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Accounting for electronic polarization in non-polarizable force fields
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The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue

that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable

force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7.

Our model explains why a neglect of electronic solvation energy, which typically amounts to about

a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce

a correct result; however, the correct solvation energy of ions does not guarantee the correctness of

ion–ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening

for charged moieties is shown to result in significant changes in protein dynamics and can give rise

to new qualitative results compared with the traditional non-polarizable force field simulations.

The model also explains the striking difference between the value of water dipole m B 3D reported

in recent ab initio and experimental studies with the value meff B 2.3D typically used in the

empirical potentials, such as TIP3P or SPC/E. It is shown that the effective dipole of water can be

understood as a scaled value meff ¼ m
� ffiffiffiffiffi

eel
p

, where eel = 1.78 is the electronic (high-frequency)

dielectric constant of water. This simple theoretical framework provides important insights into the
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nature of the effective parameters, which is crucial when the computational models of liquid water

are used for simulations in different environments, such as proteins, or for interaction with solutes.

1. Introduction

At present, the majority of molecular dynamics simulations

are performed by using non-polarizable force fields such as

AMBER,1 CHARMM,2 GROMOS3 and OPLS.4 In these

models, the all-important effects of electronic polarization

and screeningw of electrostatic interactions are presumably

incorporated in the effective charges and other empirical

parameters of the force fields.

Despite the drastic simplifications, non-polarizable models

have been remarkably successful in modeling many complex

molecular systems.6 For example, the properties of liquid

water are described quite accurately without introducing

electronic polarizability explicitly; likewise, the hydration free

energies can be computed quite accurately using non-polarizable

simulations.7,8 However, the simulation of polarization effects

in low-polar solvents, e.g. ethers,9 and especially in non-polar

solvents, e.g. alkanes,10,11 meet serious problems. The non-

polarizable models can also significantly underestimate the

magnitude of the dielectric response in low-dielectric protein

environment12,13 and lipid membranes.14 For example, the

dielectric constant of the inner part of cytochrome c was found

to be only about 1.5,15 which is lower than pure electronic

dielectric constant eel D 2.0.16 Many other shortcomings of

non-polarizable MD simulations have been recently discussed

in the literature, see ref. 17 and references therein.

The polarizable models aim at resolving the problems

mentioned above. Most of such models involve various kinds

of coupled polarizable sites,9,10,18,19–22 and the computationally-

expensive procedure of achieving self-consistency of such sites

at each molecular dynamics time step.z The implementation of

such models is yet to be completed; at present, even the

simplest classical Drude oscillator model9,10,20–22 is still not

readily available for application to many biological systems.

As fully polarizable force fields are being developed, there is

also a clear need for better understanding the existing non-

polarizable models, in particular how accurately they capture

the effects of electronic polarization and screening,23,24

and possibly improving them. Given a specially designed

(but empirical in nature) procedure of how the partial charges

are selected1,2 the charges of neutral residues do reflect, at least

approximately, the effects of electronic screening—in a way

how for example TIP3P or similar fixed-charge models of

water does so. One issue of concern, however, is that the

electrostatic interactions of ions are described in standard

non-polarizable force fields, such as CHARMM or AMBER,

by their original integer charges (e.g. �1, for Na+ and Cl�),

i.e. as if these ions were in vacuum, completely disregarding

the effect of electronic dielectric (e = eel) screening inherent to

the condensed phase medium. The interaction of such bare

charges obviously is overestimated by a factor of about two (the

screening factor eel is about 2 for most of organic media).10

Thus, for example, in simulation of ion channels with conven-

tional non-polarizable force fields, the direct Coulomb interac-

tion of ions (e.g. several K+ ions in the same channel, just a few

angstroms apart)25 is probably twice as strong as it should be;

similarly, the interactions of ions with water molecules, or with

partial atomic charges of a protein are likely to be overesti-

mated as well. The same is true for interaction of charged

residues in proteins, such as Arg+ or Glu�, partial charges of

which carry their original net values �1. The use of bare

charges in non-polarizable simulations would be appropriate

for vacuum, but not for condensed phase, where all charges

are essentially immersed in the electronic continuum, which

weakens their interactions by a factor of about two.

A similar problem arises in QM/MM calculations, where

one needs to evaluate the electric field of the protein medium

to which the QM system is exposed. The use of CHARMM or

AMBER charges in such calculations has become standard,

and has been adopted in many studies.26 Obviously, the

electric potential of charged residues in such calculations

should reflect the electronic screening of the medium.

In this paper we discuss a principle of uniform charge-

scaling based on which one could systematically build a non-

polarizable force field for simulations of condensed media.

The principle is based on a simple idea of uniform electronic

continuum, with an effective dielectric constant e B 2, and

point charges moving in it. The resulting model, which

combines a non-polarizable (fixed-charge) force field for

nuclear dynamics (MD) with a phenomenological electronic

continuum (EC) is referred to as MDEC (Molecular Dynamics

in Electronic Continuum). In some sense, the model is an

opposite limit of fully polarizable models involving polarizable

point dipoles. Of course, the reality neither involves point

dipoles nor the completely uniform electronic continuum, but

lies somewhere in between these two limits. In MDEC model

the effects of electronic screening are reduced to simple scaling

of partial charges. The model is similar but not equivalent to

standard non-polarizable force fields.1,2–4 An ultimate rigorous

implementation of the new concept, of course, would require a

consistent re-parameterization of all force field parameters

such as bond-length, angle, torsion and van-der-Waals para-

meters along with the effective partial charges. In this review,

however, we examine only a simple scaling of partial charges,

which makes non-polarizable force fields such as AMBER and

CHARMM to be uniformly consistent with the idea of

electronic screening that naturally should improve the quality

of these force fields.

Of our particular interest is the calculation of solvation

effects using MD. In the MDEC the electronic polarization

part of the solvation is calculated explicitly from the electronic

continuum model, while the nuclear part is obtained with a

fixed-charge MD. The two parts need to be combined to

obtain the total solvation energy.27,28 We will demonstrate

that MDEC model and the Drude oscillator model produce

comparable results for dielectric constants of alcohols and

w Throughout the paper the term ‘‘electronic screening’’ means a
reduction of the electric field and electrostatic interactions due to an
electronic relaxation of the environment. For the origin of the effect
see e.g. ref. 5.
z With the Extended-Lagrangian technique9,10,18,20–22 the computation
cost of polarizable simulations can be significantly reduced.
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alkanes. It will be then argued that using this model one can

rather accurately describe the solvation effects and dielectric

properties of non-polar liquids and proteins.

Several examples of MDEC calculations and the effects of

electronic polarization will be discussed, including the inter-

action between Na+ ions, which is of interest for ion-channel

simulations, and the dynamics of an important salt-bride in

Cytochrome c Oxidase.

Another important issue related to non-polarizable models

concerns water. We show that such models as TIP3P and

SPC/E in effect are MDEC models. Our theory explains the

striking difference between the value of bulk water dipole

ml B 3D reported in recent ab initio and experimental studies

and the value meff B 2.3D of TIP3P or SPC/E. We show that

the effective dipole of water can be understood as a scaled

value meff ¼ ml
� ffiffiffiffiffi

eel
p

, where eel = 1.78 is the electronic

(high-frequency) dielectric constant of water. This simple

theoretical framework provides important insights into the

nature of the effective parameters, which is crucial when the

computational models of liquid water are used for simulations

in different environments, such as proteins, or for interaction

with solutes.

2. Theory. MDEC model

The MDEC model was discussed previously in ref. 27–29.

Here we summarize the main features of the model essential

for the subsequent discussion.

The MDEC model considers point charges moving in homo-

geneous electronic continuum of known dielectric constant eel.
The interactions between charges in such a system are scaled

by a factor 1/eel. It is instructive to see how this model arises

from a microscopic polarizable model as an approximation. A

formal analysis of this is given next.

