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ABSTRACT: Ewald summation, which has become the de facto standard for computing
electrostatic interactions in biomolecular simulations, formally requires that the simulation box is
neutral. For non-neutral systems, the Ewald algorithm implicitly introduces a uniform
background charge distribution that effectively neutralizes the simulation box. Because a uniform
distribution of counter charges typically deviates from the spatial distribution of counterions in
real systems, artifacts may arise, in particular in systems with an inhomogeneous dielectric
constant. Here, we derive an analytical expression for the effect of using an implicit background
charge instead of explicit counterions, on the chemical potential of ions in heterogeneous
systems, which (i) provides a quantitative criterium for deciding if the background charge offers
an acceptable trade-off between artifacts arising from sampling problems and artifacts arising
from the homogeneous background charge distribution, and (ii) can be used to correct this
artifact in certain cases. Our model quantifies the artifact in terms of the dif ference in charge
density between the non-neutral system with a uniform neutralizing background charge and the
real neutral system with a physically correct distribution of explicit counterions. We show that
for inhomogeneous systems, such as proteins and membranes in water, the artifact manifests itself by an overstabilization of ions
inside the lower dielectric by tens to even hundreds kilojoules per mole. We have tested the accuracy of our model in molecular
dynamics simulations and found that the error in the calculated free energy for moving a test charge from water into hexadecane,
at different net charges of the system and different simulation box sizes, is correctly predicted by the model. The calculations
further confirm that the incorrect distribution of counter charges in the simulation box is solely responsible for the errors in the
PMFs.

■ INTRODUCTION

Molecular dynamics (MD) simulations have come of age. Since
the first applications of MD on protein systems more than three
decades ago,1,2 advances in computer power, algorithmic
developments, and improvements in the accuracy of the
applied interaction functions have established MD as an
important predictive technique to study dynamic processes at
atomic resolution.3,4 An important improvement in accuracy is
achieved by the use of lattice summation methods for the
evaluation of the Coulombic interactions in simulation boxes
subject to periodic boundary conditions. In such approaches,
the Coulomb interactions between all pairs of charged particles
are accounted for, including interactions between the charges in
the central box and their periodic images,
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where we used Gaussian units, as in the remainder of this
article. Here, N is the number of charged particles in the central
simulation box, n = (nx, ny, nz) is the box index vector. The
prime indicates that if i = j the term n = 0 should be omitted.
The distance rij,n is the real distance between the charges and

not the distance to the nearest periodic image. Due to the long-
range nature of the Coulomb interaction, this sum is only
conditionally convergent,5 and it converges very slowly. By
using the decomposition 1/r = erfc(αr)/r + erf(αr)/r, the
Ewald summation speeds up the convergence by transforming
the slowly converging series (1) into a short-range term that
converges quickly in real space, a long-range smoothly varying
term that converges quickly in reciprocal space, and a
correction term:6−8
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where Vbox is the volume of the unit cell, α the Ewald splitting
parameter that determines the relative contributions of the
direct and reciprocal sums, and k = (kx, ky, kz) a vector in
Fourier space. The Fourier transform of the real-space charge
density ρ(r) = ∑i = 1

N qiδ(r − ri) is given by
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Here, we only consider the case of so-called tinfoil boundary
conditions, that is, our periodic lattice is surrounded by a
conducting medium. Otherwise, also a correction term for the
box dipole would be required.9 Although originally introduced
as a means to compute the energy of a infinite ionic crystal,6 the
Ewald technique is commonly used for simulations of
noncrystalline systems as well.
If the real and reciprocal sums are sufficiently converged, the

electrostatic energy is independent of α for neutral simulation
boxes. If the simulation box is not neutral, an additional
correction term is required to guarantee that the electrostatic
energy does not depend on the choice of α, which is discussed
below. In practice, both sums are truncated such that the overall
accuracy is below a given threshold. If, on the one hand, α is
chosen such that the real space contribution vanishes at half the
simulation box length, the direct sum includes all minimum
image pairs and scales as N2. In this situation, the number of
terms needed in the reciprocal sum is of order N. If, on the
other hand, α is chosen such that the real-space contribution
vanishes at a predefined cutoff, which is typically much shorter
than half the box length, the direct sum is of order N, but now
the reciprocal sum is of order N2. The optimal scaling, which
can be achieved by varying α, is of order N3/2,10 which
precludes the application of the standard Ewald approach in
simulations of large systems. As a consequence, widespread use
of the Ewald summation technique had to await the
development of more efficient grid-based approaches with
NlnN scaling, such as the particle-particle-particle-mesh
(PPPM),11 particle-mesh Ewald (PME),12 smooth particle-
mesh Ewald (SPME),13 or Fast Fourier Poission methods.14

Although originally developed for point charges, these methods
have since then been extended to treat also point dipoles,15

higher order multipoles,16 continuous charge distributions and
quantum mechanics/molecular mechanics (QM/MM) poten-
tials.17,18 In addition, alternative approaches for treating long-
range electrostatic interactions in molecular simulations have
been developed, such as tree code,19 fast multipole,20 or
isotropic sum methods.21 As the Ewald summation has
remained the most popular method in biomolecular simu-
lations, we have only analyzed artifacts associated with this
method. All simulations in this work were conducted with the
SPME method for computational efficiency, but the con-
clusions are valid for all variants of the Ewald technique.
Although the Ewald approach formally requires the system to

