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Influence of cut-off truncation and artificial periodicity of electrostatic
interactions in molecular simulations of solvated ions:
A continuum electrostatics study

Michael Bergdorf, Christine Peter, and Philippe H. Hünenbergera)

Laboratorium für Physikalische Chemie, ETH Zu¨rich, CH-8093 Zu¨rich, Switzerland

~Received 13 May 2003; accepted 6 August 2003!

A new algorithm relying on finite integration is presented that solves the equations of continuum
electrostatics for truncated~and possibly reaction-field corrected! solute–solvent and solvent–
solvent interactions under either nonperiodic or periodic boundary conditions. After testing and
validation by comparison with existing methods, the algorithm is applied to investigate the effect of
cut-off truncation and artificial periodicity in explicit-solvent simulations of ionic solvation and
ion–ion interactions. Both cut-off truncation and artificial periodicity significantly alter the
polarization around a spherical ion and thus, its solvation free energy. The nature and magnitude of
the two perturbations are analyzed in details, and correction terms are proposed for both effects.
Cut-off truncation is also shown to induce strong alterations in the potential of mean force for
ion–ion interaction. These observations help to rationalize artifacts previously observed in explicit–
solvent simulations, namely spurious features in the radial distribution functions close to the cut-off
distance and alterations in the relative stabilities of contact, solvent-separated and free ion
pairs. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1614202#
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I. INTRODUCTION

Computer simulation with an explicit representation
the solvent molecules has become a standard tool for in
tigating the structure, dynamics, and function of~bio-!mol-
ecules in solution.1–6 However, due to important computa
tional costs, the system sizes that are accessible
such simulations remain truly microscopic (typical
,1000 nm3). As a direct consequence, the longest-ran
(.5 nm) component of intermolecular interactions, which
generally dominated by electrostatics, cannot be compute
an exact manner. Unfortunately, because electrostatic in
actions are of large magnitude, many simulated observa
turn out to be highly sensitive to the treatment of these
teractions and, due to their long range, to the boundary c
ditions used in the simulation~system size and shape, fini
versus periodic system!. For this reason, the approxima
representation of long-range electrostatic interactions
explicit-solvent ~bio-!molecular simulations is probabl
nowadays one of the principal bottlenecks in the accurac
these methods. Uncontrolled approximations can give ris
important artifacts~so-called finite-size effects!, which may
strongly impair the reliability of many current simulation
There is thus considerable effort in the scientific commun
towards the goal of improving the representation of elec
statics in computer simulations.

The vast majority of explicit-solvent~bio-!molecular
simulations are carried out under periodic bound
conditions6,7 ~PBC!. In this case, the solute~bio-!molecule is
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placed into a computational box~space-filling shape, e.g.
rectangular!, and the empty volume is filled by solvent mo
ecules. The system considered in the simulation consist
the central box surrounded by an infinite array of perio
copies of itself, which has the advantage of removing a
surface distortion associated with a solvent-vacuum bou
ary. There are essentially three methods to handle elec
static interactions in simulations under PBC:~i! Straight
truncation of the Coulomb interactions at a convenient c
off distance;6,7 ~ii ! smooth truncation of the Coulomb inte
actions, e.g., by means of a switching or shifting function8–13

or by including a reaction-field correction;14–19 ~iii ! use of
lattice-sum methods~Ewald,20 P3M,21 or PME22,23methods!.
Cut-off truncation reduces the computational costs and
effect of artificial periodicity in simulations. However
straight truncation~ST! represents a very severe approxim
tion, leading to heating as well as important artifacts in sim
lated properties of liquids,16,24,25 solvated ions,26–35 ion
pairs,9,36–44and biomolecules.45–48Smooth-truncation meth
ods may be applied to reduce the heating caused by the
plication of a cut-off, but nevertheless retain~and sometimes
amplify! a number of the undesirable effects of abru
truncation.9,10,27,28,41,48–51Furthermore, these methods a
generallyad hocand lack any physical basis. An exception
the inclusion of a Barker–Watts reaction-field correction14–16

~RF! to the cut-off truncation. This correction scheme a
proximately accounts for the mean effect of the medium
yond the cut-off sphere of each particle by assuming that
medium behaves as a homogeneous dielectric continuum
permittivity equal to that of the solvent. Due to the form
the added reaction-field term, the correction effectively a
as a ~physically based! switching function in the limit of
9 © 2003 American Institute of Physics
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9130 J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Bergdorf, Peter, and Hünenberger
high solvent permittivities. Finally, lattice-sum~LS!
methods20–23,52–54rely on Fourier series to describe the lon
range component of electrostatic interactions, i.e., they
sume that these interactions are exactly periodic within
infinite system. Although LS and RF methods rely on mo
or less reasonable approximations for dealing with the lo
range component of electrostatic interactions, an appr
mate treatment is certainly preferable to the plain omiss
of this long-range component, as done in the ST sche
Nevertheless, some dependence of simulated observabl
the cut-off distance or system size has also been evide
for the LS,19,55–59and RF27,28,60 methods. It is therefore o
importance to carefully investigate and compare the prop
ties of the three most common electrostatic schemes~ST, RF,
and LS!.

A general strategy to analyze finite-size effects and
prove electrostatic schemes for explicit-solvent simulatio
relies on the use of continuum electrostatics.26–28,51,52,56–64In
the continuum-electrostatics approach, the solute is treate
a low-dielectric cavity encompassing the solute atomic po
charges, and embedded in a dielectric continuum of per
tivity equal to that of the solvent. In the classical impleme
tation of the method,65–68 the electrostatic potential in th
system is computed by numerically solving the Poisson~or
Poisson–Boltzmann, in the presence of implicit count
ions! equation, giving access to the electrostatic solvat
free energy of the solute. Although there is no choice
boundary conditions that adequately mimics an infinitely
lute solution in explicit-solvent simulations, this is not th
case in continuum-electrostatics calculations. There,
boundary conditions to solve the Poisson equation are sp
fied in the form of the potential at the surface of the comp
tational box. For a reasonably large solute–wall distan
this potential is well approximated by the solvent-screen
Coulomb potential of the solute charges.57 In this way, con-
tinuum electrostatics can be used to estimate, for a gi
solute configuration, the electrostatic solvation free ene
corresponding to exact~nontruncated! Coulomb interactions
~CB! under nonperiodic boundary conditions~NPBC!, a
good model for the ideal situation of a solute at infinite
lution. This suggests that artifacts linked with the use
approximate electrostatic interactions and periodic bound
conditions in explicit-solvent simulations could be inves
gated using continuum electrostatics, provided that
method is generalized to these modified interactions
boundary conditions. Such generalizations have rece
been developed26–28,51,52,57–64for nearly all types of relevan
electrostatic interaction schemes~CB/LS, ST, or RF! and
boundary conditions~NPBC or PBC!, as summarized in
Table I. By comparing, for a given solute configuration, t
outcome of a continuum-electrostatics calculation based
modified interactions and boundary conditions with that
another calculation based on CB interactions under NPBC
is possible to estimate the perturbationDDGsolv of the sol-
vation free energy. The corresponding perturbationDEdirect

in the direct electrostatic interaction energy between so
atomic charges is straightforward to calculate. The s
DDGel of the two contributions represents the perturbat
of the electrostatic free energy of the system due to the us
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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approximate electrostatics and boundary conditions in
simulation. This procedure is illustrated schematically in F
1 for the specific case of an explicit-solvent simulation e
ploying ST or RF electrostatics under PBC. The quan
DDGel ~possibly evaluated for multiple solute configur
tions! gives the required information to investigate the natu

TABLE I. Generalizations of the continuum-electrostatics approach
modified electrostatic interactions and boundary conditions. The meth
have been classified using the codes 3D~problem solved in three dimen
sions!, 1D ~problem reduced to a one-dimensional equation by symmet!,
analytical~analytical solution available!, Poisson~based on solving the Pois
son equation!, FFT ~based on the use of fast Fourier transforms!, or direct
~based on solving field equations analogous to Eqs.~1! and ~6! in real-
space!.

Electrostatics NPBC PBC

CB/LSa 3D-Poisson~Ref. 95!b 3D-Poisson~Ref. 57!
3D-FFT ~Refs. 51, 63, and 64!

~spherical ionc! 1D-Analytical ~Ref. 86! 1D-Analytical ~Ref. 57!
SC,RFd 3D-Directe 3D-Directe

3D-FFT ~Refs. 51 and 60!
~spherical ionc! 1D-Direct ~Refs. 26–28! -

aInteractions follow from the Coulomb~CB! potential under NPBC or the
Ewald lattice-sum~LS! potential under PBC.

bFirst calculation on a biomolecule using a finite-difference algorithm~many
alternatives have been proposed, including, e.g., finite-element, bound
element and inducible-multipole algorithms!.

cSolutions developed for the special case of a single spherical ion.
dInteractions follow from the Coulomb potential truncated at a given cut-
distance, without~ST! or with ~RF! the inclusion of a reaction-field correc
tion.

eDeveloped in the present article.

FIG. 1. Schematic illustration of the procedure used to assess, base
continuum electrostatics, artifacts linked with approximate electrostatics
boundary conditions in explicit-solvent simulations. Ideally, an explic
solvent simulation aiming to describe a solute molecule~symbolized by a
black sphere! at infinite dilution should be based on a quasi-macrosco
system under NPBC together with exact CB interactions~top left drawing!.
Due to computational limitations this is not feasible in practice, and one m
simulate instead a system under PBC with ST~or RF! electrostatic interac-
tions ~top right drawing!. The corresponding perturbation can be evalua
by considering the implicit-solvent analogs of the two cases. Using c
tinuum electrostatics~for a given solute configuration!, the solvation free
energies and the direct interactions between solute charges can be com
both under CB/NPBC~bottom left drawing; based on a good approximatio
for the electrostatic potential at the surface of the computational volu!
and under ST/PBC or RF/PBC~bottom right drawing!. The free-energy
differenceDDGel represents the perturbation of the electrostatic free ene
induced by the use approximate electrostatics and boundary conditions
is a key quantity for the analysis of finite-size effects in the explicit-solv
simulation.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9131J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Cut-off and periodicity effects in simulations of ions
and magnitude of the corresponding artifacts in explic
solvent simulations.