2.1 Screening effect and effective charges

Consider a system of polarizable point charges. The energy of

such a system is written as follows:

Wðr1; :::; rNÞ ¼
1

2

XN
jai

qiqj

rij
þ 1

2

XN
i;j¼1

diKði; jÞdj �
XN
i¼1

E0ðriÞdi

ð2:1Þ

where q’s are the gas-phase partial atomic charges, and d’s are

the induced point dipoles located at the positions r’s of the

corresponding charges. The dipoles are induced by the electric

field from other charges and other dipoles. The dipole–dipole

interaction is quadratic and is described by the matrix K; the

diagonal elements of this matrix are inverse polarizabilities,

1/a, which are assumed to be the same for all charges. In

addition to the dipole–dipole interactions, the dipoles also

interact with the electric field of other point charges, E0(ri).

The field is taken at the position of a given polarizable site (and

corresponding charge) ri, and the prime indicates that the

electric field does not include the field of the point charge itself.

For simplicity, hereafter, the vector notations are omitted while

the usual vector nature of the appropriate variables is assumed;

thus, e.g. E0(ri)di denotes a scalar (dot) vector product, and

diK(i,j)dj stands for the vector tensor vector product.

The polarizable dipoles represent electronic polarizability

of the ions, and therefore respond to an external field

‘‘instantaneously’’. The external field here is the field of

point atomic charges, which is changing together with the

position of the nuclei on a much slower time-scale than the

electronic response. Thus the polarization dipoles are always

at ‘‘equilibrium’’ (i.e. minimizing the total energy) for a given

configuration of the nuclei, and the dynamics of the nuclei

coordinates r can be described with a Born–Oppenheimer

type of effective potential energy W(r1,. . .,rN); the dynamic

coordinates of the dipoles are not present explicitly in this

picture.

The equilibrium values of the dipoles can be found

by minimizing the energy with respect to the dipole values.

Each of the dipoles will have the following equilibrium value:

�di ¼ a E0ðriÞ �
XN
jai

Kði; jÞ �dj

 !
ð2:2Þ

where the first term in parenthesis is the electric field of the

charges other than qi, and the second is the electric field of

other dipoles dj at the position of the dipole di. All equilibrium

values of the dipoles depend self-consistently on each other,

and on the position of the nuclei, which determine the

‘‘external’’ field to which the dipoles are subjected to. The

substitution of the above equilibrium values for dipoles into

energy expression gives

Wðr1; :::; rNÞ ¼
1

2

XN
jai

qiqj

rij
� 1

2

XN
i¼1

E0ðriÞ �di ð2:3Þ

The second term of the above equation is the energy of the

dipoles, which is the same as electronic polarization energy.

The point dipole polarization is now written in terms of the

polarized continuum as follows:

�di ¼
Z
Vi

P0ðrÞdr ð2:4Þ

where P0(r) is polarization density, and the integration is over

the volume Vi of the ith atom. Since the boundaries between

atoms are not well defined, here already the approximate

character of the treatment becomes evident. The prime of

the polarization density indicates that this is part of total

polarization at point r caused by the electric field other than

the field of the atom itself. This polarization is proportional to

the local external field, as in the usual macroscopic continuum

electrostatics (here the electric displacement D is the same

as E0):

P0ðrÞ ¼ 1

4p
eel � 1

eel
E0ðrÞ ð2:5Þ

Assuming now that the external electric field E0(r) does not

change significantly within the atomic dimensions (this is the

second major approximation), the polarization energy can be

written as follows

Wel ¼ �
1

2

XN
i¼1

E0ðriÞ �di ¼ �
eel � 1

eel

� �XN
i¼1

Z
Vi

E02ðrÞ
8p

dr ð2:6Þ
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which after some additional transformations and assuming

spherical shape of the atoms becomes

Wel ¼ � 1� 1

eel

� �
1

2

XN
jai

qiqj

rij
þ 1

2

XN
i¼1

q2i
Ri

 !
: ð2:7Þ

where R’s are the corresponding radii of the atoms. The

substitution of the above relations into eqn (2.3) gives for

total energy the following:

Wðr1; :::; rNÞ ¼
1

2

XN
jai

qiqj

eelrij
�
XN
i¼1
ð1� 1=eelÞ

q2i
2Ri

: ð2:8Þ

As expected, the first term, which represents interatomic

interactions, is scaled by a factor 1/eel. The second term in

this expression is the polarization (Born) energy of individual

ions, which does not depend on the atomic configuration and,

therefore, is not important for interaction and dynamics of the

charges; however it becomes critically important in solvation

energy calculations.

The above expression could have been written from the start

for a system of charges in electronic continuum. The above

derivation shows that the system of polarizable dipoles can be

approximated by an effective non-polarizable model. It follows

from the above derivation that the dielectric constant eel is
related to polarizability of the dipoles a and density of the

polarizable sitesNa as given by the Clausius-Massotti expression:

eel � 1 ¼ 4paNa

1� ð4p=3ÞaNa
ð2:9Þ

Thus, the energy of a system of point polarizable dipoles can

be approximated by that of an equivalent continuum model.

The numerical quality of the approximation is difficult to

evaluate a priori, however, despite the known steps of the

derivation that involve approximations. We will check the

quality of this approximation by comparing directly the results

of calculations using Drude model and an equivalent conti-

nuum model later in the paper.

From the above treatment it follows that the system of

polarizable point charges can be substituted by a system of non-

polarizable point charges of scaled values qeffi ¼ qi
� ffiffiffiffiffi

eel
p

, so that

the interaction between the scaled charges correctly reproduces the

actual interaction qeffi qeffj /rij = qiqj/eelrij as if they were in vacuum.

The model described above is strictly valid only for ionic mono-

atomic liquids.30 However, if one deals with groups of charges,

which represent molecules, e.g. water, instead of individual point

charges, the results are formally the same as above; only in this

case there is no simple relation between partial charges of

molecules in vacuum and effective charges in the condensed phase.

A good example of such situation is water molecule discussed in

the text. It should be noticed too that in a different type of a

model, in which an artificial boundary between the molecule and

the rest of the electronic polarizable continuum is introduced, for

the case of neutral molecules the screening factor may differ from

1/e and depend on a shape of the molecular cavityy, this difference,
however, is not significant, see Appendix.

In general, the magnitude of the relative dielectric constant

e depends on which part of the medium relaxation is considered

explicitly (as moving charges qi) and which part is described

phenomenologically as a polarizable dielectric.31 Since in non-

polarizable microscopic models the atomic motions are

described explicitly, the screening factor should include only

electronic component of the medium polarization, e = eel. The
static (i.e. time-independent) dielectric approximation in this

case is quite accurate, because on the time scale of nuclear

motion the electronic relaxation occurs almost instantaneously,

reducing at once all interatomic electrostatic interactions by a

factor of eel. The phenomenological parameter eel can be

theoretically evaluated by Clausius-Massotti eqn (2.9) or

directly measured as a high-frequency dielectric permittivity

(eel = n2, where n is a refracting index of the medium). For

organic materials typical values of eel are in the range 1.7–2.210.