be charge neutral, it can be applied to a charged system as well.
As directly follows from eq 6, the k = 0 component of the
density is equal to the sum of the charges in the simulation box:
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Leaving this term out upon back transformation causes a
uniform shift in the (real-space) charge density:
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Thus, if the total charge is nonzero, the omission of the k = 0
term introduces a uniform background (BG) charge density
ρBG = −∑iqi/Vbox in the box that effectively neutralizes the
system. In that case, also a correction is required to account for
interactions between the point charges and the background
charge in the real space sum.22 The latter is achieved by shifting
the electrostatic energy (eq 2) by a constant that depends on
the Ewald splitting parameter:
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such that when averaged over the box volume, the Ewald
potential is zero. This correction also ensures that the potential
energy of the charged system becomes independent of a
specific choice for α.
Because the background charge is uniformly distributed and,

hence, does not exert a force on charged particles, it is
sometimes considered as a acceptable counter charge
distribution.23 The background charge has an effect on the
energy and pressure, but these artifacts can be corrected in
homogeneous systems, either on-the-fly or a posteriori.24,25

Furthermore, it was shown that accurate hydration free energies
of ions require only corrections for the finite volume of the ion
and for interactions with the ion’s periodic images and the
background charge distribution.22,26−33 It may thus seem that,
for a homogeneous system, the uniform background charge
reflects a fully converged distribution of counterions and
therefore offers a realistic and desirable setup. Indeed, several
simulation studies have been reported in which the system was
not neutralized by adding a suitable number of ions with
opposite charge, but with the uniform background charge
instead. In some cases, the use of the background charge
distribution to neutralize the system may even be essential, as,
for instance, (i) when calculating absolute solvation free
energies of charged species by means of free energy
perturbation techniques, (ii) if the ion parameters are not
compatible with the protein or lipid force field34 or (iii) if the
ion distribution converges too slowly.
The practice of neutralizing charged systems by the implicit

background charge has not been limited to homogeneous
systems with a single dielectric, but also heterogeneous systems
with a nonhomogeneous dielectric constant, such as lipid
bilayers in water, have been simulated this way.34 However, for
systems with a nonhomogeneous dielectric constant, a
uniformly distributed counter charge density is unphysical,
because in reality the counterions would be found mostly inside
the higher dielectric. Therefore, in contrast to homogeneous
systems, artifacts may arise if a uniform background charge is
used to neutralize nonhomogeneous systems. To decide
whether also for nonhomogeneous systems the background
charge offers a reasonable trade-off between sampling problems
and accuracy, we have investigated the distribution of a charged
particle in non-neutral inhomogeneous systems and compared
the distributions to the situation in which explicit ions were
added to neutralize these systems. As the partitioning of
charges affects many important properties, such as protein
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stability, binding free energies or pKa values, we consider the
partitioning of ions a crucial test for the validity of using a
background charge to neutralize a system in MD simulations.
In the first part of this work, we introduce a theoretical

model that quantifies the effect of a uniform background charge
on the distribution of a test charge in a non-neutral
heterogeneous system. The model, which is based on an
analytical solution of the Poisson equation, demonstrates that
the background charge may artificially cause the charged
particle to favor the lower dielectric. The model can also
quantitatively predict the effect of this artifact in realistic
simulation systems, such as solvated lipid bilayers and proteins.
In the second part, we tested the model with atomistic MD
simulations. In these simulations, we have computed potentials
of mean force (or free-energy profiles) associated with moving
a charged particle from water with a high dielectric into a
hexadecane slab with a low dielectric, using different numbers
of positive and negative ions in the simulation boxes to create a
net overall charge. The results of these simulations show that
the uniform background charge distribution artificially changes
the potential of mean force and that our theoretical model
correctly quantifies this artifact. We have performed thermody-
namic integration as well in order to validate this observation.
Our simulations furthermore confirm that the artifact is not due
to a direct interaction of the test particle with the background
charge but due to an incorrect distribution of the charge in the
box. Because the error in the partitioning of charged particles
can be up to tens or even hundreds of kilojoules per mole, we
recommend to neutralize the simulation box with explicit ions.
We realize that the latter may not always be possible, for
instance, if the total charge of the system changes during the
simulation or if sampling the ions is computationally
prohibitive. In these cases, however, our model not only
provides a quantitative criterium to decide whether using the
background is reasonable but also offers a means to correct for
the artifacts a posteriori.

■ METHODS

Potentials of Mean Force (PMFs) for moving a test particle
from water into a hexadecane slab were computed using the
technique of umbrella sampling.35 For that purpose, a
hexadecane/water simulation system box was taken from
previous research,36 which contained 80 n-hexadecane and
1104 TIP4P water molecules37 (Figure 1A). The system was
equilibrated for 5 ns and simulated for another 15 ns under
equilibrium conditions. In order to investigate the effect of the
box size of a non-neutral system, the hexadecane/water box was
extended in z-direction (perpendicular to the hexadecane layer)
and filled with additional water, yielding systems containing
2348 and 4175 water molecules (Figures 1B/C). These systems
were equilibrated for another 500 ps. The hexadecane
molecules were modeled with the aliphatic atom types of the
Berger et al. lipid force field.38 For the test particle, we used a
potassium ion with e/4 charge (σ = 0.49463 nm, ε = 1.37234 ×
10−3 kJ/mol). The fractional charge was chosen to avoid that
the ion drags water molecules into the hexadecane slab, as
frequently occurs for ions with integer charge. Such dragging of
water molecules may lead to very slowly converging PMFs.
We used two approaches to control the uniform background

charge density. In the first approach, we used the smallest
simulation system 1A and varied the number of ions. In total,
four PMFs were computed:

(i). with one Na+Cl− and neutralized with a counterion of
−e/4 (denoted hex-neutral, total system charge Q = 0);

(ii). with one Cl− ion (hex-1Cl, Q = −0.75e);
(iii). with one Na+ ion (hex-1Na, Q = 1.25e); and
(iv). with two Na+ ions (hex-2Na, Q = 2.25e).

