

Bisphenols

Jiří Palát

Modern Methods for Analyses of Organic Pollutants

Outline

- Introduction
- Applications of bisphenols
- Bisphenol A and its alternatives
- Exposure
- Intrumental methods
- Legislation
- Confusions

What are BISPHENOLS?

- Ubiquitous organic compounds with 2 hydroxyphenyl groups
- ▶ Bisphenol A the most common
- Other important bisphenols B, F, S
- Pseudo-persistent polutants
- Endocrine disruptors

Bisphenol S

Bisphenol F

Bisphenol A

Bisphenol B

Applications of Bisphenols

- Basic building blocks for polycarbonate plastics (70%) and epoxy resins (30%)
- Polycarbonate plastics: returnable beverage bottles, infant feeding bottles, storage containers
- Epoxy resins: coatings and linings for food and beverage cans

Bisphenol A

- Use as monomer for plastic production since 1990s
- Global Bisphenol A production volume 2011: over 5 million tons
- ▶ Endocrine disruptor → estrogen activity
- Estrogen activity 5 times lower than 17β-estradiol
- Adverse effects: impact on sexual development, reproduction potency, health effect (especially cancers of sexual organs but also cardiovascular diseases and diabetes)
- ▶ TDI by EFSA 0,04 mg/kg of bodyweight per day
 - *TDI tolerable daily intake
 - EFSA European Food Safety Authority

Occurrence

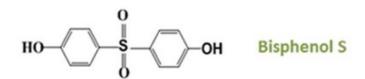
Detected in several matrices:

water
soils and sediments
sewage
indoor dust
food samples
beverages
thermal paper
human blood, breast milk, urine

Bisphenol A – concentrations

Country	Sample size	Detection freq. (%)	Range	Refs.
Canned food (ng/g)				
US	78	91	<2-730	Noonan et al. (2011)
US	97	59	<0,2-65	Schecter et al. (2010)
Canada	78	99	<0,6-534	Cao et al. (2010)
Japan	48	92	<1-842	Sajiki et al. (2007)
Korea	61	64	<3-136	Lim et al. (2009a)
Belgium	21	100	0,2-169	Geens et al. (2010)
Beverage cans				
(ng/ml)				
Spain	11	64	<0,05-0,61 Gallard-Ayala et al. (2010)	
Canada	69	100	0,03-4,5	Cao et al. (2009a)
Belgium	45	91	<0,02-8,1	Geens et al. (2010)
Portugal	30	70	<0,01-4,7	Cunha et al. (2011)

Bisphenol A alternatives


Bisphenol A

Exposure change?

Bisphenol A Alternatives

Other Alternatives, etc.

Bisphenol A alternatives

- Bisphenol S
 - Main alternative of bisphenol A
 - Higher thermal stability than bisphenol A
 - Use in production of baby bottles and thermal paper
- Bisphenol B
- Bisphenol F

How does BPA get into the body?

- Primary source through the diet
 - BPA in food and beverages accounts for the majority of daily human exposure
 - Leach into food from coatings and other consumer products
- Air, dust and water are other possible sources of exposure
- ▶ TDI by EFSA 0,04 mg/kg of bodyweight per day
 - *TDI tolerable daily intake
 - EFSA European Food Safety Authority

Instrumental methods

- ▶ HPLC-MS
- HPLC-MS/MS
- GC-MS
- GC-MS/MS
 - With various ionization techniques

EU framework

- Regulation EU 10/2011 on plastic materials and food contact materials
 - BPA is permitted for use in food contact materials in the European Union (EU)
 - a national restriction on the use of BPA in all food contact materials –
 France
 - A national restrictions on the use of BPA in food contant materials for children – Sweden, Denmark, Belgium
- Directive 2011/8/EU restricting the use of bisphenol A in plastic infant feeding bottles

Bisphenol A under REACH

- Summer 2016 demand to identify as an SVHC based on the reprotox 1B classification
- August 2016 reprotox 1B classification entered into force
- March 2018 reprotox 1B for BPA will apply
- Not for BPA as an intermediate!
- Not direct impact for manufacture uses of BPA (polycarbonate materials)

*SVHC – substances of very high concern

What can I do to prevent exposure of BPA?

- Don't microwave polycarbonate plastic food containers
- Reduce your use of canned foods
- Choose glass, porcelain or stainless steel containers
- Use BPA free baby bottles

Conclusions

- Widespread problem BPA and its alternatives deserve special attention
- Much more focus on analysis in human matrices
- Focus on toxicological effects of bisphenols, especially on its alternatives
- Really lack of data on toxicological informations of alternatives

Thanks for your attention!

Any questions?