Thus, the uniform dielectric approximation with eel = 2 can be

a good approximation for many biological systems. The resulting

model, which combines a non-polarizable (fixed-charge) force

field for nuclear dynamics (MD) and a phenomenological

electronic continuum (EC) for the electronic polarization, is

referred to as MDEC.29

Summarizing, MDEC model considers charges qi moving in

electronic polarizable continuum of known dielectric constant eel,
see Fig. 1a. In the uniform dielectric all electrostatic interactions

are scaled by a factor 1/eel. Since interactions are quadratic in

charges, the effects of electronic dielectric screening can be taken

into account implicitly by using scaled partial charges,

qeffi ¼ qi
� ffiffiffiffiffi

eel
p

. In the section ‘‘Applications of MDEC model’’

we show by the computational tests that the simple scaling

procedure results in accurate effective interaction between ions

of general shape in real solvents. The un-scaled original charges

are difficult to specify a priory in general (they are not the same

as partial atomic charges of a molecule in vacuum, see ref. 29),

unless one deals with ions or ionized groups in proteins, whose

un-scaled net charges are known. But effective charges qeffi can be

found empirically by fitting experimental data32,33 or appro-

priately scaled ab initio interaction energies.2

2.2 Solvation free energy

In MDEC model, when the solvation free energy of a group is

considered, the electronic polarization free energy is treated

Fig. 1 (a) MDEC model for the electrostatic interactions between

solute (large crossed circles) and solvent (small crossed circles) charges

moving in the electronic continuum of dielectric constant eel; the same

electronic dielectric constant eel is assigned for both the solvent and

solute regions; (b) MDEC model for estimation of the pure electronic

part of the electrostatic solvation free energy DGel.

y For example, for point dipoles in spherical cavities, the scaling factor
for interaction is ½3

ffiffi
e
p
=ð2eþ 1Þ�2; for electronic dielectric constant of 2

(1.78 for water) the difference may not be significant, considering the
uncertainty of the shape of molecular cavity. See details in Appendix.

D
ow

nl
oa

de
d 

by
 I

ns
tit

ut
e 

of
 C

he
m

ic
al

 T
ec

hn
ol

og
y,

 P
ra

gu
e 

on
 2

3 
M

ar
ch

 2
01

1
Pu

bl
is

he
d 

on
 0

7 
Ja

nu
ar

y 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0C

P0
19

71
B

View Online

http://dx.doi.org/10.1039/c0cp01971b


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 2613–2626 2617

explicitly. The solvation free energy consists of the nuclear

part DGnuc, evaluated by MD, and the pure electronic polar-

ization part DGel (which corresponds to the last term in

eqn (2.8)) evaluated by using the polarizable continuum

model34 (i.e. by solving the Poisson equation with corresponding

boundary conditions, with dielectric constant e = 1 inside the

solute region and e = eel outside, as shown in Fig. 1b):

DG = DGnuc + DGel. (2.10)

The origin of the last term can be traced in the derivation of

the previous sub-section, where the last term in eqn (2.8)

corresponds to DGel for spherical ions. The derivation can be

extended to the case of molecules of a general shape, in which

case the electronic polarization energy for each molecule

a takes a familiar reaction field energy form,

DGa
el ¼

1

2

X
i

jRF
ai qai; ð2:11Þ

where jRF
ai are reaction field potentials at the position of

molecular charges qai for a given molecule, obtained by solving

the corresponding Poisson equation, as mentioned above.

When the interaction of a solute with solvent molecules

is considered in an MDEC simulation (in evaluating the

DGnuc part), the solute partial charges (found in an

appropriate quantum-mechanical calculation, in vacuum or

in a dielectric environment) should be scaled by 1=
ffiffiffiffiffi
eel
p

, like all

other charges when the forces between atoms are considered.

If no scaling of solute charges is employed in MD simulation,

which is typical for standard MD technique, e.g. ref. 7 and 35,

the free energies obtained from MD, DGMD, have to be

corrected directly afterward. Since in the linear response

approximation the solvation free energy is quadratic in

charges of the solute, DGMD should be corrected by a factor

1/eel, giving DGnuc = DGMD/eel. The total MDEC polarization

free energy of the medium then is:

DG ¼ 1

eel
DGMD þ DGel ð2:12Þ

where DGMD is the electrostatic solvation free energy obtained

in non-polarizable MD using un-scaled solute chargesz
(i.e. the standard approach), and DGel is the pure electronic

part of the free energy. A more detailed description of the free

energy simulation technique accounting for the electronic

polarization can be found in ref. 27–29.

Thus, unlike the common empirical models,1–4 in MDEC

model the electronic polarization term appears explicitly in the

expression for the solvation free energy (2.12). The electronic

component constitutes more than half of the solvation free

energy for ions and affects the entire non-polarizable concept,

including the parameterization strategy. The reason why the

conventional non-polarizable force fields1–4 reproduce the

hydration free energies of ions quite accurately, completely

ignoring the electronic part of the solvation energy will be

explained in the Section ‘‘Empirical force fields’’.

2.3 Dielectric constant of the medium

The dielectric constant of the medium is often employed in the

continuum electrostatic e.g. for solvation free energy evalua-

tion calculations.36 In microscopic calculations, on the other

hand, the solvation free energy is obtained directly from MD

simulations. The question arises often as to what is the effective

dielectric constant of the medium eMD that corresponds to a

specific microscopic model of the system. The free energy

relationships discussed in the previous section allow one to

make a connection between the total (static) dielectric

constant, e0, which includes both nuclear and electronic

polarization effects, and the dielectric constant of non-

polarizable MD simulations, eMD, which does not explicitly

describe pure electronic polarization of the medium.

Suppose we consider a spherical ion or a pair of

spherical ions; in this case, according to ref. 37, the solva-

tion energies will be proportional to their corresponding

Born factors: DG � 1� 1=e0ð Þ, DGel � 1� 1=eelð Þ and

DGMD � 1� 1=eMDð Þ. From eqn (2.12) we find:

e0 = eMD�eel (2.13)

That is the total dielectric constant of the medium e0 is not

equivalent to that reproduced by the (non-polarizable) MD

simulation, eMD; instead, the relationship between the two is

given by the above formula. Although the above arguments

are strictly valid only for spherical ions and for the bulk

solvent modeled with periodic boundary conditions,38 the

relation (2.13) is in fact more general.

The above relation can be also obtained using the

well-known expression38 for the static dielectric constant:

e0 ¼ eel þ
4p

3VkBT
hM2i ð2:14Þ

Here hM2i is the mean square fluctuation of the total dipole of

the dielectric sample V; kB and T are Boltzmann constant and

temperature, respectively. According to the MDEC scaling

procedure, the actual dipole moment m of particles in the bulk

is related to the effective moment meff of these particles in non-

polarizable model as m ¼ ffiffiffiffiffi
eel
p

meff ; therefore, hM2i= eelhM2
MDi;

where hM2
MDi is the mean square fluctuation of the dipole

moment observed in a non-polarizable MD. Thus, eqn (2.13)

is obtained from eqn (2.14) by noticing that eMD is defined

via fluctuation hM2
MDi with eel = 1 in eqn (2.14).

3. Applications of MDEC model

3.1 Ab initio interactions modeled by charge scaling

According to MDEC model the electrostatic interactions

between ions in the condensed phase should be reduced

(scaled) by the factor eel, electronic dielectric constant, with

respect to those in gas-phase. To test how well the simple

charge scaling procedure reproduces the screening effect for

spherical and non-spherical ions in electronic continuum with

appropriate boundary conditions we considered39 interaction

of several charged species in ab initio calculations. The ab initio

treatment captures the effects of electronic polarization of

charged species themselves, while the effects of the polariza-

tion of the environment, and corresponding screening, are

z The charges of the solvent molecules (such as water) are assumed to
be already scaled, which is the case in standard AMBER,1

CHARMM,2 GROMOS3 or OPLS4 MD simulations; the empirical
charges of neutral species, in contrast to charged species, are typically
correctly reflect the condensed matter nature of the interaction.
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described here phenomenologically, by a continuum with

dielectric eel = 2.0.