In addition, we also checked the influence of the spatial
distribution of the counter charge distribution by

(a) mimicking the uniform background charge by adding
small partial charges on all hexadecane and water atoms
in the system, compensating the total net charge and thus
creating a neutral system. For this purpose, the partial
charges of all hexadecane and water atoms were changed
by δqhex = −Q/(Vboxρhex) and δqw = −Q/(Vboxρw),
respectively, where ρhex and ρw denote the atom number
density in the hexadecane and water phase, respectively.
Note that this configuration represents an unphysical
situation, because counter charge would under realistic
conditions not be expected inside the hexadecane. We
refer to this configuration as an explicit uniform
background charge.

(b) creating an uniformly distributed counter charge only in
the water phase by adding the partial charge δqw = −Q/
Nw to all water atoms, where Nw is the number of water
atoms. We refer to this configuration as an explicit water-
only background charge.

By modifying the partial charges we change the force field
model for the molecules. Although this might affect several
properties, including the dielectric constant, we expect the
effects, if any, to be very small, because the maximum changes
in the partial charges amounts to 2 × 10−4e. Furthermore, the
perfect agreement between the simulation with the explicit

Figure 1. (A) Hexadecane/water simulation system. The probe
particle of charge +e/4 is shown as a green sphere. (B/C) Larger
hexadecane/water simulation systems.
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background charge distribution, either on all atoms or on the
water atoms only, and the corresponding simulations with an
implicit background charge distribution or counterions,
suggests that the effects are indeed negligible.
In the second approach, we used the box volume to control

the density of the background charge. In these simulations, no
additional ions were included, so that the background charge
arises solely from the test particle itself. We varied the box
volume by changing the box height (Lz) from 8.8 to 13.2 nm
and 19.78 nm (Figures 1A−C). For comparison, we also
computed the PMFs after neutralizing the boxes by adding the
counterion with a charge of −e/4.
All simulations were carried out using the Gromacs

simulation software.39 Electrostatic interactions were calculated
at every step with the SPME method, using a real-space cutoff
at 1 nm, a maximum spacing of 0.12 nm for the fast Fourier
transform grid, a fourth-order (cubic) B-spline interpolation
scheme, and tinfoil boundary conditions.12,13 Short-range
repulsive and attractive dispersion interactions were described
together by a Lennard-Jones potential, which was cut off at 1.0
nm. The SETTLE40 algorithm was used to constrain bond
lengths and angles of water molecules, and LINCS41 was used
to constrain all other bond lengths, allowing a time step of 2 fs.
The temperature was kept constant by coupling the system to a
Nose−́Hoover thermostat (τ = 2.5 ps).42,43 In the simulations
that were done for comparing the PMFs with the results from
thermodynamic integration (TI), the volume was kept constant
to facilitate convergence. All other PMFs were derived using
the Parrinello−Rahman pressure coupling scheme which was
only applied in the z-direction (τ = 5 ps).44 In simulations
containing a counterion of charge −e/4 to neutralize the test
particle, the charge of one randomly selected water molecule
was set to −e/4 by adding −e/4 to the oxygen atom. No atoms
were restrained during the simulations (except for the test
particle during umbrella samling). Simulation snapshots were
taken at random times from equilibrium simulations and were
subsequently used as starting configurations for the umbrella
sampling simulations.
The hexadecane/water system was divided into ∼340

sections with a distance of 0.25 Å between adjacent sections.
Each section corresponded to one umbrella window. For each
umbrella window, the test particle was inserted into the
structure close to the position corresponding to the minimum
of the umbrella potential. During insertion, a distance of at least
1 Å was kept to nearby atoms to ensure a successful energy
minimization. The z-coordinate (membrane normal) of the
particle was used as reaction coordinate, where z = 0
corresponds to the center of mass of all hexadecane atoms.
The particle was restrained with an harmonic umbrella
potential (k = 800 kJ mol−1 nm−2). Umbrella simulations for
different box heights were carried out for 5000 ps, and all other
umbrella simulations for 500 ps. The first 100 ps of each
simulation was used for equilibration and the rest for analysis.
The 340 umbrella histograms were collected from the
simulations and the PMF was computed using a cyclic
implementation of the weighted histogram analysis method
(WHAM),45 as implemented in the g_wham software.46 The
statistical uncertainty of the PMFs were estimated using the
Bayesian bootstrap of complete histograms.46 That procedure
does not require the calculation of accurate autocorrelation
times but considers only complete histograms as independent
data points, yielding a robust error estimate. The 67%

confidence levels were typically ∼1.5 and 0.4 kJ/mol based
on the 500-ps and 5000-ps simulations, respectively.
TI was used to compute the free energy for creating a test

ion of charge e/4 (a) at the center of the hexadecane slab or (b)
at the center of the water slab. Accordingly, the position of the
test ion was restrained in z direction during TI simulations (k =
500 kJ mol−1 nm−2). Two sets of TI simulations were done. In
the first set, no counterion was generated, and the system was
hence neutralized by an implicit background charge. In the
second set, the system was kept neutral by generating a counter
charge of −e/4 on the oxygen atom of a randomly chosen water
molecule. Apart from the test ion and, optionally, the
counterion, no other additional ions were present.
TI calculations were conduced in two steps: (i) turn on