Since they ignore the discrete nature of the solve
continuum-electrostatics models have some limitations,
cluding an important sensitivity to empirical model para
eters~atomic charges, atomic radii, solute permittivity, exa
definition of the solute–solvent boundary!, the neglect of
nonlinear effects~electrostriction, dielectric saturation!, and
the neglect of the detailed solvent structure around the so
~structure of the first solvation shells, specific hydrog
bonds!. Furthermore, the electrostatic contribution to the s
vation free energy should be complemented by a nonp
contribution, typically assumed to be proportional to t
solvent-exposed surface area. However, since the pre
method relies on the comparison of two closely rela
continuum-electrostatics calculations involving the same
rameters and solute configuration~Fig. 1, bottom drawings!,
it is likely that errors in the short-range description of solv
tion cancel out to a large extent. The difference will depe
almost exclusively on long-range effects, for which co
tinuum electrostatics can be expected to be accurate. T
electrostatic free energy differences from continuum elec
statics should be almost quantitatively transposable to in
pret finite-size artifacts in explicit-solvent simulations.

Inspection of Table I reveals one missing entry. There
currently no general continuum-electrostatics method to d
with truncated electrostatic interactions~ST or RF! under
NPBC, although a method exists in the special case o
single spherical ion26–28 @one-dimensional ~1D!-Direct
method#. The goal of the present article is to describe a
apply a general method based on field equations and a fi
integration algorithm @three-dimensional ~3D!-Direct
method#. In addition to dealing with the NPBC case, th
new method is also applicable to systems under PBC. H
ever, it scales rather unfavorably with the system size~as
Ng

6 , whereNg is the number of grid points along each Ca
tesian direction!, and can only be used for small system
Therefore, its application is restricted here to the investi
tion of the consequences of cut-off truncation and artific
periodicity of electrostatic interactions in molecular simu
tions of ionic solvation and ion–ion interaction. These s
tems are very important benchmark systems for evalua
the accuracy of electrostatic interactions in molecular sim
lations because~i! they offer the simplest context to invest
gate electrostatic finite-size effects, and~ii ! despite the ap-
parent simplicity of the problem, the accurate determinat
of ionic solvation free energies9,19,26–35,55,57,69–79and ion–ion
potentials of mean force9,36–44,57,80–84has turned out to be a
surprisingly difficult problem.

In the present article, the algorithm is described in d
tails and the influence of various parameters controlling
behavior is investigated. The accuracy of the algorithm
further tested by comparing solvation free energies compu
for a single spherical ion to values estimated through
1D-Direct26–28 ~NPBC! or 3D-FFT51,60 ~PBC! methods. Fi-
nally, the present 3D-Direct method is applied to investig
the effect of cut-off truncation and artificial periodicity i
computer simulations of ionic solvation and ion–ion intera
tions.
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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II. THEORY

A. Continuum electrostatics

In the continuum-electrostatics approach, a solu
solvent system is modeled~for a given solute configuration!
as a set of solute atomic partial charges embedded in a
larizable medium of heterogeneous dielectric permittivi
Application of the laws of electrostatics within such a syste
leads to the following expression24,25,51,64,85for the electric
field E~r !

E~r !5V~r !1EEE
R3

d3r 8TO ~r2r 8!P~r 8!, ~1!

whereV~r ! is the vacuum field~electric field generated by
the solute atomic partial charges in the absence of pola
able medium!, P~r ! the polarization~dipole moment density!,
andTO (r ) the dipole–dipole interaction tensor characterizi
the solvent–solvent interactions within the system.

In the application of Eq.~1!, it will be assumed that both
solute–solute and solute–solvent electrostatic interact
are described by truncated Coulomb interactions with
Barker–Watts reaction-field correction.14–16 In the Barker–
Watts scheme, the potential generated atr by a unit charge at
the origin is given by

cBW~r !5
1

4peo
H~R2r !S r 211

ar 2

2R3 2
a12

2R D , ~2!

where H(r ) is the Heaviside function@H(r )51 if r .0,
H(r )50 otherwise#, eo the permittivity of vacuum, andR is
the cut-off distance. The parametera ~with 0<a<1) deter-
mined by the relative dielectric permittivitye8 of the me-
dium surrounding the cut-off sphere of each particle throu

a5
2~e821!

2e811
. ~3!

The functioncBW in Eq. ~2! accounts both for the direc
Coulombic potential generated by the charge (r 21 term! and
for the polarization by the neighboring charges of the m
dium outside its cut-off sphere (r 2 term!. In the present
work, the discussion of the general form of the Barker–Wa
interaction function~BW! will essentially focus on the case
a50 (e851), corresponding to straight truncation of th
Coulomb interactions without reaction-field correction~ST!,
anda51 (e8→`), corresponding to truncated Coulomb in
teractions with a reaction-field correction corresponding t
conducting medium~RF!.

When Eq.~2! is applied to the solvent–solvent intera
tions under nonperiodic boundary conditions~NPBC!, the
dipole–dipole interaction tensor reads

TO NPBC~r !5
1

4peo
H~RSS2r !

3¹ ^ ¹S r 211
ar 2

2RSS
3 2

a12

2RSS
D

5
1

4peo
H~RSS2r !S 3r ^ r2r 21O

r 5 1
a1O

RSS
3 D , ~4!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where RSS is the solvent–solvent cut-off distance and t
notation a^ b has been introduced for the tensor with e
mentsmn given by ambn . Under periodic boundary condi
tions ~PBC!, and provided thatRSS is smaller than half the
smallest dimension of the computational box~which will be
assumed from here on!, the dipole–dipole interaction tenso
reads

TO PBC~r !5
1

4peo
H~RSS2 r̄ !S 3r̄ ^ r̄2 r̄ 21O

r̄ 5 1
a1O

RSS
3 D , ~5!

where r̄ is the minimum-image vector corresponding tor .
Using the approximation of linear response, the react

of the polarizable medium is linear in the local elect
field,24,25,51,64,85i.e.,

P~r !5eo@e~r !21#E~r !, ~6!

wheree(r ) the relative dielectric permittivity of the medium
which may be heterogeneous in space. Typically, one dis
guishes between solute and solvent regions, characterize
distinct homogeneous permittivity values.

The dipole–dipole interaction tensorTO (r ) defined by
Eqs.~4! or ~5! is singular at the origin. However, the sing
larity is integrable when applying Eq.~1!. More precisely,
definingV(r ;r) as the sphere of radiusr and surfaceS(r ;r)
centered atr , one may write

EEE
R3

d3r 8TO ~r2r 8!P~r 8!

5I ~r !1 lim
r→0

EEE
R3\V(r ;r)

d3r 8TO ~r2r 8!P~r 8!. ~7!

The first term can be evaluated as

I ~r !5 lim
r→0

EEE
V(r ;r)

d3r 8TO ~r2r 8!P~r 8!

5
1

4peo
F lim

r→0
EEE

V(0;r)
d3s¹ ^ ¹s21GP~r !

52
1

4peo
F lim

r→0
r22EE

S(0;r)
d2ss22s^ sGP~r !

52
1

2eo
F E

0

p

du sinu cos2 uGP~r !52
1

3eo
P~r !.

~8!

The second equality follows from inserting Eqs.~4! or ~5!,
defining s5r 82r , and noting that asr tends towards zero
~i! The Heaviside function evaluates to one for any fin
RSS; ~ii ! the contribution proportional to the unit tensor va
ishes;~iii ! P(r 8) may be approximated byP~r ! and factor-
ized from the integral. The third equality follows from ap
plying the gradient theorem and inserting¹s2152s23s.
The fourth equality follows from observing that, due to sym
metry, the off-diagonal elements of the tensor vanish up
integration, and that the diagonal elements are all equal.
fifth equality follows from evaluating one of these diagon
elements~integrands22sz

25cos2 u) in spherical coordinates
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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Combining Eqs.~1!, ~6!, ~7!, and~8!, the equation to be
solved for the electrostatic fieldE~r ! reads

E~r !5V~r !2 1
3 @e~r !21#E~r !

1eo lim
r→0

EEE
R3\V(r ;r)

d3r 8TO ~r2r 8!

3@e~r 8!21#E~r 8!, ~9!

with TO (r ) given by Eqs.~4! or ~5!. If this equation can be
solved forE~r !, the free energy of interaction between th
solute atomic point charges and the polarizable medium
given by

DG52
1

2EEER3
d3rV ~r !•P~r !. ~10!

In the special case of a nonpolarizable solute, this quan
represents the solvation free energy of the solute.

B. Discretization

To transform the solving of Eq.~9! into a computation-
ally tractable problem, three approximations are made. F
the infinite integration domain is reduced to a finite region
space. More precisely, two types of computational doma
are considered:~i! A spherical volume of radiusS surrounded
by vacuum under NPBC, or~ii ! a cubic unit cell of edgeL
under PBC. In both cases, the restriction to a finite com
tational domain is expected to have limited consequen
whenS@RSS under NPBC orL@2RSS under PBC~because
the truncation of solvent–solvent interactions largely redu
dipole–dipole correlations at large distances!, provided that
the vacuum field is only active over a small region with
this domain~which will be the case due to truncation of th
solute–solvent interactions!. Second, the solute is assumed
be nonpolarizable and the solvent to be represented b
medium of homogeneous permittivity. Thus, the compu
tional domain comprises two subdomains characterized
different homogeneous dielectric permittivity values: A~pos-
sibly discontinous! solute subdomain of relative permittivit
one, and a solvent subdomain of relative permittivityes .
Third, the problem is discretized by paving the compu
tional domain usingN grid cells, leading to piecewise
constant representationsV i and Ei ~with i 51,...,N) of the
vacuum and electric fields.

