

	Cross-Correlation Spectroscopy (CCS)	
	Principle	Time-correlated single photon counting (TC-SPC) with reference signal from MDs itself
	Parameters	Δt dowin to 12 ps Gain up to 10 ⁸ $\Delta\lambda$ about 0.03 nm
	Pecularities	 → highest sensitivity → temporally and spectrally resolved investigation of repetitive, but erratic appearing discharge events → averaging over many MDs (stability required) → 2D spatial resolution possible
INP		High Gain Photomultiplier (PMT)

	Summary		
	 Fast optical and spectroscopic methods = powerfull tools for discharge diagnostics 		
	• CCS as high sensitive method for spectroscopic investigation \rightarrow Microdischarge development with high resolution (Δt , Δx , $\Delta \lambda$) \rightarrow Estimation of plasma parameters (E/n; τ_{eff} , $n_e/n_{e,max}$)		
	 Microdischarge development in barrier discharges: (1) Townsend-prephase (2) cathode directed ionization front (pos. streamer) (3) decay phase 		
INP	 Quantified determination of positive and negative surface charges by Pockels-effect → positive and negative surface charge density profiles significantly different due to the electron mobility → positive and negative charges can exist simultaneously → memory-effect important for discharge re-ignition 		