Lennard-Jones interactions between the test ion and all other
atoms; (ii) turn on the Coulomb interactions. TI was carried
out along an alchemical reaction coordinate λ, where λ = 0 and
λ = 1 correspond to the initial (A) and final states (B),
respectively. The potential energy function was linearly
interpolated between these states: V(λ) = (1 − λ)VA + λVB.
Step i and ii were decomposed into 64 equally spaced λ-steps,
and each λ-step was simulated for 2000 ps. The volume was
kept constant, while all other simulation parameters were
chosen as explained above. Free-energy differences were
subsequently computed by integrating ⟨∂V/∂λ⟩λ from λ = 0
to λ = 1. Here, ⟨·⟩λ denotes the average computed from the
respective trajectory run at λ, after removing the first 200 ps for
equilibration. Statistical errors for ⟨∂V/∂λ⟩λ were computed
using binning analysis,47 which subsequently yields the error for
ΔG via Gaussian error propagation.

■ RESULTS
Analytical Model for the Effect of the Charge

Distribution on the PMF of a Test Charge. First, we
derive an expression to quantify the effect of omitting explicit
counterions on the potential of mean force (PMF) of a single
test charge in a model system composed of a high and a low
dielectric. Typical examples in a biological context would be a
protein or a lipid bilayer solvated in water. We considered two
situations. In the first situation, the test charge was neutralized
by adding explicit ions inside the higher dielectric. In the
second situation, a uniform background charge was used for
neutralizing the system. We varied the position x0 of the test
charge and computed the total electrostatic energy of these
systems. Our calculations show that the Poisson equation, or,
equivalently, Gauss’ law, can be used to quantify the
background charge effect in terms of the dif ference in charge
density between these two systems. Because Gauss’ law is
sufficiently simple, it allows one to gain intuitive insight and to
derive analytic expressions for the background charge effect for
simple geometries.
For the charge densities of these two systems we take

ρ ρ ρ= +x x x x x( ; ) ( ) ( ; )c t1 0 ,1 0 (10)

ρ ρ ρ= +x x x x x( ; ) ( ) ( ; )c t2 0 ,2 0 (11)

Here, the test charge density ρt(x; x0) is localized around x0,
and for a point-like test charge q considered here, it is given by
ρt(x; x0) = qδ3(x − x0). The densities ρc,1(x) and ρc,2(x) denote
the counter charge distributions (including the background
charge) that neutralize the systems, so that the total charge of
the box is zero: ∫ Vboxd

3x ρ1,2(x; x0) = 0. Although ρ1,2(x; x0) are
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kept general in the following calculation, ρc,1(x) and ρc,2(x) are
typically the counter charge density of the implicitly and
explicitly neutralized systems, respectively. Our key approx-
imation is that the counter charge densities ρc,1 and ρc,2 do not
depend on the position (x0) of the test particle. We believe this
assumption is valid, because the mobile charges that adapt to
the position of the probe charge are inside the high-dielectric,
where such charges do not build up a strong ionic atmosphere,
due to shielding. We also do not consider the presence of an
ionic atmosphere inside the lower dielectric, because of the high
free energy penalty for transferring multiple ions from the
higher into the lower dielectric medium. These assumptions are
validated below by comparing the result to the computed
potentials of mean force (PMFs).
Next, the difference between the two systems in terms of

charge density, electrostatic potential, and potential energy of
the test charge is considered. We introduce the charge density
difference,

δρ ρ ρ ρ ρ= − = −x x x x x x x( ) : ( ; ) ( ; ) ( ) ( )c c1 0 2 0 ,1 ,2 (12)

which is independent of the test charge position x0.
Furthermore, by concentrating on differences between the
two systems, self-interaction effects due to periodicity will
cancel, which facilitates the comparison. The difference
between the electrostatic potentials of the two systems is

δΦ = Φ − Φx x x x x( ) ( ; ) ( ; )1 0 2 0 (13)

Using the linearity of the Poisson equation, we can write
δΦ(x) as

ε δ πδρ∇ ∇ Φ = −x x x[ ( ) ( ( ))] 4 ( ) (14)

where ε(x) denotes the position-dependent permittivity. The
difference in the electrostatic energy per unit cell between the
two systems is

δ = −V V Vx x x( ) ( ) ( )0 1 0 2 0 (15)

∫ ρ ρ= Φ − Φd x x x x x x x x x
1
2

[ ( ; ) ( ; ) ( ; ) ( ; )]
V

3
1 0 1 0 2 0 2 0

box

(16)

∫ ρ δ δρ= + Φ + ΦC d x x x x x x x
1
2

[ ( ; ) ( ) ( ) ( ; )]
V t t

3
0 0

box

(17)

∫ ρ δ= + ΦC d x x x x( ; ) ( )
V t

3
0

box (18)

For the second to last equality, eqs 12 and 13 were used, as
well as the linearity of the Poisson equation, allowing one to
introduce the potential Φt(x; x0) generated by the charge
density ρt(x; x0). The constant C is independent of x0 and can
therefore not be detected when comparing the PMFs of the
two systems. The two terms in the integral of eq 17 are equal,
as can be shown using eq 14 and two times integration by parts.
Equation 18 has important consequences: First, the effect of

an implicit background charge, as introduced by the Ewald
equations for a non-neutral system (eqs 3 and 9), is determined
solely by the dif ference in charge densities between a non-
neutral system with a neutralizing background charge, and a net
neutral system with a realistic distribution of explicit counter-
ions. Second, the effect on the electrostatic energy in the box
(δV(x0)) can be computed from the electrostatic potential
(δΦ(x)) generated by the difference between the two charge

distributions (δρ(x); see eq 14). For a point-charge test
particle, which we considered here, eq 18 reduces to

δ δ= + ΦV C qx x( ) ( )0 0 (19)

Since we are only interested in the change of electrostatic
energy as a function of the position x0 of the probe particle, the
undetermined constant C can be set to a convenient value (see
below).