Within these approximations, Eq.~9! becomes

Eim5Vim2
es21

3
s iEim

1eo~es21!(
j 51

N

v j~12d i j !s j (
n51

3

Tmn~r i2r j !Ej n ,

~11!

where them andn indexes enumerate Cartesian componen
r i andv i are the center coordinate and volume of grid celli ,
the exterior functions i evaluates to one ifr i is within the
solvent subdomain and zero otherwise, and the matrix
ments of the dipole–dipole interaction tensor@Eqs. ~4! or
~5!# take the form
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TNPBC,mn~r !

5
1

4peo
H~RSS2r !S 3r mr n2dmnr 2

r 5 1
admn

RSS
3 D ~12!

or

TPBC,mn~r !

5
1

4peo
H~RSS2 r̄ !S 3r̄ m r̄ n2dmn r̄ 2

r̄ 5 1
admn

RSS
3 D . ~13!

Defining the 3N33N-dimensional matrixAO as

Aim j n5S 11
es21

3
s i D d i j dmn

2eo~es21!v j~12d i j !s jTmn~r i2r j !, ~14!

Eq. ~11! can be rewritten in matrix notation

AO E5V. ~15!

Because the size of the matrixAO is generally very large,
it cannot be stored in memory and direct methods canno
used to solve Eq.~15!. Therefore, an under-relaxed Jaco
method is applied here to obtain successive approximate
lutions for the discretized electric field. Given the appro
mate solutionE(k) at iterationk, the gridE(k11) at the next
iteration is computed as

E(k11)5E(k)2lDO 21~AO E(k)2V!, ~16!

whereDO is the diagonal matrix defined by the diagonal e
ments ofAO , andl ~with 0,l<1) is a relaxation paramete
A reasonable initial guess forE(0) is provided by the vacuum
field scaled by the solvent permittivity, i.e.,

E(0)5es
21V. ~17!

It is easily seen that a self-consistent solution of Eq.~16!
must satisfy Eq.~15!. In order to assess the convergence
the numerical solution upon iterating, the residual~with units
of an electric field!

t (k)5S ( i 51
N v is i i~AO E(k)2V! i i2

( i 51
N v is i

D 1/2

, ~18!

is introduced as a measure of accuracy.
After solving Eq.~15! for the discretized electric field

the solvation free energy can be evaluated as@Eq. ~10!; non-
polarizable solute#

DGsolv52 1
2 eo~es21!(

i 51

N

v is iV i•Ei , ~19!

where Eq.~6! was used. Note that the solvation free ene
solely depends on the electric field within the solvent sub
main. Furthermore, due to the form of Eq.~14!, the fieldEi

corresponding to a pointi in the solvent subdomain does n
depend on the fieldEj at any pointj within the solute sub-
domain. For this reason, increased computational efficie
can be achieved by omitting all grid points of the solu
subdomain from the definition of the matrixAO and the deter-
mination of the solution of Eq.~15!.
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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C. Application to solvated spherical ions

For a system consisting of a single spherical ion of
diusRI and chargeqI centered in the computational domai
the vacuum field corresponding to ion–solvent interactio
described by the Barker–Watts scheme@Eq. ~2!# is given by

V~r !5
qI

4peo
H~RIS2r !S r

r 3 2
ar

RIS
3 D , ~20!

whereRIS is the ion–solvent cut-off distance. This equatio
is valid under both NPBC and PBC, provided thatRIS is
smaller than half the smallest dimension of the compu
tional box ~which will be assumed from here on!.

Because the ion is generally small compared to the s
of the computational domain, while the variations of t
electric field within the solvent are typically largest close
its surface, the accuracy of the results will depend crucia
on the detailed representation of the ionic surface. For
reason, two levels of grid resolution are used. First, a coa
grid of spacingD is generated, that covers the entire comp
tational domain~leading to grid-cell volumesv i5D3). Sec-
ond, all cells of the coarse grid with their center closer th
()/2)D from the surface of the ion are further discretize
i.e., they are replaced by a set of finer grid cells of edged
5n21D where n is a positive integer~leading to grid-cell
volumesv i5d3). Any grid-cell center of the finer grid that is
closer thanRI from the ion center is discarded from th
calculation~solute point!. In this representation, the vacuu
potential at any grid pointi is evaluated in practice as

V i5
qI

4peo
I ~RIS2r i !S r i

r i
3 2

ar i

RIS
3 D , ~21!

where I (RIS2r i) represents the fraction of the grid cell lo
cated within the ion–solvent cut-off sphere.64

After solving Eq.~15! for the discretized electric field
the radial polarizationp(r ) around the ion@Eq. ~6!# can be
computed in the form of a histogram. To avoid artifac
linked with the use of two different grid spacings, this ca
culation is based on a uniform grid ofN8 points obtained by
partitioning all cells of the coarse grid into finer grid cells
edged sharing a common value of the electic field. Und
NPBC, the radial polarization is then computed as

pNPBC~r n!5eo~es21!H~r n2RI !

3
( i 51

N8 s iw~r i ;r n ,Dr !r i
21r i•Ei

( i 51
N8 s iw~r i ;r n ,Dr !

, ~22!

where

r n5~n1 1
2!Dr , n50,1,...,nmax, ~23!

Dr being the histogram width, and

w~r ;r n ,Dr !5H 1 if r n2 1
2 Dr<r ,r n1 1

2 Dr

0 otherwise.
~24!

Under PBC, the periodic copies of the central box must
taken into account and Eq.~22! is modified to
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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pPBC~r n!5eo~es21!H~r n2RI !

3
( lPZ3( i 51

N8 s iw~r i ,l ;r n ,Dr !r i ,l
21r i ,l•Ei

( lPZ3( i 51
N8 s iw~r i ,l ;r n ,Dr !

,

~25!

with r i ,l5r i1L l. In practice, the sum overl is restricted to
vectors with integer components in the range@2 l max;lmax#,
ensuring a correct description of the polarization up tor
5( l max11/2)L. These polarization histograms can be co
pared to the ideal~CB/NPBC! Born polarization86

pBorn~r !5
qI

4p

es21

es
r 22. ~26!

Combining Eqs.~19! and ~21!, the ionic solvation free
energy is evaluated~based on the refined grid ofN8 points!
as

DGsolv52
qI

8p
~es21!(

i 51

N8

v is i I ~RIS2r i !

3S r i

r i
3 2

ar i

RIS
3 D •Ei . ~27!

This value can be compared to the ideal~CB/NPBC! Born
electrostatic solvation free energy86

DGsolv
Born52

qI
2

8peo

es21

es
RI

21. ~28!

The application to two~or more! spherical ions is
straightforward and only requires the following minor ada
tations:~i! The quantitys i is zero~point discarded from the
calculation! for all grid cells with centers located inside an
ion, and one otherwise;~ii ! the vacuum fieldV @Eq. ~21!# is
expressed as a sum of contributions arising from each
~iii ! the solvation free energyDGsolv @Eq. ~27!# is expressed
as a sum of contributions arising from each ion;~iv! fine
grids ~spacingd,D) are used to describe the close neig
borhood of all ions.

III. COMPUTATIONAL DETAILS

The solution of Eq.~15!, restricted to the case of one o
two spherical ions, was implemented in a C program. The
single ion or the two ions are placed on thez axis of the
coordinate system~single ion at z50; two ions at z5
6d/2, whered is the interionic distance!. Taking advantage
of the symmetry of the problem, the storage of the d
cretized vacuum and electric fields is only required for o
quadrant (x,y>0) of the computational domain.

After an evaluation of the convergence properties of
algorithm, a set of computational parameters was sele
and adopted for all subsequent calculations. The corresp
ing values are as follows~unless otherwise specified!. The
spacings corresponding to the coarse and fine grids wer
to D50.1 nm andd50.025 nm, respectively. The relaxatio
parameterl was set to 0.4. The algorithm was terminat
when the residualt (k) was either below 1023 kJ mol21

nm21 e21 or reached a minimum value. All calculations u
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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der NPBC used a sphere of radiusS54.0 nm as computa-
tional domain. To ensure that this domain is large enough
be representative of an infinite nonperiodic system, a num
of single-ion and two-ion calculations were repeated withS
55.0 nm. The observed differences in solvation free ene
were in all cases below 0.1 kJ mol21 in magnitude.

The method was first applied to solvated spherical io
Ionic solvation free energies@Eq. ~27!# and radial polariza-
tion histograms@Eqs. ~22! or ~25! with Dr 50.025 nm and
l max52] were computed for all combinations of the follow
ing parameters: ionic chargeqI51 e, ionic radii RI

50.2 nm~about the size of Na1) or 0.4 nm~about the size
of Cl2), cut-off radii RIS5RSS5RC50.8 or 1.2 nm, solvent
permittivities es52 ~alkanelike solvent! or 78 ~water!, a
50 ~ST scheme! or 1 ~RF scheme!, and NPBC or PBC~with
L52.6 nm). To validate the method, the results are co
pared with those of calculations employing other metho
~Table I!, namely:~i! 1D-Direct27,28 ~NPBC; bin size 0.005
nm, range 4.0 nm! or ~ii ! 3D-FFT60 ~PBC; 180 grid points
along each Cartesian axis!.

The method was then used to investigate the effec
periodicity on ionic solvation free energies in systems w
truncated electrostatic interactions~ST or RF!. To this end,
ionic solvation free energies were computed under PBC
ing the above combination of parameters, for cubic b
edgesL ranging from 1.6 nm (RC50.8 nm) or 2.4 nm (RC

51.2 nm) to 8.0 nm. The effect on periodicity can be qua
tified by the relative periodicity-induced perturbation of th
ionic solvation free energyg(L), defined as

g~L !5
DDGsolv~L !

DGsolv
NPBC

with

DDGsolv~L !5DGsolv
PBC~L !2DGsolv

NPBC. ~29!

