7.4 Plasma Surface Modification

What can happen after surface modification?

- change of surface roughness
- change of surface chemistry

What these changes are used for?

- change of surface free energy, i.e. wettability
- improved adhesion of further coatings
- immobilization of biomolecules

Plasma Treatment

combination of various processes (chemistry, ions, UV) results in:

- removal of material
- modification of original material (especially important for polymers)
- grafting of new functional groups

In contrary to depositions the changes are limited to a very thin surface layer (in the order of nm) but please note that the term "surface" is a matter of definition!

ageing of treated surfaces

important issue of any surface treatment processes

Effect of UV Radiation on Polycarbonate

suggested mechanism of carbonate bond breakage due to UV radiation:

Plasma generates also UV photons and this effect is often forgotten!

Plasma modifications of polymers in inert gas

discharge in argon, helium:

chemical bonds, such as C-H, C-C, C=C, are broken

generation of free radicals at or near the surface

radicals react with each other either directly (if polymer chain is flexible enough) or due to migration along polymer chain ("chain-transfer")

cross-linking, branching, removal of low molecular weight material or its conversion into high molecular weight one (no new functional groups)

CASING

(cross-linking by activated species of inert gas) R. H. Hansen, H. Schonhorn, J. Polym. Sci. B 4 (1966) 203 H. Schonhorn, R. H. Hansen, J. Appl. Polym. Sci. 11 (1967) 1461

increase of surface hardness, improvement of adhesive forces at the interface

Additionally, changes of surface roughness

Plasma treatment in reactive gases gases

- \succ plasma containing oxygen (O₂, H₂O, CO₂...)
 - etching of surface carbon radicals by atomic oxygen
 - new functional groups, e.g. C-O, C=O, O-C=O, C-O-O, CO₃, OH

hydrophilic surface, change of roughness

> plasma containing nitrogen (N_2 , NH_3 ...)

- new functional groups such amine (N-C), imine (N=C), nitrile (N=C), amide (N-C=O)
- incorporation of oxygen and its functional groups
- grafting of amine groups –NH₂

hydrophilization, biocompatibility, imobilization of biomolecules

- > plasma containing fluorine (SF₆, CF₄, C₂F₆ ...)
 - F and CF_x radicals react with surface and two different processes compete:
 - etching
 - grafting and deposition

Why Plasma Modification of Polycarbonate?

Polycarbonates are attractive business article, the most important PCs are based on on bisphenol A (Diflon[®], Macrolon[®], Lexan[®])

Properties

- excellent breakage resistance (15-20x than acrylate, 250x than glass)
- good transparency (3 mm thick 90 %)
- Iow inflammability, good workability, lighter than glass
- low hardness (0.2 GPa)
- Iow scratch resistance
- degradation by ultraviolet light

modification of PC surface properties is necessary

replace glass and metals in:

- automobile headlamps, stoplight lenses,
- corrective lenses,
- safety shields in windows, architectural glazing

can be applied to:

- plastics vessels, parts of machines
- in optical grades for compact discs (CDs, CD-ROMs and DVDs), optical fibers

deposition of functional films (scratch resistant, reflective, ...)

surface treatment for improved film adhesion

Plasma treatment of polycarbonate in Ar or O₂ discharges (CCP)

External plasma parameters:

- f = 13.56 MHz
- inner diameter of reactor 490 mm
- r.f. driven bottom electrode (420 mm)
- Ar, O₂: Q = 5.7 sccm , p = 1.5 Pa
- r.f. power P = 100 and 400 W

Plasma treatment of polycarbonate – etching rate and surface free energy

 $P = 100 \text{ W}, U_{\text{bias}} = -115 \text{ V}, Q_{\text{ar}} = 5.7 \text{ sccm},$ p = 1.5 Pa

Plasma treatment of polycarbonate – surface chemistry by XPS

		position [eV]		assigmer	nt		
C1	C1		5.0	C-C, C-I	H		
C2	C2		6.6	C-O			
C3		28	8/289	C-C(=O)-C / O-C(=O)-O			
C4	C4 2		0.9	C-C(=O))-O		
C5	C5		2.1	shake up			
gas	power [W]		C [at. %]	O [at. %]	Si [at. %]		N [at. %]
untreat	ted		84.3	15.7	0		0
Ar	100		76.4	20.3	0.4		2.2
Ar	400		76.0	19.9	1.3		2.8
O ₂	100		74.0	24.0	0.4		1.7
O ₂	400		72.6	24.7	1.6		1.2

7.5 Plasma Enhanced Chemical Vapor Deposition7.5.1 Introduction to PECVD

Chemical Vapor Deposition (CVD)

thermally driven chemical deposition from gas phase:

- 1. transport of reactants to the deposition space
- 2. diffusion of reactants to the substrate surface
- 3. adsorption of reactants
- phys.-chem. processes ☞ film growth and by-products
- 5. desorption of by-products
- 6. diffusion of by-products in gas flow
- transport of by-products from deposition space

