F4280 Technologie depozice tenkých vrstev a povrchových úprav 2. Gas Kinetics Lenka Zajíčková Přírodovědecká fakulta & CEITEC, Masarykova univerzita, Brno lenkaz@physics.muni.cz jarní semestr 2017 Central European Institute of Technology BRNO I CZECH REPUBLIC • 2.1 Vapors and Gases • 2.2 Maxwell-Boltzmann Distribution • 2.3 Ideal-Gas Law • 2.4 Molecular Impingement Flux • 2.5 Units of Measurement • 2.6 Knudsen Equation • 2.7 Mean Free Path • 2.8 Transport Properties F4280 Technologie depozice a povrchových úprav: 2.1 Vapors and Gases Len ka Zajíčková 3/16 p-V-T diagram The possible equilibrium states can be represented in pressure-volume-temperature (p-V-T) space for fixed amount of material (e.g. 1 mol = 6.02 x 1023): A cut through the p-V-T surface below critical point for fixed T =^ relationship between p and Vm (molar volume) ► point a: highest V (lowest p) - vapor phase ► from point a to b\ reducing V ->> increasing p ► point b\ condensation begins ► from point b to c: V is decreasing at fixed p and T (b- c line is _L to the p-T plane, p is called saturation vapor pressure pv or just vapor pressure) ► point c: condensation completed If V is abruptly decreased in b - c transition p would be pushed above the line b - c =>- non-equilibrium supersaturated vapors F4280 Technologie depozice a povrchovych uprav: 2.1 Vapors and Gases ka Zajíčková 4/16 p-V-T diagram It is important to distinguish between the behaviors of vapors and gases: Solid and liquid Constant-temperature line ► vapors: can be condensed to liquid or solid by compression at fixed T =^ below critical point defined by pc, Vc and Tc ► gases: monotonical decrease of V upon compression =^ no distinction between the two phases Surfaces "liquid-vapor", "solid-vapor" and "solid-liquid" are perpendicular to the p-T plane =^ their projection on that plane are lines. p (atm) ^—Equilibrium ^—Equilibrium \ CRITICAL POINT solid vaporization deposition TRIPLE POINT T (°C) F4280 Technologie depozice a povrchových úprav: 2.1 Vapors and Gases Len ka Zajíčková 5/16 p-T diagram T fC) ► triple point: from triple line _L to p-T plane ► below T of triple point: liquid-phase region vanishes =^ condensation directly to the solid phase, vaporization in this region is sublimation ► pressure along borders of vapor region is vapor pressure pv ► pv increases exponentially with T up to pc that is well above 1 atm =^ deposition of thin films is performed at p < pc, either p > pv (supersaturated vapors) or p < pv F4280 Technologie depozice a povrchových úprav: 2.2 Maxwell-Boltzmann Distribution Lenka Zajíčková 6/16 Maxwell-Boltzmann Distribution Distribution of random velocities V in equilibrium state m f(V) = n 2irkB T 3/2 / mV2 exp - 2kBT (1) where kB = 1.38 x 10-23 m2 kg s-2 K_1 (or J K_1) is the Boltzmann constant, n, T and m are particle density, temperature and mass, respectively. If the drift velocity is zero we do not need to distinguish between the velocity and random velocity, i.e. v = V. Maxwell-Boltzmann distribution is isotropic =^ F(v) distribution of speeds v = \ v\ can be defined by integration of f(v) in spherical coordinates 47T f'iĹTľ F(v)dv resulting in o f(v)v2 s\x\6d(j)d6dv (2) F4280 Technologie depozice a povrchových úprav: 2.2 Maxwell-Boltzmann Distribution Lenka Zajíčková 7/16 Mean (Average) Speed, Molecular Impingement Flux Vp = Most Probable Speed = Average Speed" i i -»_ vrms = Root-IVfeaii-Square Speed i ' Ý Ý_ ■> v Velocity Mean speed: (v) = ^ 1 'OO av-- / F(v)vdV=X/^^(4) ľ! Jo V 7TA77 or l/av = "Ä/T (5) using molar mass M = uiNa in kg/mol and gas constant R kBNA 8.31 Jmol-^-1 where NA = 6.02 x 1023 mol-1 is Avogadro's number Root-mean-square (rms) speed: ^rms — 3kBT urn (6) The most probable speed vl dF{v) dv = 0 => vp = V=Vr 2kBT m (7) F4280 Technologie depozice a povrchových úprav: 2.3 Ideal-Gas Law Lenka Zajíčková 8/16 Ideal-Gas Law From the definition of pressure for ideal gas (not necessary to consider pressure tensor but only scalar pressure) p=-mn{V2+V2+V2) = -mn{V2) = m[ V2f(V)d3V. (8) 3 y 3 Jv The ideal-gas law is obtained by integration of (8) using Maxwell-Boltzmann distribution: pV p= nkBT or = NkB (9) where N is the number of particles. Chemists are used to work in molar amounts: ► molar concentration nm = n/NA =^ p = rimRT ► number of moles A/m = N/A/a =^ p = NmRT/V ► molar volume l/„, = V/Na =>• p = RT/Vm The ideal gas is obeyed if ► the volume of molecules in the gas is much smaller than the volume of the gas ► the cohesive forces between the molecules can be neglected. Both assumptions are fulfilled for low n =^ always fulfilled for thin film deposition from the vapor phase (T > Troorn and p < patm), i.e. well away from the critical point (most materials pc > 1 atm or if not Tc < 25 °C F4280 Technologie depozice a povrchových úprav: 2.3 Ideal-Gas Law Energy Forms Stored by Molecules Lenka Zajíčková 9/16 Molecules can store energy in various forms. Their energetic states are quantized (spacing between energy levels AE) ► electronic excitations - AEe is highest, transitions between different electronic states are possible only for extremely high T or collision with energetic particle ► vibrational excitations - energy levels correspond to different vibration modes of the molecule, AEV « 0.1 eV (1 eV = 11 600 K) ► rotational excitations - different rotational modes of the molecule, AEr « 0.01 eV ► translational energy - above performed description of molecular random motion Et = 1 /2mV2, no details of inner molecule structure are considered, AEt negligible at ordinary T. Ei Rj" v. 3 Energy level diagram } Rolaltonal levels energy levels Eledrgnit Energy I Fr.A z::_JLei1 c]«:Liu[l:ľ sLale I_.--^^ Gro unci electronic stale y~ty_e^__ iRutalJanal ]rvé.s = = = 01 eV Separation distance From definition of absolute temperature - the mean thermal energy AT'/2 belongs to each translational degree of freedom and molecular translation energy is => equipartition theorem of classical statistical mechanics. Classical statistical treatment assumes very close quantized energy levels of molecules, i.e. approximated as a continuum. It is a good assumption for translational energy when T > 0 K. ► For atomic gases, Et is total kinetic energy content. ► For molecular gases, Er is added at ordinary T and Ev at very high 7~: Molar heat capacity at constant volume Cy (for molecular gas) [J/(mol.K)] - increase of total kinetic energy for increasing T: Cy d£m d(£t + Er + Ev) A/A ~ dT ~ dT 1 ; for atomic gases for small diatomic molecules at room T (10) - two rotational degrees of freedom are excited but vibrational ones are not F4280 Technologie depozice a povrchových úprav: 2.3 Ideal-Gas Law Lenka Zajíčková 11/16 Energy Content of Gas The heat capacity of any gas is larger when measured at constant pressure cp - heat input is doing pdV work on the surroundings in addition to adding kinetic energy to the molecules: Cp = Cv + R (12) We can write from thermodynamics dUm\ dT J y Cy (13) where Um is internal energy per mol Um = HmA/A and dHm ÔT (14) where /-/m is enthalpy per mol /-/m = Um + pV, dHm m dT dUm\ , (dVm + P dT dT (15) giving cp = Cy + R F4280 Technologie depozice a povrchovych uprav: 2.4 Molecular Impingement Flux ka Zajíčková 12/16 Molecular Impingement Flux - Knudsen Equatioi The molecular impingement flux at a surface is a fundamental determinant of film deposition rate: rOO í' 7T f'2.71 V = n(vcosO)= / / f(v)v2 cos OsinOd^dOdv Jo Jo Jo (16) Substituting Maxwell-Boltzmann distribution fkBT\^2 1 (17) F4280 Technologie depozice a povrchových úprav: 2.5 Units of Measurement Lenka Zajíčková 13/16 2.5 Units of Measurement see Smith's book F4280 Technologie depozice a povrchových úprav: 2.6 Knudsen Equation ka Zajíčková 14/16 nudsen tquation see Smith's book F4280 Technologie depozice a povrchových úprav: 2.7 Mean Free Path ka Zajíčková 15/16 2.7 Mean Free Pa see Smith's book F4280 Technologie depozice a povrchovych uprav: 2.8 Transport Properties Lenka Zajíčková 16/16 2.8 Transport Properties see Smith's book