Finally, the effect of cut-off truncation~ST or RF! and
periodicity on the electrostatic solvation contributio
DGsolv(d) to the potential of mean force for the interactio
between two ions at distanced ~under PBC, ions aligned
along an axis of the cubic unit cell! was evaluated for the
special case of chargesqI56qJ51 e, radii RI5RJ

50.4 nm, cut-off radiiRIS5RSS5RC51.2 nm and for a cu-
bic unit-cell of edgeL56 nm ~PBC!. For validation, the re-
sults under PBC were compared with those of calculati
employing the 3D-FFT60 method~180 grid points along each
Cartesian axis!. The corresponding overall electrostatic co
tribution DGel(d) to the potential of mean force was als
evaluated as

DGel~d!5DGsolv~d!1qIqJcBW~ d̃!, ~30!

whered̃5d ~NPBC! or d̃5min$d;L2d% ~PBC!, andcBW is
given by Eq.~2! with a50 ~ST! or a51 ~RF!. These pro-
files can be compared with the expected long-range beha
of the electrostatic potential of mean force for a Coulom
interaction between the ions, namely
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DGel
lr ~d!5DGsolv

ion ~qI ,RI !1DGsolv
ion ~qJ ,RJ!

1
qIqJ

4peoes
,d21 ~31!

whereDGsolv
ion (q,R) is the solvation free energy of an isolate

ion of radiusR and chargeq under NPBC when applying th
specific electrostatic scheme.

IV. RESULTS

A. Convergence properties

The convergence properties of the under-relaxed Ja
algorithm @Eq. ~16!# used to solve Eq.~15! are illustrated in
Fig. 2 for a spherical ion of chargeqI51 e and radiusRI

50.4 nm in a solvent of permittivityes578, based on the
RF scheme with a single cut-off radiusRC51.2 nm and us-
ing three choices of the relaxation parameterl. Results for
the ST scheme are qualitatively very similar~data not
shown!. Within few iterations, the residualt (k) decreases
from about 20 to values below 3 kJ mol21 nm21 e21 @Fig.
2~a!#. Convergence to zero residual only occurs when
solvent permittivity es is smaller than about 10~data not
shown!. This limited convergence is probably related to t
presence of a strong discontinuity in the system permittiv
at the ion–solvent boundary in the case of high solvent p
mittivities. For es values larger than about 10, the residu
reaches a minimum after a certain number of iterations~typi-
cally about 15–20 forl50.4) and slowly rises again afte
wards. When this situation occurred, the algorithm was
minated at the minimum valuet of the residual. However

FIG. 2. Convergence properties of the under-relaxed Jacobi algorithm@Eq.
~16!# used to solve Eq.~15!. The residualt (k) @Eq. ~18!# is displayed as a
function of the number of iterationsk ~a!, and the solvation free energ
DGsolv

(k) at iterationk @Eq. ~27!# as a function of the corresponding residu
t (k) ~b!. The system consists of a single spherical ion of chargeqI51 e and
radiusRI50.4 nm in a solvent of permittivityes578, and is either non-
periodic ~NPBC; spherical domain of radiusS54.0 nm) or periodic~PBC;
cubic unit cell of edgeL52.6 nm). Electrostatic interactions correspond
the RF scheme, with cut-off radiiRIS5RSS5RC51.2 nm. Three choices o
the Jacobi relaxation parameterl are compared@for NPBC, only the curve
corresponding tol50.4 is displayed in~a!#.
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convergence oft (k) towardst is associated with the simul
taneous convergence ofDGsolv

(k) to a well-defined value
DGsolv @Fig. 2~b! and Table II#. Because the values of bot
the minimum residual and the associated converged so
tion free energy are essentially independent of the con
gence parameterl, it appears that the method is neverthele
able to produce accurate results for highes values. This is
also supported by the observation that fores52, values of
DGsolv

(k) when t (k)53 kJ mol21 nm21 e21 typically differ
from the corresponding converged values (t (k)

,1023 kJ mol21 nm21 e21) by less than 1%~data not
shown!.

Although the convergence parameterl does not influ-
ence the final values oft andDGsolv, it has a strong impac
on the convergence rate. Fores578, l50.2 leads to slow
convergence,l50.6 to slow convergence and oscillato
evolution of DGsolv

(k) , while the algorithm fails to converge
for l50.8 ~data not shown!. In practice, it was found tha
l50.4 is the optimal choice in this case, and is also adequ
for es52 ~although a somewhat larger values may sligh
accelerate convergence!. This value was adopted for all sub
sequent calculations.

The rates of convergence to the minimumt of t (k) ap-
pear to be very similar under NPBC or PBC, and for the
and ST~data not shown! schemes. The final values of th
residual, however, are somewhat lower under NPBC co
pared to PBC~Table II!.

B. Single spherical ion

The radial polarizationp(r ) around around a spherica
ion @Eqs. ~22! and ~25!# of chargeqI51 e and radiusRI

50.4 nm in a solvent of permittivityes578 is displayed in
Fig. 3 for different choices of boundary conditions and tre
ments of the electrostatic interactions based on a single
off RC51.2 nm. The polarization corresponding to the Bo
model86 @CB/NPBC; Eq.~26!# or to the lattice-sum case~LS/
PBC; computed using the 3D-FFT method64!, and the polar-
ization computed from the 1D-Direct method27,28 ~ST,RF/
NPBC! are also displayed for comparison. For both the
and RF schemes under NPBC, the agreement between
results of the 1D-Direct and of the present 3D-Direct me
ods is excellent over the whole range of distances. The o
noticeable difference is the more progressive transition
p(r ) around RC in the 3D-Direct calculation for the ST
scheme, which is due to a significantly lower resolution a
to the smoothing of the vacuum field at the ion–solvent c
off distance@function I in Eq. ~21!#. These curves, howeve
differ significantly from the Born polarization, correspondin
to the ideal situation of a spherical ion solvated by a no
periodic Coulombic continuum of infinite extent.

For the ST case, the polarization curve is discontinuo
at the ion–solvent cut-off distanceRIS . The polarization be-
low RIS is consistently larger than predicted by the Bo
model, whereas the polarization above is smaller, altho
always positive. Underpolarization of the solvent aboveRIS

is easily understood since the solvent beyond this dista
does not feel directly the electrostatic field of the ion. Ho
ever, the solvent in this region reacts indirectly to the ion
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 13 Jun
TABLE II. Solvation free energyDGsolv of a single spherical ion@Eq. ~27!# computed using the 3D-Direc
method~present article!. The system consists of a single ion of chargeqI51 e and radiusRI in a solvent of
permittivity es , and is either nonperiodic~NPBC; spherical domain of radiusS54 nm) or periodic~PBC; cubic
unit cell of edgeL52.6 nm). Electrostatic interactions correspond to either the ST or RF schemes, with c
radii RIS5RSS5RC . For the RF scheme, the reaction-field contribution to the solvation free en
@a-dependent term in Eq.~27!# is reported between parentheses. The converged valuet of the residual is also
indicated. The solvation free energiesDGsolv

corr corrected by the inclusion of a self-energy term@Eq. ~B3!# are also
given. For comparison, the corresponding Born solvation free energies@Eq. ~28!# are 2342.9 (e578, RI

50.2 nm), 2171.4 (e578, RI50.4 nm), 2173.7 (e52, RI50.2 nm), and286.8 (e52, RI50.4 nm)
kJ mol21.

BC Interaction es

RI

@nm#
RC

@nm#
t

@kJ mol21 nm21 e21#
DGsolv

@kJ mol21#
DGsolv

ref

@kJ mol21#
DGsolv

corr

@kJ mol21#

NPBC ST 78 0.2 0.8 1.2 2284.8 2281.7a 2370.5
NPBC ST 78 0.2 1.2 1.2 2306.3 2303.4a 2363.4
NPBC ST 78 0.4 0.8 0.8 2100.9 2100.1a 2186.6
NPBC ST 78 0.4 1.2 0.7 2129.4 2128.8a 2186.5
PBC ST 78 0.2 0.8 3.0 2284.1 2280.3b 2369.8
PBC ST 78 0.2 1.2 2.9 2301.0 2297.9b 2355.0
PBC ST 78 0.4 0.8 2.0 2100.6 2102.4b 2186.3
PBC ST 78 0.4 1.2 1.8 2125.3 2125.7b 2182.4

NPBC RF 78 0.2 0.8 1.1 2217.0 (37.0) 2213.7 (37.1)a 2345.6
NPBC RF 78 0.2 1.2 1.1 2259.2 (26.2) 2256.3 (26.4)a 2344.9
NPBC RF 78 0.4 0.8 0.6 247.6 (23.7) 246.8 (23.7)a 2176.2
NPBC RF 78 0.4 1.2 0.6 286.4 (22.0) 285.8 (22.2)a 2172.1
PBC RF 78 0.2 0.8 2.8 2214.6 (35.8) 2211.0 (35.6)b 2343.2
PBC RF 78 0.2 1.2 2.9 2253.1 (22.3) 2249.5 (22.5)b 2338.8
PBC RF 78 0.4 0.8 1.6 247.5 (22.9) 248.4 (23.0)b 2176.1
PBC RF 78 0.4 1.2 1.6 282.3 (18.7) 282.3 (18.8)b 2168.0

NPBC ST 2 0.2 0.8 0.0 2133.4 2135.2a 2176.8
NPBC ST 2 0.2 1.2 0.0 2146.7 2148.3a 2175.6
NPBC ST 2 0.4 0.8 0.0 245.6 246.4a 289.0
NPBC ST 2 0.4 1.2 0.0 260.3 260.8a 289.2
PBC ST 2 0.2 0.8 0.0 2133.1 2135.0b 2176.5
PBC ST 2 0.2 1.2 0.0 2145.6 2147.6b 2174.5
PBC ST 2 0.4 0.8 0.0 245.6 246.3b 289.0
PBC ST 2 0.4 1.2 0.0 259.6 260.2b 288.5