Analytic Expressions for Slab-like or Spherical Geo-
metries. Here, we provide explicit expressions for eq 19 for (a)
a low-dielectric slab surrounded by water, corresponding to a
lipid membrane geometry, and (b) for a low-dielectric sphere in
water, resembling a solvated globular protein or a solvated
micelle.

Slab Geometry. Let Q denote the nonzero total charge of a
slab-like model system, including the charge of the test particle.
The slab is oriented in the x−y plane. In model systems 1 and
2, Q is either implicitly neutralized or explicitly neutralized by
counterions, respectively. The explicit counterions are assumed
to be homogeneously distributed in the water phase. The
countercharge densities are thus given by

ρ ρ= = −z Q V( ) /c ,1 BG box (20)

ρ = − − Θz Q V z( ) / (1 ( ))c w,2 (21)

where Vw denotes the volume of the water phase, and Θ (z) is
an indicator function that equals unity in the low-dielectric and
zero in the water phase. The counter charge density difference
is

δρ ρ= − Θ − + Θ− −z Q z V V z( ) (1 ( ))[ ] ( )w
1

box
1

BG (22)

Applying Gauss’ law within the low-dielectric slab (of
thickness 2d, centered around zc) thus yields

δ π ρ ε= − −

| − | ≤

V z q d z z

z z d

( ) 2 [ ( ) ]/ ,

if

c

c

slab 0 BG
2

0
2

0 (23)

corresponding to the text-book equation for the electrostatic
potential across a charged slab. Here, z0 is the position of the
test charge q, and ε denotes permittivity of the low-dielectric.
The undetermined constant C was chosen such that δVslab(zc ±
d) = 0 at the water/hydrophobic interface. Because of the much
higher permittivity of water, δV ≈ 0 in the water phase. To
express the energies in units common for MD simulations, an
additional factor of 1/4πε0 must be applied to eq 23, where ε0 =
5.728 × 10−4 e2/(nm kJ/mol) is the vacuum permittivity.
We now apply the above analysis to quantify the effect of

omitting explicit counterions in lipid membrane simulations.
From eq 23 we computed δV(x0) for a unit test charge q = e,
while assuming a total charge of QBG = −1e for the background
charge. Figure 2A presents δV(z0) for two common lipid
membrane systems, as computed from eq 23. Here, we
considered membranes of pure DMPC or pure POPE (128
lipid molecules plus 27.5 water molecules per lipid). The
thickness 2d of the hydrophobic core of the DMPC and the
POPE membrane equals approximately 3.0 and 4.0 nm,
respectively. Compared to simulations with explicit counter-
ions, the charge is stabilized by approximately 8 and 12 kJ/mol
at the center of the membrane, respectively. Thus, if (a)
multiple non-neutralized ions are present, (b) the test particle
carries multiple unit charges, or (c) a smaller lipid membrane
patch is simulated, the stabilization may readily reach tens or
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hundreds of kilojoule per mole. Below, we compare the results
of the analytical model to the results of the atomistic PMF
calculations.
Spherical Geometry. Applying the analysis we used above

for the slab geometry to a low-dielectric sphere of radius R
solvated in water yields

δ π ρ ε= − ≤V r q R r r R( ) 2 ( )/3 , ifsphere 0 BG
2

0
2

0 (24)

where r0 is the distance of the test charge from the center of the
sphere.
Figures 2B and C present δV(r0) for spherical low-dielectrics

of radius R solvated in water, corresponding to a spherical
protein (Figure 2B, ε = 4) and to a spherical micelle or oil
droplet (Figure 2C, ε = 1). The curves were computed
following eq 24, and the three box dimensions were assumed to
equal 2R + 1.5 nm, such that the protein would have a distance
of 1.5 nm to the next periodic image. Here, the effect of the
background charge is smaller because of the larger surface-to-
volume ratio as compared to a slab geometry. For the protein,
the effect is further reduced by the higher permittivity.
Before we end our discussion of the analytical model, we

remark that the expressions derived here to quantify the artifact
of the background charge for a slab and sphere geometry are
related to the expressions proposed by others for correcting
solvation free energies of ions in water.22,26,28−31 The
difference, however, between our model and those correction
terms is that while the correction terms were derived for a
single ion in a periodic box with a homogeneous dielectric
constant (water), we include the inhomogeneity of the system
by using a position dependent dielectric constant.

PMFs for Neutral and Non-neutral Systems. Our
analytical model predicts that the main consequence of using
an implicit background charge to neutralize a heterogeneous
system is an incorrect partitioning (or distribution) of mobile
ions between high- and low-dielectric phases. To verify if this
indeed occurs in MD simulations, we have computed the PMF
for a test particle of charge e/4 (e = |e|) across four hexadecane/
water slab systems with varying net charge. The PMF G(z) is
directly related to the partitioning via the Boltzmann factor:
exp[−G(z)/kBT], where kB and T denote the Boltzmann
constant and the temperature, respectively. The total charge of
the simulation box was 0, −0.75e, 1.25e, and 2.25e for systems
i−iv (see Methods).
The PMFs for systems i−iv are shown in Figure 3A. Here,

the flat region at |z| > 3 nm corresponds to bulk water, and |z| <

2 nm corresponds to positions inside the hexadecane. The
PMFs demonstrate that non-neutralized charges in bulk water
have indeed a drastic influence on the distribution of the test
charge in the hexadecane/water system. In our test system, only
two unit charges are sufficient to yield a PMF with the
minimum at z = 0, indicating a preferred position of the test
particle at the center of the hexadecane slab (Figure 3A, blue
curve). Comparing the PMFs shows that a charge difference of
1e in bulk water induces a difference in the PMF by ∼15 kJ/
mol. According to eq 23, the effect will be roughly four times
stronger for a test particle that carries a full unit charge.