The interaction energies were calculated using a quantum-

mechanical procedure identical to that of the CHARMM

parameterization protocol.2 For each structure with a given

separation r between moieties, the interaction energy was

calculated as the difference between the total supermolecule

energy and the sum of the individual monomer energies. The

gas-phase interaction energies were calculated with model

compounds in vacuum; while the bulk-phase interactions were

obtained with the model compounds immersed in the dielectric

of e = 2. The quantum-mechanical calculation in dielectric

utilized the PCM34 technique and self-consistent reaction-field

procedure implemented in Gaussian03.40

In Fig. 2a, b and c, the ab initio interactions between ions

Na+–Na+, Arg+–Glu� and between Glu� ion and water are

compared with those modeled by the original and scaled

CHARMM2 force fields. (For amino acids their corresponding

model compounds are used.) In all cases, as expected, there is a

significant screening effect of the dielectric environment on the

interaction energy; the effect as seen, however, can be pretty

accurately reproduced by a simple scaling of charges. Notice

that the charges are scaled by a factor 1
� ffiffiffiffiffi

eel
p

; given what have

been said about TIP3P water model (see Introduction, and the

following sub-section on water), in the example of Glu�–H2O

pair, only charges of Glu� were scaled. Notice how accurately

the scaled CHARMM force field reproduces the results of

ab initio calculations. Similar results are expected for other

common force fields (such as AMBER,1 GROMOS,3 etc)

where charged groups are also treated as having their original

vacuum net charges.

Thus, the simple charge scaling procedure in standard non-

polarizable force fields can account for the effects of electronic

screening not only in the interactions between ions but also

between ions and water. Although, as seen in Fig. 2a, some

additional adjustments of van der Waals parameters might be

useful to improve the interactions at shorter distances.

3.2 Water models

Many non-polarizable force fields are essentially MDEC

models. For example, TIP3P32 or SPC/E33 and similar models

of water involve empirical charges that can be considered as

scaled charges. TIP3P is particularly interesting in this regard

as it is often used in biological simulations, and it serves as a

reference for phenomenological parameters assignment of

CHARMM.2

It is known that the dipole moment of a water molecule in

vacuum is 1.85D; in liquid state, however, the four hydrogen

bonds to which each water molecule is exposed on average

strongly polarize the molecule and its dipole moment becomes

somewhere in the range8 of 2.9D to 3.2D.42,43 The significant

increase of the dipole from m0 = 1.85D to a value m E 3D, or

even larger, is also supported by the Kirkwood-Onsager

model,44 which estimates the enhanced polarization of a

molecule due to the reaction field of the polarized environ-

ment. Yet, the dipole moment of TIP3P water model is only

2.35D. The specific value of TIP3P dipole moment can be

understood as a scaled dipole, so that the dipole–dipole

interactions are screened by the electronic continuum by a

factor 1/eel. Indeed, if each dipole (or all partial charges) is

scaled by a factor 1=
ffiffiffiffiffi
eel
p

, one could consider interaction of the

effective dipoles, meff ¼ m=
ffiffiffiffiffi
eel
p ’ 2:35D (for water eel = 1.78),

as if they were in vacuum. This appears to be exactly what the

fixed-charge water models do. Thus, the charges of TIP3P

water model should be understood as scaled charges that

reflect the effect of electronic screening. (The scaling factor

1/eel for water dipoles is an approximation, and one can argue

that a different scaling factor should be more appropriate,

however, numerically all reasonable continuum models give

about the same result, see Appendix.)

The scaled nature of charges of TIP3P water model

becomes critically important when the interaction with a

solute is considered. For example, if the charge of say Na+

Fig. 2 Interaction energies between (a) Na+–Na+ ions; (b) Arg+ and

Glu� amino-acids; (c) Glu� amino-acid and water. Open circles stand

for the energies obtained in gas-phase HF/6-31(d) calculation; filled

squares are for the same interactions but calculated in dielectric of

e = 2.0. The dashed lines represent interaction energies obtained by

the standard CHARMM force field, and using TIP3P water model in

(c). The solid lines represent the interaction energies obtained by the

CHARMM force field with scaled charges (eel = 2.0), and TIP3P

water model in (c).

8 It is recognized that in ab initio simulations of bulk water the water
dipole can not be defined unambiguously and depends on the
partitioning scheme used;41 as such, its actual value remains a matter
of debate. Here we rely upon calculations and the partitioning scheme
of ref. 42.
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ion is assigned to be +1, then it is obviously inconsistent with

the charges of water model; as the latter are scaled by a factor

of 1=
ffiffiffiffiffi
eel
p

, while the charge of the ion is not. Clearly the

strength of interaction is overestimated in this case by a

missing factor of 1=
ffiffiffiffiffi
eel
p

, i.e. about 0.7 (for proteins eel B 2).

The problem would not arise if the charge of the ion were

appropriately scaled. (The reason why seemingly incorrect

charge gives reasonable aqueous solvation free energy is

explained in the next section.)

A detailed discussion of non-polarizable models such as

TIP3P and SPC/E is given in our recent paper ref. 45. Here we

briefly consider the transferability issue for water models that

can be demonstrated using the Kirkwood-Onsager model.44

In this model, the medium is represented by a continuum

dielectric of e0 and the solvent molecule is modeled by a point

polarizable dipole, placed in a spherical cavity of radius R; the

permanent dipole is m0 and the polarizability is a. In such a

model, for the average dipole moment of bulk water ml one
obtains the following expression:

ml ¼
m0

1� 2ðe0 � 1Þ
ð2e0 þ 1Þ

a
R3

: ð3:1Þ

To use this model for estimation of the liquid state water

dipole, one needs to know the value of the radius R of the

molecular cavity. This is obviously a phenomenological

parameter, which needs to be fixed in comparison with

experimental data or derived from a suitable theoretical

model. One reasonable estimate of the radius of molecular

sphere R is to assume that 2R is the average distance between

the liquid water molecules, a = 2R. The distance between

the molecules is related to their number density, Na, as

Na = a�3 = 1/8R3. Employing now the Clausius-Massotti

relation between Na and eel as given by eqn (2.9) the radius R is

expressed as

R3 ¼ p
6

ðeel þ 2Þ
ðeel � 1Þ a: ð3:2Þ

With the radius R given by eqn (3.2), the equilibrium dipole

moment in the liquid phase becomes

ml ¼
m0

1� 6

p
ðeel � 1Þ
ðeel þ 2Þ

2ðe0 � 1Þ
ð2e0 þ 1Þ

; ð3:3Þ

which gives the value 3.0 D for the bulk water (eel = 1.78,

e0 = 78, m0 = 1.85D). This value is in good agreement with

the recent experimental estimations; however, it is slightly

different from the empirical TIP3P or SPC/E MDEC

value, 2:35D
ffiffiffiffiffiffiffiffiffi
1:78
p

¼ 3:14D. This slight inconsistency can be

corrected by the fine tuning of the model parameters in

computational parameterization procedure.45

The above model will now be used to examine the transfer-

ability of non-polarizable TIP3P or similar potentials for

bio-molecular simulations in conditions which are quite

different from that in pure liquid state of water. Although

(3.1) is a crude model, it nevertheless qualitatively captures the

electronic polarization effect induced by the polarizable

environment. Taking m0 = 1.855D for water dipole in

vacuum,46 a = 1.47 Å3 for polarizability47 and the water

cavity radius estimated in ref. 45 as R = 1.55 Å, one obtains

an estimate of m in different environments characterized by

dielectric constant e0. The dependence of m on e0 is shown

in Fig. 3.

In the high-dielectric region, e0 Z 20, as seen, the water

polarization is almost constant and similar to that of the water

molecule in the bulk, e0 = 80. At smaller e0, however, the
model indicates a significant dependence of the water dipole

moment on the polarity of the environment. As shown in

Fig. 3, the dipole moment of a water molecule in the media

with e0 o 20 is significantly lower than the value ml of water in
the bulk. Thus, in low-dielectric environments, such as proteins

or membranes, water should be modeled using potentials

different than those of TIP3P or SPC/E (the work to develop

such models is in progress in our group at present).