NPBC RF 2 0.2 0.8 0.0 299.8 (13.7) 2101.0 (13.8)a 2164.9
NPBC RF 2 0.2 1.2 0.0 2123.1 (9.8) 2124.4 (9.8)a 2166.5
NPBC RF 2 0.4 0.8 0.0 220.4 (9.0) 220.6 (9.1)a 285.5
NPBC RF 2 0.4 1.2 0.0 239.2 (8.3) 239.5 (8.4)a 282.6
PBC RF 2 0.2 0.8 0.0 299.5 (13.8) 2100.9 (13.8)b 2164.6
PBC RF 2 0.2 1.2 0.0 2122.4 (9.5) 2124.0 (9.5)b 2165.8
PBC RF 2 0.4 0.8 0.0 220.4 (9.0) 220.7 (9.1)b 285.5
PBC RF 2 0.4 1.2 0.0 238.9 (8.0) 239.2 (8.1)b 282.3

aSolvation free energiesDGsolv
ref estimated from the 1D-Direct method~Refs. 27 and 28! are given for compari-

son ~ST,RF/NPBC!.
bSolvation free energiesDGsolv

ref estimated from the 3D-FFT method~Ref. 60! are given for comparison
~ST,RF/PBC!.
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field through interactions with the polarized solvent with
the cut-off sphere of the ion, leading to the observed resid
polarization. Inside the cut-off sphere of the ion, the solv
is overpolarized because each solvent volume element
interacts with a fraction of the highly polarized solve
within the cut-off sphere of the ion. This partial interactio
results in a bias of the solvent polarization towards the io

For the RF case, the polarization curve is continuous
RIS , although its derivative is not. The polarization is co
sistently smaller than the corresponding Born curve over
whole range of distance, both below and aboveRIS . The
difference between the curves is largest at distances clos
RIS , and becomes progressively smaller at either shor
long distances from the ion. It has been shown that in
limit of high solvent permittivities, the Barker–Watts pote
 2006 to 128.200.197.134. Redistribution subject to A
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tial represents~for the solvent–solvent interactions! the cut-
off-truncated polynomial of second order~terms in r 21 to
r 2) that leads to the best agreement between Born and e
tive polarizations.27,28A number of additional results relate
to this comparison are derived in Appendix A, namely that~i!
the RF/NPBC polarization converges to the Born polari
tion in the limit RIS ,RSS→`; ~ii ! in the limit of small dis-
tances~compared toRC), the RF/NPBC polarization con
verges towards the Born polarization;~iii ! in the limit of
large distances~compared toRC), the RF/NPBC polarization
becomes proportional tor 22, just as the Born polarization.

For both the ST and RF schemes, the polarization cur
corresponding to PBC are systematically lower~in the range
RI to L) compared to the polarization under NPBC. T
reason for this is that under PBC, the solvent in the refere
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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unit cell is perturbed by its interaction with the solvent
adjacent unit cells~itself polarized by the periodic copies o
the ion! and, forr .L2RIS , with the periodic copies of the
ion themselves. The consequences of these interactions
depolarization of the solvent in the reference unit cell~com-
pared to NPBC!, and the occurence of negative polarizati
values for the solvent in the neighboring unit cells. At lar
distances,p(r ) displays an irregular oscillatory behavio
with values close to zero at the location of the nearest ne
bor ions~i.e., L, &L, )L, . . . ; data not shown!. The depo-
larization of the solvent within the reference unit cell
slightly more important in the RF case compared to the
case, which is probably a consequence of the larger ma
tude of the residual solvent polarization aboveRIS observed
in the RF/NPBC case. In both cases, however, the solv
depolarization within the reference unit cell remains re
tively small because, due to the truncation of ion–solv
interactions atRIS,L/2, dipoles in the reference unit cell d
not interact directly with the periodic copies of the ion. F
nally, the polarization corresponding to the RF/PBC sche
is seen to agree reasonably well with the LS/PBC curve,
difference being expectedly largest in the neighborhood
the cut-off distance. There is, however, an important diff
ence between the two schemes. When cut-off truncatio
applied, the solvation free energy only depends on the po
ization in the rangeRI to RIS,L/2 @Eqs.~10! and ~20!# and
the effect of periodicity on the ionic solvation free energy
expected to be relatively small. If this restriction is remov
~e.g., when nontruncated LS interactions are considered!, the
effect of artificial periodicity on the ionic solvation free en

FIG. 3. Radial polarizationp(r ) around a solvated spherical ion@Eqs.~22!
or ~25!#. The system consists of a single ion of chargeqI51 e and radius
RI50.4 nm in a solvent of permittivityes578, and is either nonperiodic
~NPBC; spherical domain of radiusS54.0 nm) or periodic~PBC; cubic unit
cell of edgeL52.6 nm). Electrostatic interactions correspond to either
ST ~a! or RF ~b! schemes, with cut-off radiiRIS5RSS5RC51.2 nm. In
addition to the results of the 3D-Direct method~present article!, the analyti-
cal polarization corresponding to the Born model@CB/NPBC; Eq.~26!# and
the lattice-sum case@LS/PBC; computed using the 3D-FFT method~Ref.
64!#, and the polarization computed from the 1D-Direct method~Refs. 27
and 28! for the specific interaction scheme~ST,RF/NPBC! are also pre-
sented for comparison. The cut-off distance as well as
~half-!box edge~PBC only! are indicated by arrows.
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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ergy becomes dramatically more important.19,55,57

Ionic solvation free energiesDGsolv computed for
spherical ions with different parameter combinations, el
trostatic schemes, and boundary conditions are listed in T
II. The values DGsolv

ref computed using the 1D-Direc
method27,28 ~ST,RF/NPBC! or the 3D-FFT method60 ~ST,RF/
PBC! are also listed for comparison. Note that, while t
former values are certainly very accurate, the latter val
are probably subject to errors of a similar magnitude as
present method. The agreement between the values c
puted using different methods is in general very good. T
average and maximal relative differences between
present 3D-Direct and the reference values are 1.1%
1.9%, respectively. Not unexpectedly, these relative diff
ences tend to be somewhat larger for~i! the smaller ionic
radius,~ii ! the larger permittivity value,~iii ! periodic bound-
ary conditions. The following observations can be made:~i!
the solvation free energies are larger in magnitude for
smaller ion and the larger permittivity value, in qualitativ
agreement with the Born model;~ii ! the solvation free ener
gies are larger in magnitude for the larger cut-off value
consequence of including a larger amount of polarized s
vent within the cut-off sphere of the ion;~iii ! the solvation
free energies are more negative for the ST scheme comp
to the RF scheme, a consequence of the solvent overp
ization within the cut-off sphere of the ion for the ST schem
~Fig. 3! and of the inclusion of an additional positive term
the solvation free energy for the RF scheme@a-dependent
term in Eq.~27!; reported in Table II between parenthese#;
~iv! the solvation free energies are larger in magnitude un
NPBC compared to PBC, a consequence of the periodic
induced solvent depolarization within the reference unit c
~Fig. 3!; ~v! the periodicity-induced perturbation of the so
vation free energy (NPBC→PBC) is larger for the smalle
ion, for the larger cut off, for the higher permittivity value
and for RF compared to ST. The latter effect is a con
quence of the larger periodicity-induced solvent depolari
tion within the reference unit cell for the RF scheme~Fig. 3!.

The values reported in Table II are strongly cut-o
dependent and compare poorly with the corresponding B
solvation free energies of2342.9 and2171.4 kJ mol21

(es578, qI51 e, RI50.2 or 0.4 nm! or 2173.7 and
286.8 kJ mol21 (es52, qI51 e, RI50.2 or 0.4 nm!. As
discussed in Appendix B, these large discrepancies could
reduced by the inclusion of a charge self-energy term into
total electrostatic energy of the system. It is also sugges
that such a self-energy term should be systematically
cluded in the total electrostatic energy during molecu
simulations relying on effective cut-off-based electrosta
interaction functions to ensure the obtension of meaning
energies. In this context, a new definition@Eq. ~B4!# is pro-
posed for the electrostatic interaction energy in simulatio
employing the Barker–Watts reaction-field scheme.

The effect of artificial periodicity on the solvation fre
energy of a spherical ion computed using cut-off-based~ST
or RF! electrostatics is illustrated in Fig. 4 for an ion o
chargeqI51 e, a solvent of permittivityes578, and for
different values of the ionic radiusRI and cut-off radiusRC .
The relative periodicity-induced perturbationg(L) of the

e
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ionic solvation free energy@Eq. ~29!# is displayed as a func
tion of L/2 in Fig. 4~a!. All curves converge to a limiting
value of one whenL/2@RC , indicating that the solvation
free energy under PBC indeed converges to its NPBC va
when the computational box becomes large compared to
cut-off radius. For example, the magnitude ofg(L) for L/2
54 nm is smaller than 1024 for all parameter combination
considered. WhenL/2 is only moderately larger thanRC ,
artificial periodicity causes a depolarization of the solve
~Fig. 3! and a decrease in the magnitude of the solvation
energy. As a consequence,g(L) becomes negative. Whe
L/25RC , the solvation free energy is reduced by 2%–9
compared to its NPBC value for the parameter combinati
considered. In agreement with previous observations~Table
II !, the relative periodicity-induced perturbation of the solv
tion free energy~i! increases in magnitude with increasin
ionic radius;~ii ! increases in magnitude with increasing cu
off radius; ~iii ! is larger for the RF scheme compared to t
ST scheme.

The different curves in Fig. 4~a! can be adequately rep
resented by exponential functions. This is shown in Fig. 4~b!,
where the quantity log10@2(RC /RI)g(L)# is displayed as a
function ofL/(2RC). The resulting data can be fitted by tw
straight lines, corresponding to the ST and RF schemes,
linear correlation coefficients~over the intervalL/(2RC)
50 to 2.5! of 20.9998 and20.9985, respectively. Thus
irrespective ofRI and RC , the relative periodicity-induced
perturbation appears to be approximately of the form

g~L !'2
RI

RC
10m L/~2RC! 1n. ~32!