Effect of Spatial Distribution of Counter Charge. So
far, the background charge was a purely mathematical term due
to the omission of the k = 0 term in the Ewald summation. To

Figure 2. Effect on electrostatic potential of a unit test charge q = e
due a uniform background charge of −e; (A) for two different lipid
membranes (ε = 1); (B) for three spherical protein of different radii R
model (see legend, ε = 4); and (C) for a spherical micelle or oil
droplet or different radii R (ε = 1).

Figure 3. (A) PMFs of a test particle of charge +e/4 across the
hexadecane/water slab. Neutralized system (black) and non-neutral
systems with one Cl− (red), one Na+ (green), and two Na+ ions
(blue). (B) PMFs in explicitly neutralized systems. Solid lines: systems
neutralized by altered partial charges of water and hexadecane atoms,
corresponding to an explicit uniform background charge. Dashed lines:
systems neutralized by altered partial charges of water atoms only,
corresponding to a background charge only in the water phase.
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investigate whether indeed the uniform background charge is
responsible for the observed discrepancies in the PMFs, as well
as to rationalize the effect of the implicit background charge in
more intuitive (real-space) terms, we have computed two
additional sets of PMFs in which we introduced an explicit
background charge by adding small partial charges to the atoms
in the system (Methods). We considered two situations. In the
first, the counter charge is added to all atoms of the system,
whereas in the second situation the counter charge is added to
the water molecules only.
The PMFs for the systems with the explicit uniform

background charge distributions are shown in Figure 3B as
solid lines. The PMFs are nearly identical to the PMFs of the
non-neutral systems in Figure 3A, demonstrating that non-
neutralized ions in the bulk water (Figure 3A) lead to similar
results as an unphysical uniform distribution of the counter
charge (Figure 3B, solid lines).

In contrast, the PMFs for systems in which an explicit
background charge is present only inside the water phase
(Figure 3B, dashed lines), are essentially identical to the PMF
of the neutral system hex-neutral (Figure 3B, black). Taken
together, the PMFs in figures 3A/B demonstrate that the spatial
distribution of the counter charge (whether it is uniformly
distributed over the whole box, or only over the water phase)
has a large influence on the distribution of the charged test
particle. In systems with an inhomogeneous dielectric constant,
such as the hexadecane/water slab shown here, the uniform
background charge therefore represents an unphysical counter
charge distribution that causes severe artifacts on the
partitioning of ions in the system.

Agreement with the Analytic Model. To illustrate the
application of eqs 18 to 23 for our test charge, we show in
Figure 4A−A″ the charge density ρc,1(z) and ρc,2(z) for the
systems hex-1Na and hex-neutral, respectively, as well as the

Figure 4. Analytic calculation of the background charge effect on PMFs using Poisson equation. (A) Counter charge density ρc,1(z) in the system
hex-1Na, composed of the explicit Na+ ion in water (|z| > 2 nm) plus the uniform background charge. (A′) ρc,2(z) in the neutral system hex-neutral,
which is nonzero only in the water phase. (A″) Difference δρ(z) of counter charge density between the system hex-1Na and the system hex-neutral.
(B) Potential energy difference δV(z0) between the three non-neutral systems (see legend) as compared to the neutral system. δV(z0) is plotted as a
function of the test charge position z0. Dashed lines: δV(z0) computed by applying the Poisson equation on δρ(z). Solid lines: Difference between
the PMFs of the three charged systems as compared to the neutral system.

Figure 5. Self-interaction of an test charge (A) PMFs for the non-neutralized systems of different box heights Lz of 8.8 nm (black), 13.2 nm (red),
and 19.8 nm (green). PMFs are shown as solid lines with one SD as shaded area. The dashed lines show δV(z0) due to the stabilization of the test
particle (charge e/4) in the low-dielectric due to its own neutralizing background charge. (B) Respective PMFs with a counterion (charge −e/4) in
the bulk water, and (C) with an explicit background charge only in the water. Diamond: Free energy difference between hexadecane and water from
thermodynamic integration.
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difference between these densities, δρ(z). Via double
integration of the Poisson eq 14 and using eq 18, we computed
δV(z0) for a test charge q = e/4 as a function of test particle
position z0. Here, we used a z-dependent permittivity ε(z) = 1
+ 79ρw(z)/ρw,bulk, where ρw(z) is the water density obtained
from an equilibrium simulation of the hexadecane/water box
and ρw,bulk the density of bulk water (not shown). This choice
for ε(z) accounts for the permittivities of 1 and 80 inside the
(nonpolarizable) hexadecane model and inside bulk water,
respectively, and it yields a continuous average permittivity at
the hexadecane-water interface due to surface fluctuations. In
Figure 4B we show the computed δV(z0) as dashed lines for the
three charged systems. We note that directly applying the
analytic expression for the slab (eq 23) yields a very similar
result, yet the thickness of 2d of membrane is not very
accurately defined due to fluctuations of the water/hexadecane
interface.
For comparison, we also plotted the differences between the

each of the PMFs of the three non-neutral systems and the
PMF of the neutral system as solid curves in Figure 4B. The
latter were obtained by subtracting the black curve from the
colored curves in Figure 3A. The excellent agreement
demonstrates that the Poisson equation applied to δρ(z)
correctly predicts the effect of omitting explicit counterions on
the PMFs.
Effect of the Box Size and Self-Interaction of an