3.3. Empirical force fields

In non-polarizable force fields of AMBER,1 CHARMM,2

GROMOS3 or OPLS4 the atomic partial charges of non-

charged groups can be understood approximately as ‘‘scaled

MDEC charges’’, because, as discussed above, these empirical

parameters were chosen in such a way as to reflect the

condensed matter nature (including screening) of the inter-

action. In contrast, the charges of ionized groups remain

un-scaled and therefore do not reflect effects of electronic

screening, and as such are treated as if they were in vacuum.

The non-polarizable TIP3P potential is particularly interesting,

as it is often used in biological simulations, and it serves as a

reference for phenomenological parameters assignment of

CHARMM.2 The scaled nature of charges of TIP3P water

model is important to bear in mind when the interaction of

such water models with a solute is considered. For example, if

the net charge of say Glu� ionized side chain is assigned to

be �1 in simulation, then it is obviously inconsistent with the

charges of water model, as the latter are scaled by a factor of

1=
ffiffiffiffiffi
eel
p

, while the charges of the ion are not. Clearly the

strength of interaction is overestimated in this case by a

missing factor 1=
ffiffiffiffiffi
eel
p

, i.e. about 0.7 (for proteins eel B 2).

The problem would not arise if the charge of the ion were

appropriately scaled.

In free energy simulations with non-polarizable force fields

(and un-scaled solute charges), the pure electronic contribu-

tion to the electrostatic free energy is typically completely

Fig. 3 Dependence of water dipole on the polarity of the environ-

ment, as given by the Kirkwood-Onsager model,44 eqn (3.1). The

parameters are m0 = 1.855D, a = 1.47 Å3 and R = 1.55 Å.
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ignored, as e.g. in ref. 7 and 35. Yet, in many cases

such simulations pretty accurately reproduce experimental

solvation energies; this may appear surprising, given the fact

that about a half of the total solvation free energy (for charged

solutes typically 50–100 kcal mol�1) comes from electronic

polarization of the medium. In fact, the neglect of

large electronic polarization free energy is almost completely

compensated by the use of ‘‘incorrect’’ bare solute charges in

such simulations. This fortuitous compensation of errors,

however, occurs only in the high-dielectric media, as can be

seen from the following argument.

Consider for example Born solvation energy of Na+ ion,

Q = +1, in water; in standard simulations one would have

approximately

DG ¼ Q2

2R
1� 1

eMD

� �
; ð3:4Þ

where eMD is the dielectric constant of water that corresponds

to a specific MD model employed in the calculation. No

matter which model of water is used, eMD is much larger than

unity, hence the overall estimate of the solvation free energy is

Q2/2R, which is independent of properties of the solvent, and

can match pretty well the experimental value, provided the

ionic radius R is chosen correctly. The interaction between two

charges consequently is taken to be then Q2/r, completely

disregarding the electronic screening of the interaction.

MDEC model suggests instead that in MD simulations the

charge Q should be scaled, and the electronic solvation free

energy DGel ¼
Q2

2R
1� 1

eel

� �
added explicitly. In this case, the

nuclear part of the free energy calculated in MD will be

ðQ= ffiffiffiffiffi
eel
p Þ2
2R

1� 1

eMD

� �
and the total free energy, eqn (2.10), is

given by

DG ¼ ðQ=
ffiffiffiffiffi
eel
p Þ2

2R
1� 1

eMD

� �
þ Q2

2R
1� 1

eel

� �
ð3:5Þ

Since eMD = e0/eel, as given by eqn (2.13), the above expression

correctly reproduces the expected result (Q2/2R)(1 � 1/e0).
Notice that the charge is not scaled when the solvation is

calculated in electronic continuum. Notice also, that it is only

when eMD c 1, the two eqn (3.4) and (3.5) approximately give

the same result. Yet, for interaction energy of two charges the

MDEC gives the correct expression Q2/reel, while the standard
approach gives Q2/r.

It is seen that in high dielectric medium, the un-scaled

charges result in twice as large contribution for the nuclear

part of solvation energy compared with the correct value; as a

result the missing electronic part, which is half of the total,

exactly compensated.

Given that the un-scaled relation is only formally

correct when

eMD = e0/eel c 1, (3.6)

it is not surprising that the traditional non-polarizable approach

works well in aqueous solutions (e0/eel B 40), as e.g. in ref. 7

and 28; however, the approach fails (i.e. significantly under-

estimates the polarization effects) in low dielectric media

(e0/eel B 1) as in ref. 9,10,13,14,48,49.

Table 1 Dielectric constant of bulk alcohols simulated by different MD models at T = 298.15 K

Alcohol e0, exp
a eMD, npol MDb e0, pol. MDc eel, pol. MDc e0, MDECd

MeOH 32.61 17.2 30.1 1.5 25.8
EtOH 24.85 18.8 21.4 1.6 30.08
2-PrOH 19.26 13.7 17.6 1.7 23.29
2-BuOH 15.94 7.8 15.8 1.7 13.26
1-PrOH 20.52 15.2 19.5 1.6 24.32
1-BuOH 17.33 10.8 21.2 1.7 18.36

Rmsd of ye (%) — 3.7 0.6 — 0.9

a Experimental values50; b Conventional non-polarizable MD model;21 c Polarizable classical Drude oscillator model;21 d MDEC model,

eqn (2.13), where eMD and eel are taken from b and c, respectively; e The relative error of Born factor, eqn (3.7).

Table 2 Dielectric constant of bulk Alkanes simulated by different MD models

Alkane T, K e0, exp
a eMD, npol MDb e0, pol. MDc eel, pol. MDc e0, MDECd

Ethane 184.55 1.7595 1.014 1.707 1.697 1.721
Propane 231.08 1.7957 1.015 1.798 1.768 1.795
Butane 272.65 1.8098 1.016 1.801 1.774 1.802
Isobutane 261.43 1.8176 1.015 1.905 1.823 1.850
Heptane 298.15 1.9113 1.018 2.021 1.977 2.013
Heptane 312.15 1.8904 1.018 1.976 1.933 1.967
Decane 298.15 1.9846 1.020 2.118 2.066 2.106
Decane 312.15 1.9668 1.019 2.128 2.074 2.113

Rmsd of ye (%) — — 96.4 5.1 — 4.3

a Experimental values50; b Conventional non-polarizable MD model;10 c Polarizable classical Drude oscillator model;10 d MDEC model,

eqn (2.13), where eMD and eel are taken from b and c, respectively; e The relative error of Born factor, eqn (3.7).
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3.4 Dielectric properties

Here we consider the dielectric properties of polar (alcohols)

and non-polar (alkanes) solvents published recently.10,21 The

dielectric constants of these solvents were calculated by using

both the conventional non-polarizable model and polarizable

classical Drude oscillator model.10,21 A significant improve-

ment was obtained when the effects of electronic polarization

were included, in particular for non-polar alkanes. The results

of such calculations are reproduced in Tables 1 and 2.

As far as the dielectric constant is concerned, MDEC model

states that the static dielectric constant is simply a product of

the value found in non-polarizable MD simulations and that

of the electronic continuum, eqn (2.13). As non-polarizable

simulations have already been done, we use the published

results and check the above relation. The results are shown in

Tables 1 and 2 for alcohols and alkanes, respectively, where

MDEC model is compared with both polarizable Drude

model and with experiment.50

To quantify the comparison, we introduce a parameter y,
which is a measure of how well a given dielectric constant

reproduces the results of charging free energy calculations of

spherical ions. Since the free energies are proportional to the

corresponding Born factors, DG � 1� 1=eð Þ, the parameter

y is defined as:

y ¼
ð1� 1

�
esimÞ � ð1� 1=eexpÞ
ð1� 1=eexpÞ ð3:7Þ

In Tables 1 and 2, parameter y is shown for different types of

simulations and for MDEC model.