FIG. 4. Periodicity-induced perturbation of the solvation free energy o
spherical ion. The system consists of a single ion of chargeqI51 e and
radiusRI in a cubic periodic box of edgeL filled by a solvent of permittivity
es578. Electrostatic interactions correspond to either the ST or
schemes, with cut-off radiiRIS5RSS5RC . ~a! Relative periodicity-induced
shift g(L) in the solvation free energy@Eq. ~29!#, displayed as a function o
L/2. ~b! Logarithm of minusg(L) amplified by RC /RI , displayed as a
function of L/2RC . The dashed lines corresponding to a least-square
@over the intervalL/(2RC)50 – 2.5] corresponding to either the RF or th
ST schemes.
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Based on all available data for«s578, the constants in Eq
~32! evaluated tom522.203 andn51.290 for the ST
scheme, andm521.468 andn50.715 for the RF scheme.

This behavior can be contrasted to the case of nontr
cated electrostatic interactions. In this case, the solvation
energy corresponding to CB/NPBC is given by the Bo
expression86 @Eq. ~28!#. A corresponding analytica
expression57 has been derived for the LS/PBC case, nam

DGsolv
LS/PBC52

qI
2

8peo

es21

es
F L

RI
1jEW

1
4p

3 S RI

L D 2

2
16p2

45 S RI

L D 5GL21, ~33!

with jEW'22.837 297. Thus, it follows from Eq.~29! that:

g~L !5
RI

L FjEW1
4p

3 S RI

L D 2

2
16p2

45 S RI

L D 5G . ~34!

In this case, the evolution ofg(L) towards zero whenL
@RI is in L21, i.e., much slower than the exponenti
distance-dependence observed for cut-off-based sche
@Eq. ~32!#. For example, for an ion of radiusRI50.4 nm,
g(L) evaluates to20.95 for L/250.4 nm, 20.19 for L/2
53.0 nm, and is above20.1 for L/2.5.7 nm @compare
with the smaller magnitude and faster relaxation obser
for cut-off-based schemes in Fig. 4~a!#. This shows that the
application of a cut-off in the computation of ionic solvatio
free energies by explicit-solvent simulation dramatically
duces the system-size dependence of the calculated solv
free energies compared to lattice-sum methods.19,55,57More
generally, cut-off truncation~with the possible inclusion of a
reaction-field correction! efficiently reduces the impact o
finite-size effects and artificial periodicity on the energi
and forces in any molecular dynamics simulation. Howev
this is at the expense of introducing other~potentially more
harmful! artifacts related with the cut-off truncation itself.

C. Interaction between two spherical ions

The electrostatic solvation free energy profil
DGsolv(d) for a pair of monovalent spherical ions~same or
opposite charges, identical radii of 0.4 nm! in a solvent of
permittivity es578 are displayed in Fig. 5 as a function o
the interionic distanced for different choices of boundary
conditions and treatments of the electrostatic interacti
based on a single cut-offRC51.2 nm. The PBC curves cor
respond to ions aligned along an axis of a cubic unit cell
edgeL56 nm. The corresponding profiles computed usi
the 3D-FFT method60 ~ST,RF/PBC! are also displayed for
comparison.

As expected, the curves corresponding to the NPBC c
present a minimum~maximum! at ionic contact for ions of
identical ~opposite! charges, and asymptotically converge
a common value for a given scheme. More precisely, in
limit of large interionic distances~isolated ions!, DGsolv(d)
converges towards twice the solvation free energyDGsolv

ion of
a single ion (DGsolv

ion 52129.4 or286.4 kJ mol21 for the ST
or RF schemes; see Table II!. In the limit d→0 ~superim-

a
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posed ions!, DGsolv(d) converges towards four timesDGsolv
ion

~zero! for ions of identical~opposite! charges.
Under PBC, symmetry and periodicity constraints im

pose that the profile possesses a stationary point atd5L/2
and is symmetrical with respect to this point. This induce
difference between the NPBC and PBC curves ford in the
interval @0;L/2#. Within this range, the perturbation caus
by the introduction of periodicity is attractive~repulsive! for
ions of identical~opposite! charges. However, the magnitud
of the effect is very small. For example, the differences
tween the values ofDGsolv(L/2) under NPBC and PBC is
only about 0.45 kJ mol21 in magnitude for all cases consid
ered. Thus, in contrast to the case of lattice-sum method57

artificial periodicity has very little influence on the solvatio
free energy profile for pairs of small monovalents ions in
solvent of high permittivity when cut-off truncation is ap
plied. Finally, the agreement between the present calc
tions employing the 3D-Direct method under PBC and
3D-FFT method60 is quite good, especially for the S
scheme. For the RF scheme, the agreement is slightly wo
probably due to small differences in the application
boundary smoothing at the ion surface and ion–solvent
off distance.60

The corresponding profiles for the overall electrosta
contribution DGel(d) to the potential of mean force@Eq.
~30!# are displayed in Fig. 6 as a function of the interion
distanced. At short distances, the curves corresponding
NPBC and PBC are nearly identical. In the ST case,
curves present minima~maxima! at contact and at the cut-of
distance for ions of identical~opposite! charges. The pres
ence of an extremum at the cut-off distance is clearly

FIG. 5. Electrostatic solvation free energy profileDGsolv(d) for a pair of
monovalent spherical ions. The system consists of two ions of radiRI

50.4 nm bearing identical~a and c! or opposite~b and d! charges, and
separated by a distanced in a medium of permittivityes578. It is either
nonperiodic ~NPBC; spherical domain of radiusS54.0 nm) or periodic
~PBC; cubic unit cell of edgeL56 nm; ions aligned with an axis of the un
cell!. Electrostatic interactions correspond to either the ST~a and b! or RF~c
and d! schemes, with cut-off radiiRIS5RSS5RC51.2 nm. In addition to the
results of the 3D-Direct method~present article!, the solvation free energie
computed from the 3D-FFT method~Refs. 51 and 60! for the specific inter-
action scheme~ST,RF/PBC! and the same value ofL are also presented fo
comparison.
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artifact related to the use of truncated electrostatic inter
tions. These profiles provide an explanation for a numbe
observations made in explicit-solvent simulations employ
the ST scheme:~i! The tendency for ion pairs with like
charges to cluster at distances close to the cut
distance;9,96 ~ii ! the tendency for ion pairs of opposit
charges to avoid distances close to the cut-
distance;9,42,43,96~iii ! the artificially increased38,40,41,57stabil-
ity of contact ion pairs for ions of like charges;36,37,39,41,87

~iv! the artificially decreased stability of contact pairs f
ions of opposite charges.42,44,80

In the RF case, the profiles nearly present the expec
behavior, namely repulsion~attraction! for ions of like ~op-
posite! charges, except for a significant artifact in the neig
borhood of the cut-off distance. For ions of like charges
spurious minimum occurs just below the cut-off distanc
while for ions of opposite charges, a spurious maximum
curs just above the cut-off distance. Although these artifa
might affect the populations of contact pairs for ions of li
or opposite charges in simulations of ionic solution,88,89 the
magnitude of these artifacts is limited compared to the
scheme, in agreement with previous observations.44,90

At large distances from the ion, and for both the ST a
RF schemes, the NPBC profiles tend to be close to the
pected Coulombic limit@Eq. ~31!#. However, the exact agree
ment is difficult to assess since positive deviations occ
which are probably related to the limited size of the comp
tational domain.

V. CONCLUSION

In the present study, continuum electrostatics was u
to investigate the nature and magnitude of the perturbat
induced by cut-off truncation and artificial periodicity i

FIG. 6. Electrostatic contributionDGel(d) to the potential of mean force for
a pair of monovalent spherical ions. The system consists of two ions of r
RI50.4 nm bearing identical~a and c! or opposite~b and d! charges, and
separated by a distanced in a medium of permittivityes578. It is either
nonperiodic ~NPBC; spherical domain of radiusS54.0 nm) or periodic
~PBC; cubic unit cell of edgeL56 nm; ions aligned with an axis of the uni
cell!. Electrostatic interactions correspond to either the ST~a and b! or RF~c
and d! schemes, with cut-off radiiRIS5RSS5RC51.2 nm. The ideal long-
range limitDGel

lr (d) is also presented for comparison@Eq. ~31!#. It is calcu-
lated usingDGsolv

ion 52129.4 (ST) or286.4 (RF) kJ mol21 ~Table II!.
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explicit-solvent simulations of ions and ion pairs. To th
purpose, a new algorithm relying on finite integration w
developed to solve the equations of continuum electrosta
based on truncated~and possibly reaction-field corrected!
solute–solvent and solvent–solvent electrostatic interacti
under either nonperiodic~NPBC! or periodic~PBC! bound-
ary conditions. This algorithm was tested and validated
comparison with available methods~Table I! whenever pos-
sible.

In the context of the solvation of a single spherical io
the main observations can be summarized as follows:

~A! The application of cut-off truncation~under NPBC!
significantly affects the solvent polarization around
spherical ion~compared to the ideal Born result!. With
straight truncation~ST! of the interactions, the solven
is overpolarized within the cut-off sphere of the ion a
underpolarized outside this sphere. When a react
field ~RF! correction is applied, the agreement with t
Born ~NPBC! or lattice-sum~PBC! polarization is sig-
nificantly improved, the deviations being largest in t
neighborhood of the cut-off distance.

~B! The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostat
leads to a depolarization of the solvent around the
in the reference unit cell. This effect is caused by t
indirect ~solvent-mediated! perturbation of the solven
molecules in this reference cell by the periodic cop
of the ion. The depolarization is more significant f
the RF scheme compared to the ST scheme.