Excess Charge. We have not yet considered the situation in
which there is only the charged test particle, but no other
charges around. According to the above analysis, we expect that
omitting an explicit counterion would stabilize the charge in the
low-dielectric, where the stabilization is proportional to the
difference in charge density δρ(x) with respect to the explicitly
neutralized system. Since the uniform density of the back-
ground charge is inversely proportional to the volume of the
box, we have used the box volume as a parameter to control
δρ(x). Thus, the three simulation systems contained the same
number of hexadecane molecules but different number of water
molecules. From a physics point of view, the PMFs for the
three systems should be identical, because the test particle
should not be influenced by water molecules far away from the
hexadecane slab.
However, as shown in Figure 5A, the barrier height at the

center of the hexadecane slab decreases with decreasing box
size. The difference with respect to the explicitly neutralized
system can again be rationalized by eqs 18 and 23: The smaller
the box, the higher the density of the background charge inside
the slab and, hence, the stronger the stabilization of the test
charge in the low dielectric hexadecane slab. Application of eq
23 for the different box sizes yields δV(z0) of the test particle
due to the omission of a counterion (Figure 5A, dashed lines).
At the center of the membrane, the test particle is spuriously
stabilized by 3.7, 2.4, and 1.6 kJ/mol for the three box sizes,
respectively, in good agreement with the differences between
the PMFs. Theses findings demonstrate that the test particle is
indeed artificially stabilized by its own background charge and
that the Poisson equation applied to δρ(r) again predicts the
strength of this effect. Note that since ρBG = −q/Vbox the effect
is quadratic in the charge of the particle. Thus, for a test particle
carrying one unit charge instead of e/4, the effect would be 16
times stronger, causing a stabilizing potential between 26 and
59 kJ/mol.
For comparison, we have also computed the PMFs for the

three box sizes with a counter charge −e/4 on one of the water

molecules. As shown in Figure 5B the respective PMFs are
independent of the box volume, if the box is neutralized
explicitly. Moreover, we have repeated the computation of the
PMFs with an explicit background charge smeared out
uniformly only over the water phase, as before. As shown in
Figure 5C, these PMFs are also independent of the box size.

Agreement to Thermodynamic Integration (TI). The
PMF calculations reported so far did not require to change the
total charge of the system during the simulation. This is in
contrast to simulations that aim to compute ionic solvation free
energies or pKa values using, for instance, TI or free-energy
perturbation. In such simulations, the system may either be
kept neutral by generating a counterion, or by relying on the
implicit background charge. Generating a counterion during TI
obviously precludes the direct determination of the absolute
solvation free energy of the sinlge test charge. However, it does
allow to compute dif ferences in the chemical potential between
different parts of the simulation system. Employing the implicit
background charge, in contrast, allows the calculation of
absolute solvation free energies in homogeneous dielectrics
because corrections for the artifacts are available.22,26,28−31

Here, we tested whether our analytical model holds equally
for simulations that involve changing the net charge of the
system. Using TI, we computed the solvation free energy of the
test charge (+e/4) in the small simulation system. The test
charge was either restrained at the center of the water phase
(giving ΔGw) or at the center of hexadecane slab (giving
ΔGhex). The results are listed in Table 1. When employing (a) a

counterion or (b) the implicit background charge, TI yields
22.0(2) and 18.0(2) kJ/mol, respectively (Figure 5A/B,
diamonds), in excellent agreement to the PMFs (Figure 5A/
B, black curves). The agreement demonstrates that our analytic
model is applicable to TI calculations that require a change of
the total net charge.

■ DISCUSSION
We have derived an expression to quantitatively estimate the
artifact due to the implicit background charge in Ewald
simulations. With our model, we have addressed the question
whether the background charge offers a realistic alternative for
explicit counterions in MD simulations of charged systems.
Although counterions offer a more realistic description,
sampling problems associated with counterions have often
been used to justify the use of the background charge instead.
However, so far, it has been difficult to predict or correct the
effect of the background charge on the results of the simulation,
unless a single ion in a homogeneous box of solvent is
considered.22,26,28−31 We found that the background charge
affects the partitioning of charged particles in the simulation
box if the system is not homogeneous. The cause of this artifact
is the difference in the charge distribution between the real
system, in which the counterions populate predominantly the
higher dielectric, and the model system, in which the counter
charge is uniformly distributed across the box. We derived an
expression that quantifies the artifact in terms of this difference.