As predicted by the criterion in eqn (3.6) the traditional non-

polarizable model satisfactorily reproduces the polarization

effect in such polar media as alcohols (rmsd of y o 4%,

Table 1); although, the polarizable classical Drude oscillator

model21 and the MDEC model demonstrate much better

agreement with the experiment (rmsd of y o 1% for both).

In the case of non-polar media the traditional MD approach

completely fails (rmsd of yB 100%, see Table 2); whereas, the

polarizable Drude model10 and the MDEC model satisfactorily

describe the polarization of neat alkanes (rmsd of y is 5.1%

and 4.3%, respectively). The MDEC approach appears to be

even slightly favorable in this case. Thus, in the above

examples MDEC approach performs quite well for both polar

and non-polar media.

We next explored the application of non-polarizable models

to a low-dielectric interior of proteins, which have been studied

in the past using standard MD simulations.12 For the dielectric

permeability of the most internal region of cytochrome c, and

several other proteins, Simonson et al.12,15 reported a value

around 1.5 (and even lower deeper inside). This value is

apparently too low to be the actual dielectric constant of the

protein; indeed it is lower than the pure electronic permeability

eel = 2 estimated for cytochrome c in the polarizable

calculation.16 According to MDEC model, to obtain the total

(static) dielectric constant, the results of non-polarizable

simulations should be modified as given by eqn (2.13).

Considering the value 1.5 as corresponding to eMD, and using

eel = 2, for static dielectric constant we obtain the value

e0 = 3.0, which is in agreement with the value 2.9 estimated

by Muegge et al.51

In a related work, the non-polarizable simulations have

been used for the analysis of dielectric properties of the

interior of redox protein Cytochrome c oxidase52 (CcO).

The charge insertion process has been studied that models

deprotonation of His291 residue of CuB catalytic center in

(dehydrated) CcO. The free energy data and corresponding

dielectric properties are given in Table 3. The reaction-field

energy obtained in the traditional MD technique was found to

correspond to an un-physically low protein dielectric constant

of 1.3. However, when the electronic (eel = 2.0) polarization

energy was added explicitly, as given by eqn (2.12), the

microscopic reaction-field energy could be reproduced with a

more realistic value of protein dielectric of 2.6. The estimated

magnitude of the dry CcO dielectric constant in the region of

active site is consistent with earlier results for cytochrome

c which are 2.951 or 3.0 (the value15 corrected by eqn (2.13)).

3.5 Solvation free energy

The comparison of the standard MD and MDEC simulations

using GROMOS3 force field with experimental data for the

electrostatic hydration free energy of polyatomic ions is given

in Fig. 4. As seen, MDEC free energies reproduce experimental

data within the experimental error which is typically about

several kcal mol�1 for ions. As expected, the conventional non-

polarizable MD also reasonably well reproduces the polariza-

tion effect in such a high dielectric media as liquid water.

The quality of free energy simulations, however, is different

in the low-dielectric media such as liquid cyclohexane or

protein interior of protein Cytochrome c oxidase, which was

described above, see Table 3. As predicted by the criterion in

eqn (3.6), the traditional non-polarizable MD completely fails

in the simulations of low-dielectric environment. The obtained

in ref. 48 solvation free energies of Methyl and Propyl

Table 3 Solvation free energy of ions in low-dielectric media obtained by different MD models

System
Methyl Guanidinium
in cyclohexane48

Propyl Guanidinium
in cyclohexane48

His291 in dehydrated
Cytochrome c oxidase52

FF CHARMM CHARMM AMBER
DGMD, kcal mol�1 �0.81 �0.75 �15.7
DG, kcal mol�1 �27.5a �28.6a �45.6b
eMD 1.0c 1.0c 1.3c

eel 2.0 2.0 2.0
e0 2.050 2.050 2.6c

a Polarizable MD simulations. b MDEC, eqn (2.12). c Dielectric constant is estimated in continuum electrostatic calculations of the solvation free

energy adjusting eMD to reproduce DGMD or e0 to reproduce DG.
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Guanidinium ions in cyclohexane are about zero (or of the

order of thermal fluctuations BkBT), i.e. the standard non-

polarizable MD simulations result in no polarization effect at

all, eMD B 1, while free energies obtained48 in polarizable MD

are several orders of magnitude higher reflecting the correct

dielectric constant of cyclohexane e0 = 2.0.50

Thus, according to the criterion in eqn (3.6) and simulation

data summarized above the standard non-polarizable MD

technique significantly underestimate the solvation free energy

of ions and medium dielectric constant in the low-dielectric

materials. In contrast, MDEC simulations are correct for both

high and low-dielectric media.

3.6 What are the microscopic interactions in the condensed

phase?

To test how well the macroscopic electronic continuum

approximation of MDEC model describes a molecular

solvent, with its microscopic structure and corresponding

inhomogeneity of electronic density, we examined39 a model

of two ions A� and A+ dissolved in benzene. In the non-polar

solvent the nuclear component of polarization is negligible and

the total effect is almost exclusively determined by the electronic

polarization therefore the total potential of mean force (PMF)

accurately represents the electronic screening effect. The

low-dielectric environment is similar to that in the interior of

a protein, or a lipid membrane. The solvent now is described

by the polarizable Drude oscillator model,22 whereas ions

are treated by a standard non-polarizable force field

(Coulomb and Lennard-Jones interactions; the LJ parameters

for ions correspond to those of Cl� ion.) For such a system, we

calculate the electrostatic part of the potential of mean force

and compare the results with those of scaled and un-scaled

CHARMM calculation, using the concepts of MDEC theory,

see Fig. 5. The PMF gradient over r gives the average electro-

static force acting between charged particles A� and A+ in the

bulk. The solvation free energy DG(r) of ions was evaluated

by three alternative techniques: by polarizable MD, by the

standard technique using non-polarizable CHARMM force

field, and by using eqn (2.10) and CHARMM force field with

scaled ion charges, according to MDEC model.

As seen in Fig. 5, when the space between ionic spheres is

larger than a size of solvent molecules, the effects of solvent

microscopic structure becomes unimportant, and the average

interaction, both in polarizable and non-polarizable models of

benzene, can be approximated by a simple Coulomb law with

an effective dielectric constant (obviously the LJ interactions

are not important in this region). In case of polarizable Drude

oscillator model for solvent benzene, the average interaction

between ions is reproduced with an effective dielectric constant

e0 = 1.88.**

According to MDEC theory, eqn (2.13), the total dielectric

constant of the medium e0 is a product of the electronic

dielectric eel (due to Drude-polarization of benzene molecules)

and that of nuclei, eMD. The latter was obtained in a separate

simulation using non-polarizable CHARMMmodel of benzene;

the corresponding value is eMD = 1.16. According to eqn (2.13)

then, the corresponding electronic dielectric constant of polarizable

model of benzene is eel = e0/eMD = 1.62. As seen in Fig. 5

(solid line), in perfect agreement with MDEC theory, the

results of polarizable benzene simulations are reproduced by

scaling charges of ions (by a factor 1=
ffiffiffiffiffiffiffiffiffi
1:62
p

) and running

non-polarizable CHARMM simulations. Again, we see that all

Fig. 4 Charging free energy of polyatomic ions in aqua solution

simulated in the ref. 28. Opened symbols correspond to the traditional

MD simulations, while filled symbols stand for MDEC technique,

eqn (2.10). The experimental values (dashed line) were obtained as a

difference of total solvation energies for a given ion53 and its hydro-

carbon counterpart.54 Partial charges and geometry of ions were found

in self-consistent reaction-field quantum-chemical procedure.40 Circles

correspond to AM1 level of theory, while squares and triangles to

RHF/6-31G**. Van der Waals radii of G43A force field3 scaled by the

factor k = 0.9 (filled circles and squares) and k = 0.8 (filled triangles)

were used to build the molecular cavity in MDEC computation of

electronic free energy component.