~C! The application of cut-off truncation~under NPBC! de-
creases the magnitude of the ionic solvation free
ergy of a spherical ion~compared to the ideal Born
result!. The magnitude of this effect is highly sensitiv
to the electrostatic scheme~ST or RF! and to the choice
of a cut-off radius. However, as discussed in Appen
B, the problem could be largely~though approxi-
mately! remedied in explicit-solvent simulations by th
systematic inclusion of an appropriate self-energy te
in the total electrostatic energy of the system. Altern
tively, an exact correction term to ionic solvation fre
energies computed from explicit-solvent simulatio
can be obtained by the application of the pres
continuum-electrostatics method under NPBC or of
one-dimensional analog.27,28

~D! The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostat
causes a further decrease in the magnitude of the i
solvation free energy. In contrast to lattice-su
methods,57 where this free-energy shift is importan
even for relatively large system sizes~proportional to
L21, L being the edge length of the cubic unit cell!, the
effect decays rapidly with increasing system sizes~pro-
portional toR21 exp(2cL/R), R being the cut-off dis-
tance! in the case of cut-off-based electrostatics. He
also, an approximate correction term was derived@Eq.
~34!# that can be applied to correct ionic solvation fr
energies evaluated from explicit-solvent simulatio
under PBC.
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The relevance of these observations can be appreci
by recalling the five sources of error related to the compu
tion of ionic solvation free energies from explicit-solve
simulations relying on cut-off-based electrostatic intera
tions: ~i! Incorrect polarization of the solvent around the io
due to truncated~and possibly modified! electrostatic inter-
actions;~ii ! Cut-off- and system size-dependent perturbat
of the solvent polarization due to artificial periodic bounda
conditions;~iii ! artifacts at the cut-off distance arising from
the finite size of the solvent molecules, and related to the
of either a molecular or an atomic cut-off;~iv! artificial heat-
ing during molecular-dynamics simulations due to the p
sible presence of discontinuities in the atomic forces;~v!
inaccuracy of the ion–solvent and solvent–solvent inter
tion functions and parameters~force fields!.

Only with the understanding of these five sources of
ror and the design of appropriate correction schemes wi
be possible to obtain accurate ionic solvation free energ
from explicit-solvent simulations. The discussion~and cor-
rection! of the two first sources of error has been the focus
the present article. The third problem has been previou
discussed by a number of groups.55,72–75,77,78,91Due to the
finite size of solvent molecules, the solvent-generated po
tial at the ion site~and thus the solvation free energy! may
vary considerably depending on whether cut-off truncation
applied on an atomic or on a molecular basis~and in the
latter case, on the choice of a molecular center!. Although
the debate is not yet completely settled, a number of ar
ments suggest that molecular truncation~based on the cente
of van der Waals interactions for a spherical molecule77! rep-
resents the appropriate method for evaluating the solv
generated potential at the ion site,74,77,91 while a ~generally
sizeable! correction term must be applied if atomic trunc
tion ~or a lattice-sum method! is employed instead. The
fourth problem, namely the artificial heating of molecules
distances close to the cut-off radius, may be alleviated by
use of an effective truncated electrostatic interaction tha
continuously differentiable at the cut-off distance, togeth
with atomic truncation. For example, the Barker–Wa
reaction-field interaction14–16 causes very limited heating
provided that the permittivity of the solvent considered
high and that an~unusual! atomic-cut-off implementation is
applied.16 Finally, in regard to the fifth problem, it should b
stressed that the derivation of force-field parameters for io
solvent interactions based on experimental ionic solvat
free energies makes little sense before the four other p
lems are solved~i.e., methodology-independent ionic solv
tion free energies can be be obtained from explicit-solv
simulations!.

In the context of the potential of mean force for th
interaction between two spherical ions, the main obser
tions can be summarized as follows:

~A! The application of cut-off truncation~under NPBC! in-
duces serious artifacts in the overall electrostatic c
tribution to the potential of mean force for the intera
tion between two spherical ions. As previous
observed in explicit-solvent simulations, these lead
spurious features in the radial distribution functio
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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close to the cut-off distance9,42,43and to artifacts in the
relative stability of the contact, solvent-separated a
free ion pairs.36–42,44,57,80,87These effects are reduce
~although not compleletly eliminated! by the applica-
tion of a reaction-field correction.

~B! The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostatics a
pears to cause very small changes in the electros
contribution to the ~minimum-image! potentials of
mean force for small monovalent ions in a solvent
high permittivity. A rather weak periodicity-induce
perturbation was also reported in this case for latti
sum methods.57 However, the causes of the limite
overall effect are different. In the cut-off case, both t
solvation free energy profile and the direct ion–ion
teraction are almost unaffected by periodicity. In t
lattice-sum case, both contributions are largely
fected, but the two perturbations nearly cancel ea
other.

Explicit-solvent simulations of ion solvation and ion
ion interactions are currently in progress to confirm the
lidity of the above considerations derived from a continuu
electrostatics analysis, and their compatibility with t
results of simulations employing lattice-sum methods.
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APPENDIX A: POLARIZATION IN THE
BARKER–WATTS REACTION-FIELD SCHEME

As shown in Fig. 3, the polarization corresponding to t
RF scheme under NPBC is very close to the correspond
Born polarization, the deviation being largest at distan
close to the cut-off radius. Here, we derive a number
results related to this comparison, in the more general c
text of the Barker–Watts~BW! interaction function@Eq. ~2!#,
namely that~i! the BW/NPBC and CB/NPBC~Born! polar-
izations become identical in the limitRIS ,RSS→`, irrespec-
tive of the value ofa; ~ii ! when RIS5RSS, the BW/NPBC
polarization converges towards the Born polarization at sh
distances from the ion, provided thata52(es21)/(2es

11); ~iii ! the BW/NPBC polarization, just as the Born p
larization, is proportional tor 2 at large distances from th
ion, provided thata5(es12)/(es21). The latter results ob
viously remain approximately valid for a solvent of hig
permittivity (es@1) whena is set to one~RF! or close to
one.

The derivations are based on continuum-electrosta
results presented in a previous article,27,28 and applied to the
specific case of truncated electrostatic interactions co
sponding to the Barker–Watts potential@Eq. ~2!#. In this case
the radial polarization around a solvated spherical ion i
solution of the integral equation
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
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p~r !5g~r !1
es21

es
E

max(RI ,ur 2RSSu)

r 1RSS
K~r ,r 8!p~r 8!dr8

for r .RI , ~A1!

together withp(r )50 for r<RI . The inhomogeneous term
g(r ) is related to the vacuum field generated by the ion

g~r !5
qI

4p

es21

es
H~RIS2r !S r 222

ar

RIS
3 D , ~A2!

and the kernelK(r ,r 8) to the form of the solvent–solven
interactions

K~r ,r 8!52~a12!
r 41@RSS

2 2~r 8!2#222r 2@RSS
2 1~r 8!2#

16r 2RSS
3 .

~A3!

First, it is shown that in the limitRIS ,RSS→`, the po-
larization defined by Eq.~A1! converges to the Born polar
ization @Eq. ~26!#. Due to the form of Eq. ~A2!,
limRIS→`@g(r )2pBorn(r )#50. It is thus sufficient to prove
that the integral term in Eq.~A1! vanishes in the limit of an
infinite solvent–solvent cut-off radius. In this limit, the lowe
bound of integration can be set toRSS2r . For r 8 within the
intervalRSS2r to RSS1r , K(r ,r 8) is positive and possesse
a single maximum atr̃ 85(RSS

2 1r 2)1/2 with K(r , r̃ 8)5(a
12)/(4RSS). Assuming that the polarization is positive an
finite over the whole range of distance~with a maximum
value p̃), upper and lower bounds can be given to the in
gral in Eq.~A1!

0<E
RSS2r

RSS1r

K~r ,r 8!p~r 8!dr8

<2r p̃K~r , r̃ 8!5
a12

2
p̃

r

RSS
, ~A4!

which shows that the integral vanishes for any finiter in the
limit RSS→`. Thus, the BW/NPBC polarization converge
to the Born polarization in the limit of large cut-off radi
irrespective of the value ofa. This result is in particular valid
for the ST27 (a50) and RF (a51) schemes.

As a second result, it is shown that the polarization d
fined by Eq.~A1! converges to the Born polarization in th
limit of short distances whenRIS5RSS, provided thata
52(es21)/(2es11), i.e., when Eq.~3! is used withe8
5es ~adjusted boundary conditions61!. For r<min@RIS ,RSS

2RI #, the Heaviside function in Eq.~A2! can be omitted and
the lower bound in Eq.~A1! replaced byRSS2r . Thus, one
looks for a solution of

p~r !5
es21

es
F qI

4p S r 222
ar

RIS
3 D

1E
RSS2r

RSS1r

K~r ,r 8!p~r 8!dr8G . ~A5!

Using the result

E
RSS2r

RSS1r

K~r ,r 8!~r 8!22dr85
a12

3

r

RSS
3 , ~A6!
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one shows easily that the function satisfying Eq.~A5! when
RIS5RSS and a52(es21)/(2es11) is the Born polariza-
tion @Eq. ~26!#. Therefore, with this specific value ofa, the
BW/NPBC polarization will converge to the Born polariz
tion at short distances, irrespective of the cut-off values.
a solvent of high permittivity (es@1), this result will remain
approximately valid whena51 ~RF!.

As a third result, it is shown that the polarization defin
by Eq. ~A1! possesses anr 22 dependence in the limit o
large distances~just as the Born polarization!, provided that
a5(es12)/(es21). For r>max@RIS ,RSS1RI #, Eq. ~A2!
implies g(r )50 and the lower bound in Eq.~A1! can be
replaced byr 2RSS. Thus, one looks for a solution of

p~r !5
es21

es
E

r 2RSS

r 1RSS
K~r ,r 8!p~r 8!dr8. ~A7!