Table 1. Solvation Free Energies in kJ/mol for the Test
Charge, and ΔΔG = ΔGhex − ΔGw

ΔGw ΔGhex ΔΔG

counterion −54.9(2) −32.8(1) 22.0(2)
background charge −3.97(1) 14.0(1) 18.0(2)
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With our analytical expression the effect of omitting explicit
counterions can be computed analytically for simple geo-
metries. The difference in charge density depends on both the
total charge and box volume, as well as the relative volumes and
geometries of the different dielectrics. For a typical lipid
membrane simulation system containing 128 lipids plus water,
our model predicts that a unit test charge would be artificially
stabilized within the bilayer by ∼10 kJ/mol for each non-
neutralized unit charge in the system. In smaller systems, such
as the hexadecane/water slab simulated here, or in systems
containing many non-neutralized ions, the artificial stabilization
can easily reach tens or even hundreds of kilojoules per mole.
Compared to lipid membrane simulations, the impact of the

background charge for non-neutral protein simulations is
smaller (i) because of the larger surface to volume ratio and
(ii) because of the higher permittivity of proteins. For a
spherical protein with ε = 4, we estimate that a unit test charge
is affected by 1 to 1.5 kJ/mol at the center of the protein for
each non-neutralized unit charge in the system. Our model thus
provides a quantitative criterium for deciding if the background
charge offers an acceptable trade-off between artifacts arising
from sampling problems and artifacts arising from the
homogeneous background charge distribution.
Several groups have documented artifacts in simulations

using Ewald summation and suggested corrections. Some of
these artifacts are due to the periodicity constraint and occur
even in neutral systems,48,49 while other artifacts are found only
if the system is charged.22,26,28−31 Ions in water are among the
best studied cases and a number of corrections have been
derived to correct the results of free energy calculations using
Ewald summation. The first of these corrections removes the
so-called self-energy,26 that is, the electrostatic interactions of
the ion with its own periodic copies and the background
charge:

∑ ξ=E q
1
2 i

i
self 2

Ew
(25)

with ξEw a constant that depends on the box shape and
dimension.24 The second correction is a Born or Poisson−
Boltzmann term to represent the missing polarization in a finite
and periodic simulation box.25,27,29,31 The third correction
corrects for the finite size of the ion.28,31

After correction, ionic hydration free energies obtained from
simulations are in good agreement with experiment. However,
these corrections have been derived only for the situation of a
single (small) ion in water and therefore cannot be applied if
the dielectric is not uniform throughout the simulation box. In
addition, none of the correction terms contains an explicit
dependency on the position of the charges. Therefore,
including these corrections can only cause a uniform shift of
the whole free-energy profile. Extending the corrections to
inhomogeneous systems and including a dependency on the
ion’s position is not straightforward, but should contain terms
that are similar to the ones derived here for a point charge in a
low dielectric slab or sphere (eq 23 and 24, respectively).
Brooks and co-workers have proposed to correct Ewald

artifacts in charged systems by subtracting the energy of a single
particle carrying the total charge of the system and located in
the same periodic box as the complete all-atom system.25

However, since this correction also does not depend on the
ion’s position, it cannot correct for the artifact in our free

energy profiles, which we have shown to be strongly position
dependent (eq 23).
Finally, Morgan and Massi have proposed a scheme to avoid

contributions from the self-energy in free energy calculations
that involve changing the charge of the system.50 In this
scheme, transformations are constructed that conserve the norm
of the total charge, as opposed to the total charge itself. Indeed,
because the self-energy contributions depend quadratically on
the total charge (eq 25), these contributions cancel. However,
in this approach it is essential to sample a charged system,
which can lead to an incorrect partitioning of charged particles,
as we have shown here. Therefore, also in this approach the
background charge will artifically compromise free energy
calculations.
The model that we derived here can in principle also be used

as a correction to improve the results of free energy
computations that involve changing the charge of a single
species inside the lower dielectric (e.g., protein or membrane),
provided that any remaining ions remain inside the higher
dielectric. As an example of the latter, we consider calculating
the deprotonation free energy of an amino acid inside a protein
by means of thermodynamic integration. The artificial
stabilization of the deprotonated amino acid due to the
background charge, which will overestimate the stability of the
deprotonated state, can be estimated with eq 24 and subtracted
from the final result. Alternatively, the sampling can be
corrected if the analytical expressions for the excess energy
due to the background charge are used to reweigh each
configuration in an MD trajectory by a corrected Boltzmann
factor.33

Our approach of adding a background charge only to the
water phase may also provide an alternative solution to
neutralize the system. The presented examples show that such
strategy can provide PMFs that are in much better agreement
with simulations that have explicit counterions, as compared to
simulations with an implicit uniform background charge. To
make this approach more rigorous, one would first solve the
Poisson−Boltzmann equation for the system and use the result
to distribute the neutralizing background charge. Note,
however, that by changing the partial charges on the water
atoms, one changes the water force field. Therefore, the validity
of this approach needs to be carefully verified by comparing the
properties of the modified water model to those of the original
model.

■ CONCLUSION
Simulating net charged systems is technically possible due to
the omission of the k = 0 term in the reciprocal contribution of
the Ewald sum. However, whether the associated uniform
background charge is an appropriate model for a converged
distribution of counterions depends on the dielectric
composition of the system. For heterogeneous systems with
different dielectrics, such as proteins or membranes solvated in
water, the uniform background charge can lead to strong
artifacts in the chemical potential of charged particles. We
traced the origin of this artifact to the difference in the charge
distribution in the simulation box between the systems with a
uniform background charge and with explicit counterions.
Because a uniform charge density introduces no electrostatic
gradient, it may seem paradoxical that the background charge
can stabilize a non-neutralized charge inside the lower
dielectric. However, because in reality counterions are always
inside the higher dielectric, the counter charge distribution is
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nonuniform and therefore generates electrostatic gradients. The
absence of such gradients when relying on the background
charge to neutralize the system thus causes the artifact. We also
derived an expression to quantify the impact of the background
charge on the free energy profile of charged particles, which
allows one to determine whether the use of background charge
is appropriate, or whether explicit counterions are required to
neutralize the simulation box.
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