Low Pressure CVD (LPCVD) is often used in microelectronics or in applications requiring excellent control over impurities

Plasma Enhanced (or Assisted) CVD (PECVD or PACVD)

CVD method in which discharge is ignited in the gas mixture:
collisions of energetic electrons with heavy gas particles
production of highy reactive species

more competing processes take place, deposition can be generally divided into thermal and plasma branches

PECVD x CVDreaction branch:thermal $A \rightarrow B$ $3SiH_4 + 4NH_3 \rightarrow Si_3N_4 + 12H_2$ plasma $A + e^- \rightarrow A^* + e^ A^* \rightarrow B'$ $SiH_4 + NH_3 \rightarrow SiNH + 3H_2$

plasma reaction branch at PECVD is much more important 250-350°C because:

sticking coefficient is much higher for reactive radicals and activated surface

activation energies of chemical reactions are lower for excited reactants

PECVD - lower deposition temperature, novel reaction schemes leading to new materials, replacement of toxic and dangerous reactants but

high complexity of chemical reactions and processes, worse selectivity and reaction control, possibility of damages by energetic ions, UV radiation or electrostaticaly (charge accumulation)

7.5.2 PECVD of materials with silicon

• dielectric films for microelectronics

silicon nitride: (final protective passivation for integrated circuit) silicon oxide: (insulating film - el. separation)

> SiH₄+N₂O/NO/CO₂/O₂ T=200-400 °C

Si(OC_2H_5)₄ + O_2 tetraetoxysilane (TEOS)

 SiH_4+NH_3 or SiH_4+N_2 T=250-400 °C

 $\begin{aligned} Si(OC_{2}H_{5})_{4} + e^{-} &\rightarrow Si(OC_{2}H_{5})_{3}(OH) + C_{2}H_{4} + e^{-} \\ O_{2} + e^{-} &\rightarrow 2O + e^{-} \\ O + Si(OC_{2}H_{5})_{3}(OH) &\rightarrow Si(OC_{2}H_{5})_{2}(OH)_{2} + C_{2}H_{4}O \end{aligned}$

scratch resistant films for plastics, anticorrosion films for metals, barrier films for packaging and pharmacy, biocompatible films

mixtures with organosilicons (TEOS, HMDSO, HMDSZ)

PECVD of films using HMDSO

(hexamethyldisiloxane)

SiO_xC_yH_z plasma polymers

- concentration of HMDSO in the gas feed, especially oxygen
- power
- bias voltage / ion energy
- pressure
- pulsing

PECVD from HMDSO/O₂ in CCP and ICP (13.56 MHz)

5-100 % HMDSO in O₂

CCP:

> Q_{hmdso} = 4 sccm, Q_{o2} = 0 − 80 sccm
 > pressure 1 - 40 Pa
 > rf power 100 - 450 W
 > dc self-bias from -20 and -335 V

helical antenna in ICP mode:

- pressure 0.4 Pa
- ➢ rf power 300 W
- substrate at ground

Variation of film composition

⇒ 0.4 Pa: SiO₂ structure, almost no impurities ⇒ 2.5 Pa: SiO₂ structure, OH groups and H₂O ⇒ 40 Pa: organosilicon films

7.5.3 Carbon materials

Diamond, graphite and much more

Besides well known materials such as crystalline diamond or graphite carbon can form many other interesting nanomaterials such as fullerenes, carbon nanotubes, graphene.

 $sp^3 C$ - diamond

sp² C - graphite

graphene

C₆₀ - Buckminsterfullerene

carbon nanotube

O crystalline diamond films PECVD of carbon based materials $0.1 - 5\% CH_4/C_2H_2/...$ in H_2 T=700-1000°C RF plasma p=0.01-4kPa, T_{gas} =1000-1500°C, P=0.5-3kW MW plasma p=2-10kPa, T_{gas} =2000-2500°C, P=0.5-2kW

• amorphous diamond like carbon (DLC) films

!! ion bombardment

 $CH_4/C_2H_2/... + (Ar/H_2), T < 300 \, ^{\circ}C$

• polymer hydrogenated carbon films (a-C:H)

1.2% of CH

Classification of carbon films

- classification of carbon films by Fraunhofer Institute for Surface Engineering and Thin Films (IST) 2009
- activities on international standardization, e.g. workshop at 12th International Conference on Plasma Surface Engineering (PSE) in 2010