Using the result

E
r 2RSS

r 1RSS
K~r ,r 8!~r 8!22dr85

a12

3
r 22, ~A8!

one shows easily that the function satisfying Eq.~A7! when
a5(es12)/(es21) is cr22, wherec is a constant. There
fore, with this specific value ofa, the BW/NPBC polariza-
tion will possess ar 22 dependence in the limit of large dis
tances. For solvent of high permittivities (es@1), this result
will remain approximately valid whena51 ~RF! or whena
is given by Eq.~3! with e85es ~adjusted boundary condi
tions!.

The above observations are illustrated in Fig. 7 for
case of an ion of radiusRI50.4 nm immersed in a solvent o
permittivity es578. In the inset, the polarizationp(r ) is dis-

FIG. 7. Radial polarizationp(r ) around a solvated spherical ion@Eqs.~22!#
compared to the Born polarization@Eq. ~26!#. The system consists of a
single ion of chargeqI51 e and radiusRI50.4 nm in a solvent of permit-
tivity es578 under NPBC~spherical domain of radiusS510.0 nm). Elec-
trostatic interactions correspond to the RF scheme, with cut-off radiiRIS

5RSS5RC51.2, 1.6, 2.0, or 2.4 nm. The polarization is computed using
1D-Direct method~Refs. 27 and 28! for the specific interaction schem
~RF/NPBC!. In the inset,p(r ) is displayed as a function ofr 22, while the
Born polarizationpBorn(r ) ~not displayed! is a straight line corresponding to
the diagonal of the graph. In the main graph, the differencep(r )
2pBorn(r ) is displayed as a function ofr 22.
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played as a function ofr 22 for the RF scheme (a51), using
four different values of the cut-off radiusRC . The Born po-
larization is linear inr 22 and corresponds to the diagonal
the graph. Besides a small artifact close to the cut-off d
tance~only visible in the graph forRC51.2 and 1.6 nm! and
a slight offset~only visible in the graph forRC51.2), the
curves are nearly indistinguishable from each other and fr
the Born polarization. In the main graph, the differences
tweenp(r ) and pBorn(r ) are displayed as a function ofr 22

for the same values ofRC . In the short distance limit~right
side of the graph!, convergence towards the Born polariz
tion is evident although slow. However, the differences are
rather small magnitude. For example, the relative differe
at the surface of the ion,@pBorn(RI)2p(RI)#/pBorn(RI),
evaluates to 0.91, 0.29, 0.12, or 0.06% forRC51.2, 1.6, 2.0
or 2.4 nm. In the long distance limit~left side of the graph!,
the approximater 22 evolution ofp(r )2pBorn(r ) can also be
observed. The maximal error in the polarization occurs
actly at the cut-off distance. Increasing the cut-off distan
rapidly reduces the magnitude of this error, the differen
pBorn(RC)2p(RC) evaluating to20.021,20.009,20.004,
20.003 e nm22 for RC51.2, 1.6, 2.0, or 2.4 nm. Thes
results indicate that for large-enough cut-off distances,
RF/NPBC scheme provides an essentially correct represe
tion of the polarization around a spherical ion, in both t
short- and long-distance ranges.

APPENDIX B: SELF-ENERGY TERM
FOR CUT-OFF-BASED INTERACTION FUNCTIONS

Here it is shown that when an effective cut-off-bas
interaction function is used to handle electrostatic inter
tions in an explicit-solvent simulation, a charge self-ene
term should be included into the total electrostatic energy
the system to ensure a fast convergence of ionic solva
free energies towards the Born result in the limit of lar
cut-off distances. Generalizing this observation to the cas
more complex molecular systems, a new definition@Eq.
~B4!# is proposed for the electrostatic interaction energy
simulations employing the Barker–Watts reaction-fie
scheme.

Consider an effective cut-off-based electrostatic inter
tion function where the potential generated atr by a unit
charge at the origin is given by

c~r !5
1

4peo
H~R2r !@r 211c̃~r !#, ~B1!

whereR is the cut-off radius, chosen smaller than half t
smallest dimension of the computational box. It is furth
assumed that~i! the interaction function vanishes atr 5R,
i.e., c(R)50, ~ii ! c̃ is a sum of terms of the formR2 l 21r l

with l>0, and ~iii ! the polarization around a spherical io
converges to the Born polarization@Eq. ~26!# in the limit of
an infinite cut-off distance. For example, as shown in App
dix A, the Barker–Watts interaction function@Eq. ~2!# satis-
fies the three conditions irrespective of the value ofa. In
fact, there is some hint that the form of Eq.~B1! and the
second condition automatically imply the third one.60

e
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Under these assumptions and for large-enough cut
distances, the polarization within the cut-off sphere of an
should be quite close to the Born polarization@see Fig. 3~b!
for the RF scheme#. Using the Born polarization as an ap
proximation in this case, one may estimate the correspon
ionic solvation free energy. Combining Eq.~10! with V(r )
52qI¹c(r ) and Eq.~26!, one obtains the approximate e
pression

DGsolv'
qI

2

8p

es21

es
E

RI

R

dr4p
r

r
•¹c~r !

5
qI

2

2

es21

es
@c~R!2c~RI !#

5DGBorn2
qI

2

8peo

es21

es
c̃~RI !, ~B2!

where we usedc(R)50 and inserted Eq.~28!. In the RF
case, estimates based on this equation can be compar
the data in Table II. For example, fores578, qI51 e, RI

50.2 nm andRIS5RSS51.2 nm, Eq.~B2! @using Eq. ~2!
with a51] gives an estimate of2258.0 kJ mol21 ~includ-
ing 27.8 kJ mol21 for the a-dependent contribution!, to be
compared with the numerical value of2259.2 kJ mol21 ~in-
cluding 26.2 kJ mol21 for the a-dependent contribution! in
Table II. If c̃ is a sum of terms of the formR2 l 21r l with l

>0, c̃(RI) can be approximated byc̃(0) in the limit of large
cut-off radii and small ions. In this case, Eq.~B2! shows that
the ionic solvation free energy computed from an explic
solvent simulation employing a cut-off-based interacti
function will converge significantly faster towards the Bo
result upon increasing the cut-off distance if a self-ene
term of the form

DGself5
qI

2

8peo

es21

es
c̃~0!, ~B3!

is included in the electrostatic energy of the system. N
thatDGself converges towards zero in the limitR→`. How-
ever, because this term is generally large and converges
asR21, its inclusion makes a significant difference even
relatively large cut-off radii.

Generalizing this observation to more complex mole
lar systems suggests that a charge self-energy term shou
included in explicit-solvent molecular dynamics simulatio
employing any effective cut-off-based electrostatic inter
tion function. Intuitively, this term may be interpreted as t
reversible work required to individually charge the atom
when they are at infinite separation. This work excludes
~infinite! Coulombic self-energy, but retains the contributi
arising from the non-Coulombic term associated withc̃ in
Eq. ~B1!.

In the specific case of the Barker–Watts reaction-fi
method@Eq. ~2!#, a reasonable expression for the total ele
trostatic energyUBW could be
Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to A
ff
n

ng

to

-

y

e

nly
r

-
be

-

e

d
-

UBW5(
i

(
j . i , j ¹excl(i )

qiqjcBW~ r̄ i j !

1
1

4peo
H(

i
(

j . i , j Pexcl(i )
qiqj c̃BW~ r̄ i j !

1
1

2
c̃BW~0!F(

i
qi

22es
21S (

i
qi D 2G J , ~B4!

wherer̄ i j is the minimum-image vector corresponding tor i j ,
excl(i ) denotes the exclusion list of atomi ~the distance
between any two excluded atoms is assumed to be sm
thanR), and

c̃BW~r !5
ar 2

2R3 2
a12

2R
, ~B5!

with a defined by Eq.~3!. Note that current simulation pro
grams~e.g.,GROMOS92 andGROMACS93! typically restrict the
implementation of the Barker–Watts reaction-field method
the first term in Eq.~B4!. The second term is explicitly in-
cluded here because so-called excluded neighbors~usually
first and second covalent neighbors! should only be excluded
from the summation of the Coulombic (r 21) contribution,
but not of the reaction-field (c̃BW) contribution. The form of
the third term has been chosen for consistency in the con
of small molecules~compared to the cut-off radius and uni
cell size!. For a small molecule~or ion! gathered by period-
icity around its center,r̄ i j can be replaced byr i j in Eq. ~B4!
and the Heaviside function involved incBW can be omitted.
In this case, the reaction-field~non-Coulombic! contribution
contribution toUBW can be written

UBW
rf 5

1

8peo
H a

R3 (
i

(
j . i

qiqj r i j
2 1

es21

es
c̃BW~0!S (

i
qi D 2J .

~B6!

For a neutral molecule, one has

UBW
rf,dip52

1

8peo

am2

R3 , ~B7!

wherem is the molecular dipole moment, which matches t
Onsager expression for a dipole in a spherical cavity94 pro-
vided that adjusted boundary conditions@e85es in Eq. ~3!#
are applied. For a monoatomic ion, one hasUBW

rf,ion5DGself,
i.e., the self-energy term suggested by Eq.~B3!. Note that the
last term in Eq.~B4! only affects the energy of the system
but does not induce atomic forces. However, it may be
sential to include it in free-energy calculations involving a
terations of the atomic partial charges.

In the specific case of a single ion, the inclusion of su
a self-energy term should substantially reduce the error
ionic solvation free energies computed from explicit-solve
simulations with finite cut-off distances. This can be se
from the corresponding corrected valuesDGsolv

corr5DGsolv

1DGself reported in Table II. In the RF case, taking the sa
example as above (es578, qI51 e, RI50.2 nm andRIS

5RSS51.2 nm),DGsolv
Born evaluates2342.9 kJ mol21, to be

compared with an estimateDGsolv
corr of 2344.9 kJ mol21. The

corresponding estimate for the ST case,2363.4 kJ mol21, is
significantly less accurate. This is probably due to the poo
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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agreement between the polarization within the cut-off sph
of an ion and the Born polarization in this case@see Fig.
3~a!#.
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