Fig. 5 PMF for an ion pair A+ and A� in benzene. The squares,

circles and triangles stand for the results obtained with polarizable

MD, non-polarizable CHARMM and CHARMMwith scaled charges

of the ions, respectively. Continuous curves are the least square fitting

of the simulation points by the Coulomb function �1/er (with the

Ewald correction, see ref. 39). For polarizable simulations (solid line),

the effective dielectric constant e0 = 1.88; for non-polarizable simula-

tions (dashed line), the dielectric constant eMD = 1.16. The triangles

correspond to non-polarizable CHARMM simulations with scaled

charges by a factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe0=eMDÞ

p
according to MDEC model.

** We notice that the experimental value of e0 for benzene is actually
2.3;50 the underestimated value of e0 is a consequence of the reduced
polarizability parameter employed in the benzene model,22 which is
B20% lower than experimental benzene polarizability. This lack of
parameterization, however, is not essential for the model test provided
by the consistent choice of the underestimated value of eel.
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effects of electronic polarization can be incorporated by

scaling charges of ions with a factor 1=
ffiffiffiffiffi
eel
p

.

The significant deviation of the results of standard

non-polarizable MD from those of polarizable and MDEC

techniques shown in Fig. 5, in fact, can be rationalized without

the PMF simulations. Since scaling factor of each microscopic

model is given by the corresponding dielectric constant

(as defined in section 2.3), the PMF profiles are approximated

by the corresponding Coulomb functions �1=e0r, �1=eMDr

and �1=ðeeleMDÞr for the polarizable, non-polarizable

CHARMM and MDEC techniques, respectively. Due to the

relation (2.13), PMF functions for polarizable MD and

MDEC should be the same, while, deviation from the

CHARMM technique is estimated as 1� 1=eelð Þ � 1=eMDr.

Thus, for the low-dielectric media where eel = 2 and eMD B 1,

the deviation is � 1=2r, which is significant even for larger

separation distances (B16 kcal mol�1 for r = 10 Å). In the

high-dielectric media (eMD c 1), however, the difference will

be much smaller. For instance, in water (eel = 1.8, eMD B 100

for TIP3P model55) the deviation will be just � 1=225r, which

is B0.5 kcal mol�1 even for the shortest separation r r 4 Å

(contact ion pair: r r 2RvdW). Since 0.5 kcal mol�1 is of the

order of statistical uncertainty of MD the missing electronic

screening effect is not noticeable in the standard non-polarizable

simulations of water solutions.

Thus, despite a complex nature of electronic polarization in

a real system, the effect can be described reasonably well in

different solvation conditions by a simple charge scaling

procedure; this opens a way to modify the standard force

fields so as to improve the description of their charged groups

by effectively incorporating the electronic screening of charges.

3.7 Dynamics of salt bridges in proteins

To demonstrate the significance of accounting for the electronic

screening effect in protein dynamics simulations we modeled39

fluctuations of an important salt bridge (Arg438–PropD of

heme a3, see the structure in ref. 39) in Cytochrome c Oxidase

(CcO). This salt bridge (SB) controls water penetration to the

hydrophobic (low-dielectric) cavity in the catalytic center of

CcO.56,57 The strength of the electrostatic interaction of the salt

bridge determines the rate of its opening/closing and, as a result,

the probability of water transfer to/from the catalytic cavity.

The distance d between O2D of D-propionate and 2HH2 of

Arg438 has been chosen to characterize the fluctuations of the

salt bridge gate during an MD run. The AMBER1 force field

was used. The distribution functions for distance d obtained

with scaled and original un-scaled charges are shown in

Fig. 6a. Here no water in the cavity was included in the

simulation.

It is seen that the SB dynamics becomes qualitatively

different once electrostatic interactions between the charged

Arg438+ and the COO� group of D-propionate are reduced by

a factor of 1/eel (in the simulations, eel = 2.0). In contrast to

the standard MD simulations,57 the fluctuations observed in

the scaled model are significantly larger, so that the internal

water can now easily pass through the opened SB gate, and

enter the catalytic cavity. In fact, during a 5 ns MD run with

scaled charges, several such water transitions were observed.

In Fig. 6b, the distribution functions of d are shown from

simulations that included water in (and around) the catalytic

cavity of the enzyme. As we already pointed out, the electronic

screening affects not only charge–charge interactions, but

interaction with water as well. Here TIP3P model is taken

without modification; the charge scaling affects only the

salt-bridge groups. As seen in Fig. 6b when the effects of

electronic screening are included even more dramatic changes

are observed.

Thus, standard (un-scaled charges) MD simulations with

and without water in the cavity lead to the conclusion that the

salt bridge is formed 100% of the time; here stability of the

salt bridge is quantified by the criterion d o 3 Å, while, the

bridge is observed only 98% or even 63% of the time in

simulations with scaled charges without (see Fig. 6a) and with

water (see Fig. 6b), respectively.

It is clear, that the account for electronic screening of

charged groups can give rise to qualitatively different results

in simulations of proteins. As we have shown,39 this can be

achieved in a computationally effective way by simple charge

scaling of ionized groups in the protein.

Unfortunately, there are no direct experimental data on

the dynamics of the salt bridge discussed here to verify our

proposal of electronic screening. However, as we argue in

this paper such a scaling is obvious from theoretical point

of view. An indirect comparison with an experiment, and

support of charge scaling, is provided by some other com-

putational studies, such as Zhu et al.58 where a heuristic

approximation for the charge scaling of ionized side

chains (variable dielectric constant Z 2) somewhat similar to

ours was employed, which resulted in significant improve-

ment in both side chain and loop prediction for protein

conformations.

Fig. 6 Distribution functions of the distance d between O2D

(D-propionate of heme a3) and 2HH2 (Arg438) of bovine CcO salt-

bridge: (a) no water in the catalytic cavity; (b) 4 water molecules are

added to the cavity. Dashed lines represent distributions obtained in

the standard MD, while solid lines stand for the distributions obtained

in the MD with scaled charges of the ionized groups.
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4. Conclusions

There is inconsistency in how the effects of electronic polariz-

ability are treated in the commonly used non-polarizable

empirical force fields.1–4 The electronic screening effect, inherent

for the condensed phase media, appears to be accounted for

only for neutral moieties, whereas the charged residues are

treated as if they were in vacuum. As a result, the electrostatic

interactions between ionized groups are exaggerated by a

factor of about 2. Also, an important electronic polarization

term is typically neglected in simulations of solvation free

energy or dielectric constant. The omission of the electronic

contribution to the solvation energy is compensated by the

exaggerated electrostatic interactions, but the complete compen-

sation is possible only in high-dielectric media.

The discussed here non-polarizable MDEC (Molecular

Dynamics in Electronic Continuum) model provides a theoretical

framework for systematic accounting of the effects of electronic

polarization, and suggests a modification of the standard non-

polarizable force fields1–4 to make them consistent with the

idea of uniform electronic screening of partial atomic charges.

In a few examples, we compared the traditional non-polarizable

MD simulations with MDEC simulations, and demonstrated

how the charges of ionized groups can be rescaled to corres-

pond to MDEC model. The present theory states that the

charges of ionized groups of the protein, as well as charges of

ions, in simulations with existing non-polarizable potentials

such as CHARMM, AMBER, etc should be scaled; i.e.

reduced by a factor 1
� ffiffiffiffiffi

eel
p

(about 0.7), to reflect the electronic

screening of the condensed medium relevant to biological

applications. In the solvation free energy simulations the

electronic part of the free energy (estimated by the continuum

model) should be added explicitly to the nuclear part, which is

obtained in non-polarizable MD simulations. The inclusion of

electronic screening for charged moieties is shown to result

in significant changes in protein dynamics and can give rise

to new qualitative results compared with the traditional non-

polarizable force fields simulations.

