_B T}$$

Contributions of CSA versus SR

	$[Pt(P^tBu_3)_2]$	$[Pt(PEt_3)_3]$	$[Pt\{(P(OEt)_3\}_4]$
symm	linear	trigonal	tetrahedral
T ₁ [s] @ 9.4 T	0.03	2.4	5.6
CSA %	100	50	10
SR %	0	50	90

SR important at high T, high symmetry CSA important at high B_0 , low symmetry

Scalar Coupling Induced Relaxation, $T_{1,SC}$

Two nuclei coupled through J_{AB} and one of them relaxes fast = the fast spin orientation change of B is transferred to A

•exchange of B nucleus (e.g. H exchange)
τ = lifetime of the exchange process

•quadrupolar nucleus B $\tau = T_{2q}$ quadrupolar relaxation time

Spin A
$$\frac{1}{T_{1,SC}} = \frac{8\pi^2 J^2}{3} (S+1)S \frac{\tau}{1+(\varpi_I - \varpi_S)^2 \tau^2}$$

S = spin of B

Paramagnetic Relaxation, $T_{1,e}$

Dipolar relaxation by electron magnetic moment Transfer of unpaired electron density onto a nucleus

O₂ in the solvent TM ions

$$\frac{1}{T_{1,e}} = \frac{4\pi^2 \gamma^2 \eta N_p \mu_{eff}^2}{k_B T}$$

 N_p = concentration of paramagnetic species in m³ μ_{eff} = magnetic moment of e, thousand times larger than magnetic moment of nuclei, even small conc. of paramagnetic species shortens considerably relaxation time, wide lines η = viscosity

Relaxation agent $Cr(acac)_3$ can be added to the solution of a slow relaxing compound (¹³C, ²⁹Si,..) to shorten the acq. delay

Paramagnetic Relaxation, T_{1,e}

 $\frac{1}{T_{1e}} = \frac{(\mu_0 \gamma_I \gamma_S \hbar)^2}{12\pi^2 r^6} S(S+1)\tau_C + \frac{(\mu_0 \gamma_S a_N)^2}{24\pi^2} S(S+1)\tau_e$

dipole-dipole term

contact term

- $\tau_{\rm c}$ = molecular correlation time
- τ_{e} = electron correlation time
- a_N = electron-nucleus spin coupling constant

Relaxation Mechanisms

Approaches to distinguish the various relaxation mechanisms:

- 1. by the strength of the interaction : Paramg > Q > DD > CSA > J
- 2. by the use of isotopic substitution to identify the DD

3. by the field dependence: CSA is proportional to B_0 (applied field). Quadrupole interaction is inversely proportional to B_0

4. by their temperature dependence

Away from Extreme Narrowing Conditions

Theoretical analysis of relaxation processes under conditions which fail to fulfil the requirements of extreme narrowing revealed that dependence of T_1 on τ_c follows frequently a relation

 $\omega = v_{\text{Zeeman}}/2\pi$

This relation allows a more detailed analysis of temperature effects on relaxation.

The Temerature Dependence of T₁ Relaxation

 T_1 is independent of B_0 in the extreme narrowing regime ($\omega^2 \tau^2 \ll 1$) T_1 goes through a minimum (optimum relaxation conditions, $\omega^2 \tau^2 \approx 1$, very efficient relaxation) T_1 depends on B_0 if $\omega^2 \tau^2 >> 1$

Non-equilibrium z-magnetisation recorvers during delay τ $M_z(\tau)$ is converted into observable magnetisation by the read pulse Performing a series of experiments and incrementing τ allows to sample $M_z(\tau)$ at different times T is obtained from a fit of observed signal intensition as a function of τ

 T_1 is obtained from a fit of observed signal intensities as a function of τ_1

Measurement of $T_1(^{51}V)$ for a Vanadium Complex

Relaxation Time T₂

 T_2 relaxation occurs without energy transfer \Rightarrow "entropic process".

The characteristic time constant T_2 is connected with the linewidth:

$$\frac{1}{T_2} = \frac{1}{T_{2,true}} + \frac{1}{T_2^*} = \pi \Delta w_{1/2}$$

 T_2^*

describes the effect of magnetic field inhomogeneities, i.e. mostly bad shimming

Relaxation Time T₂

For most I = n/2-nuclei, $1/T_{2,true} >> 1/T_2^*$

T₂ may be determined directly from measured linewidth: $\pi \Delta w_{1/2} = 1/T_2 \approx 1/T_{2,\text{true}}$

For I = 1/2-nuclei, $1/T_{2,true} \le 1/T_2^*$ T₂ must be measured by dedicated experiments (spin echo or CPMG)

Relaxation Time T₂

Mg. field inhomogeneity refocused at the end of the 2nd delay. Echo after the 2*t* delays - the size of this echo will only be affected by the spin-spin relaxation processes

²³Na Relaxation Time

Methyl methacrylate (MMA) with NaClO₄ in propylene carbonate (PC) Polymerization initialized with UV radiation and the BBE initiator ²³Na nucleus (I = 3/2) has a large electric quadrupole moment, which causes its extreme sensitivity to the nearest neighbor coordination T_1 - the inversion recovery

 T_2 - the spin-echo technique

R. Korinek, J. Vondrak, K. Bartusek, M. Sedlarikova J Solid State Electrochem (2013) 17:2109