		Carbon films													
	1 Plasma-									3 Crystalline carbon films					
Designation	polymer films	2 Amorphous carbon films (diamond-like-carbon films / DLC)						Diamond films					Graphite films		
Thin film / thick film	Thin film	Thin film						Thin film (free standing)				k film anding)	Thin film		
De se la se		hydrogen-free			hydrogenated										
Doping, additional elements				modified		mod	dified under		oped	doped	undoped	doped	undoped		
				with metal			with metal	with non-metal							
Crystal size on the growth side	L		(amorphous)						1 to 500nm, nano- crystalline	0.5 to 10 µm, mikro- crystalline	0.1 to 5 μm	(5μm to) 80to 500 μm	80 to 500 μm		
Predomina- ting C-C- bond type	sp ² or sp ³ , linear bond	sp ²	sp ³	sp ²	sp ² or sp ³	sp ³	sp ²	sp ²	sp ³	sp ³	sp ³	sp ³	sp ³	sp ²	
Film No.	1	2.1	2.2	2.3	2.4	2.5	26	2.7	3.1	3.2	3.3	3.4	3.5	3.6	
Designation	Plasma- polymer film	Hydrogen- free amorphous carbon film	Tetrahedral hydrogen- free amorphous carbon film	Metal- containing hydrogen- free amorphous carbon film	Hydrogenated amorphous carbon film	Tetrahedral hydrogenated amorphous carbon film	Metal- containing hydrogenated amorphous carbon film	Modified hydrogenated amorphous carbon film	nano- crystalline CVD diamond film	micro- crystalline CVD diamond film	doped CVD diamond film	CVD diamond	doped CVD diamond	graphite film	
Recom- mended abbreviation	L	a-C	ta-C	a-C:Me	а-С:Н	ta-C:H	a-C:H:Me (Me = W, Ti,)	a-C:H:X (X = Si, O, N, F, B,)	1.	J.	7.	Л.	1.	L	

http://www.ist.fraunhofer.de/english/c-products/tab/complete.html

Classification of amorphous hydrogenated carbon films

Necessity of carbon film classification:

 ternary phase diagram (sp³C, sp²C and H) for amorphous films (Jacob and Moller 1993, Robertson 2002)

classification of a-C:H films into 4 cathegories by Cambridge University group (2005):

- polymer-like a-C:H (PLCH): high H content (40–60 at. %); up to 70 % sp³ but most sp³C are H terminated => soft, low density, optical band gap 2–4 eV
- but more C-C sp³ bonds than PLCH ⇒ better mechanical properties, optical gap 1–2 eV.
- hydrogenated tetrahedral amorphous carbon films (ta-C:H): increased C-C sp³ content whilst keeping a H content low (25–30 at. %) ⇒ higher density (up to 2.4 g/cm³) and Young's modulus (up to 300 GPa)
- graphite-like a-C:H (GLCH): low H content (< 20 at.%); high sp² content and sp² clustering ⇒ gap under 1 eV

C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72(8):1-14, 2005.

Methods for synthesis of carbon nanotubes (CNTs)

• **O** arc discharge deposition

large quantities of CNTs but the purity is usually about 30%; not suitable for direct synthesis of supported aligned CNTs

• **O** laser ablation of graphite

costly apparatus not amenable for scaleup; small quantities of high-quality SWNTs in 70-90% purity

supported • chemical vapor deposition (CVD) catalyst: CxHy (energy source) Fe, Ni, Co ... plasma enhanced CVD (PECVD) thermal CVD floating catalyst: $Fe(C_5H_5)_2$, reactants: hydrocarbons or CO mixed Fe(CO)₅ with H_2 , NH_3 , N_2 ...

Microwave Plasma Torch at Atmospheric Pressure

Studied for the synthesis of

- carbon nanotubes (CNTs) using CH₄
- iron-based nanoparticles (Fe-NPs) using Fe(CO)₅

frequency 2.45 GHz, power 100 – 400 W dual gas flow:

- central channel Ar (500 1500 sccm)
- side channel CH_4 , H_2 , $Ar + Fe(CO)_5$

Surface Bound Deposition of CNTs

- mw power: 400 W
- Ar: 1500 sccm
- H₂: 285-430 sccm
- CH₄: 25-42 sccm

- Si substrate with
 - Fe catalytic layer, 5-15 nm
 - (- SiO₂ film, 200 nm)

Nanostructuring of catalytical film is not necessary for torch deposition of CNTs. It takes place at the very beginning (few s) of deposition.

Type of CNTs Growth

1500/430/42sccm of Ar/H₂/CH₄

CNTs without Barrier SiO₂

1500/430/42 sccm 700 °C, 45 s, 15 nm Fe on Si

L. Zajickova et al. Pure Appl. Chem. 82(6) 1259–1272, 2010

Iron Oxide NPs

phase	type of magnetism	M _s (300K) (A.m²/kg)	applications		
α -Fe ₂ O ₃	weakly ferromagnetic or antiferromagnetic	0.3	photo- chemistry		
γ-Fe ₂ O ₃	ferrimagnetic ↓↓	60-80	MRI, ferrofluids, drug		
Fe ₃ O ₄	ferromagnetic	90-100	delivery, cancer treatment, data storage		
ε-Fe ₂ O ₃	ferrimagnetic ↓↓	20 hysteresis	high density data storage		

single domain crystals (superparamagnetic)below approx. 14 nm