Appendix

Dielectric screening

The reduction of electrostatic interactions in a dielectric

medium with respect to that in vacuum is called the dielectric

screening of interactions. The effective interaction between

two localized groups of charges in a dielectric of e is defined
via the potential of mean force (PMF):

Uint(r, e) = PMF = G(r, e) � G(r = N, e), (A1)

here r is an effective distance between two charge groups;

G(r, e) is the total electrostatic free energy of the system;

G(r = N, e) is the sum of free energies of individual groups.

The dielectric screening factor f(r, e) then is defined as the ratio

between interaction in dielectric and in vacuum:

f(r, e) = Uint(r, e)/Uint(r, e = 1). (A2)

In general, a solution of the dielectric problem with appropriate

boundary conditions is necessary to obtain the free energy

G(r, e), effective interaction Uint(r, e) and screening factor

f(r, e). If molecules in the condensed medium are represented

by the partial charges distributed inside the molecular

cavity of general shape then the result obviously will depend

not only on the dielectric property e and distance r but also on

the molecular charge distributions r1(~x), r2(~x) and cavity

shapes S1(~x), S2(~x), where ~x stands for the Cartesian

coordinates.

The complexity of the problem is significantly reduced in the

case of spherical molecular cavities. First, consider two

point dipoles ~m1 and ~m2 at centers of the spherical cuts

in the dielectric of e. The total free energy of the system is

given by

Gðr; eÞ ¼ 1

2

Z
Cð~x; r; eÞrð~xÞd3x

¼ 1

2

Z
V1

Cð~x; r; eÞr1ð~xÞd3xþ
1

2

Z
V2

Cð~x; r; eÞr2ð~xÞd3x;

ðA3Þ

where r(~x) = r1(~x) + r2(~x) is the total external

charge distribution and C(~x; r, e) is the total potential induced
by the charge distribution. In the limit of large distances,

r c R-radius of cavities, the higher-order re-polarization of the

cavities in response to each other polarization can be neglected

and the solution for the 2-sphere problem is expressed via

solutions for single sphere problems: C(~x A V1; r, e) =

j(1)
in (~x) + j(2)

out(~x); C(~x A V2; r, e) = j(1)
out(~x) + j(2)

in (~x),

where j(i)
in, j(i)

out are the potentials induced by the charge

distribution ri(~x) inside and outside own cavity, respectively.

Note that, strictly speaking, the potential j(i)
out is not a solu-

tion for a single sphere problem. Thus, the free energy is

partitioned onto:

Gðr; eÞ ¼ Gðr ¼ 1; eÞ þ 1

2

Z
V1

jð2Þoutð~xÞr1ð~xÞd3x

þ 1

2

Z
V2

jð1Þoutð~xÞr2ð~xÞd3x;
ðA4Þ

where G(r = N, e) is the sum of free energies of individual

groups:

Gðr¼1; eÞ ¼ 1

2

Z
V1

jð1Þin ð~xÞr1ð~xÞd
3xþ 1

2

Z
V2

jð2Þin ð~xÞr2ð~xÞd
3x:

ðA5Þ

We note that the last two terms in eqn (A4) are equal due to

symmetry of electrostatic interactions. Recalling now the expres-

sion for the charge density of dipole rið~xÞ ¼ �~mi �~rdð~x�~xiÞ
and performing the integration in (A4) by parts we obtain the

expression for Uint(r, e):

Uint(r, e) = �1
2
(~m1�~E(2)

out(~x1) + ~m2�~E(1)
out(~x2)) (A6)

here ~E
ðiÞ
out ¼ �~rj

ðiÞ
out is the electric field induced by one

dipole at the position of the other dipole. To obtain this field

one need to remember that the electric field induced by the

dipole outside own cavity ~F (i)
out will be additionally modified
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inside the second cavity due to its re-polarization. At larger

distances the dipole field ~F (i)
out is approximately uniform and its

modification inside the other cavity is given by the well known

solution:59 E
!ðiÞ
out ¼

3e
2eþ 1

F
!ðiÞ
out. Recalling now the expression

for the electric field of the point dipole created outside own

cavity we obtain the resulting field at the position of the other

dipole as:

E
!ðiÞ
out ¼

3e
2eþ 1

3

2eþ 1

3ðm!i � r!Þr! � m!ir2

r5

" #
ðA7Þ

Thus, from eqn (A6) we find the interaction between two ideal

dipoles in spherical cavities:

U intðr� R; eÞ ¼ �e 3

2eþ 1

� �2
3ðm!1 � r!Þðm!2 � r!Þ � ðm!1 � m!2Þr2

r5

ðA8Þ

and the screening factor of electrostatic interactions defined by

eqn (A2) is

f ðr� R; eÞ ¼ e
3

2eþ 1

� �2

ðA9Þ

The screening (A9), in fact, is true for arbitrary charge

distributions r1(~x), r2(~x) in spherical cavities, for which the

lowest multipole moment is the dipole. For a general distribu-

tion of charges qi the solution of the dielectric problem outside

own cavity is given by the famous Kirkwood’s expansion:60

foutðr
!
; eÞ ¼

XN
i¼1

qi
X1
l¼0

2l þ 1

eðl þ 1Þ þ l

ðxiÞl

rlþ1
Plðcos yiÞ

¼
X1
l¼0

2l þ 1

eðl þ 1Þ þ l

4p
2l þ 1

1

rlþ1

Xl
m¼�l

qlmYlmðy;jÞ
" #

ðA10Þ

here ~xi are the positions of charges qi in respect to the sphere

center, yi are the angles between ~r and ~xi vectors, Pl(z)

and Ylm(y, j) are the Legendre polynomials and spherical

harmonics, respectively, and qlm ¼
PN
i¼1

qiðxiÞlY�lmðyi;jiÞ are

spherical multipole moments59 which are linearly related to

the Cartesian multipole moments. In eqn (A10) the vacuum

component of the potential is grouped by brackets and the

prefactor reflects the screening of the field corresponding to

each multipole. It is seen that at larger distances r c R the

electric field is determined exclusively by moments qLm of the

lowest nonvanishing multipole L and, therefore, the solution

(A10) for the arbitrary charge distribution is equivalent to

the field from the point multipole qLm located at the center of

the sphere. Thus, at larger distances rc R the screening factor

between arbitrary charge distributions (with lowest moments

L1 and L2) in two spheres is the same as that between point

charges (if L1 = L2 = 0), point dipoles (if L1 = L2 = 1)

or any appropriate lowest moments located at the center of

these spheres.

The screening factors between charged (L1 = 0) and dipolar

(L2 = 1) as well as between charged (L1 = 0) and charged

(L2 = 0) distributions are obtained in similar manner giving

the following combination rules for the dielectric screening:

fqqðr� R; eÞ ¼ 1

e
ðcharge�chargeÞ

fqdðr� R; eÞ ¼ 3

2eþ 1
ðcharge�dipoleÞ

fddðr� R; eÞ ¼ e
3

2eþ 1

� �2

ðdipole�dipoleÞ;

ðA11Þ

see though ref. 24 and 61.

One should remember that the obtained scaling factors

for charge–dipole or dipole–dipole interactions are only for

specific models of molecular cavities—spheres, and for large

distances, and therefore should not be taken directly as more

appropriate than a straightforward factor 1/e, in particular

because the shape of molecular cavity is ill-defined. However,

it does show that the true scaling in some models can be

different from a simple 1/e.
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