Spin System Notation

Capital letters A, B, C, M, A, X, Y,

Same letter = same chemical shift $(A_3, B_2, X_6, ...)$

>Different letters = different chemical shifts

Letters close in the alphabet (A, B, C, ...) J [Hz] of the same magnitude as Δv [Hz]

Letters separated in the alphabet (A, M, X,...) large separation of chemical shifts -different nuclei (¹H, ³¹P, ¹⁹⁵Pt,...) -same nuclei but Δν [Hz] much larger than J

 $!! \Delta v [Hz]$ depends on $B_0 !!$

Two situations:

a) Complete equivalence =

chemical shift equivalence (isochronous nuclei)

+ magnetic (spin-coupling) equivalence (isotachous)

<u>Magnetic equivalence = each member of one group of spins is</u> <u>coupled equally to all members of any other group</u>

 $A_2B_2, A_2X_2,...$

b) Chemical shift equivalence, magnetic inequivalence

AA'BB', AA'XX', AA'A''XX'X'',

Prime vs. Bracket Notation

AA'BB' A₂B₂ AA'BXX' AA'X₃X₃' $[AB]_2$ $[A_2B_2]$ $[AX]_2B$ $[AX_3]_2$

AA'A"XX'X"X"X4X⁵

[A[X]₂]₃

31P & 19F NMR

BB'AA'CC'A''A'''B''B''

[[AB]₂C]₂

¹H NMR

considering isotope shift:

13C NMR